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SOLUTIONS FOR LINEAR DIFFERENTIAL EQUATIONS
WITH MEROMORPHIC COEFFICIENTS OF (P,Q)-ORDER

IN THE PLANE

LEI-MIN LI, TING-BIN CAO

Abstract. In this article we study the growth of meromorphic solutions of
high order linear differential equations with meromorphic coefficients of (p, q)-
order. We extend some previous results due to Beläıdi, Cao-Xu-Chen, Kin-
nunen, Liu- Tu -Shi, and others.

1. Introduction and main results

For k ≥ 2, consider the linear differential equations

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = 0, (1.1)

f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f ′ + A0(z)f = F (z), (1.2)

where A0 6≡ 0 and F 6≡ 0. When the coefficients A0, A1, . . . , Ak−1 and F are entire
functions, it is well known that all solutions of (1.1) and (1.2) are entire functions,
and that if some coefficients of (1.1) are transcendental then (1.1) has at least one
solution with infinite order. We refer to [16] for the literature on the growth of
entire solutions of (1.1) and (1.2).

As far as we known, Bernal [4] firstly introduced the idea of iterated order to
express the fast growth of solutions of complex linear differential equations. Since
then, many authors obtained further results on iterated order of solutions of (1.1)
and (1.2), see e.g. [1, 2, 4, 5, 6, 15, 19]. Recently, Liu, Tu and Shi [17] firstly
introduced the concept of (p, q)-order for the case p ≥ q ≥ 1 to investigate the
entire solutions of (1.1) and (1.2), and obtained some results which improve and
generalize some previous results.

Theorem 1.1 ([17, Theorems 2.2-2.3]). Let p ≥ q ≥ 1, and let A0, A1, . . . , Ak−1

be entire functions such that either

max{σ(p,q)(Aj) : j 6= 0} < σ(p,q)(A0) < +∞,

or

max{σ(p,q)(Aj) : j 6= 0} ≤ σ(p,q)(A0) < +∞,
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max{τ(p,q)(Aj) : σ(p,q)(Aj) = σ(p,q)(A0) > 0} < τ(p,q)(A0),

then every nontrivial solution f of (1.1) satisfies σ(p+1,q)(f) = σ(p,q)(A0).

Recently, Cao, Xu and Chen [5] considered the growth of meromorphic solutions
of equations (1.1) and (1.2) with meromorphic coefficients of finite iterated order,
and obtained some results which improve and generalize some previous results.

Theorem 1.2 ([5, Theorem 2.1]). Let A0, A1, . . . , Ak−1 be meromorphic functions
in the plane, and let i(A0) = p (0 < p < ∞). Assume that either iλ( 1

A0
) < p or

λp( 1
A0

) < σp(A0), and that either

max{i(Aj) : j = 1, 2, . . . , k − 1} < p

or

max{σp(Aj) : j = 1, 2, . . . , k − 1} ≤ σp(A0) := σ (0 < σ < ∞),

max{τp(Aj) : σp(Aj) = σp(A0)} < τp(A0) := τ (0 < τ < ∞).

Then every meromorphic solution f 6≡ 0 whose poles are of uniformly bounded
multiplicities, of equation (1.1) satisfies i(f) = p + 1 and σp+1(f) = σp(A0).

There exists a natural question: How about the growth of meromorphic solutions
of equations (1.1) and (1.2) with meromorphic coefficients of finite (p, q)-order in
the plane?

The main purpose of this paper is to consider the above question. Now we show
our main results. For homogeneous linear differential equation (1.1), we obtain the
following results.

Theorem 1.3. Let A0, A1, . . . , Ak−1 be meromorphic functions in the plane. Sup-
pose that there exists one coefficient As (s ∈ {0, 1, . . . , k − 1}) such that

max{σ(p,q)(Aj), λ(p,q)(
1

As
) : j 6= s} < σ(p,q)(As) < +∞,

then every transcendental meromorphic solution f whose poles are of uniformly
bounded multiplicities of (1.1) satisfies

σ(p+1,q)(f) ≤ σ(p,q)(As) ≤ σ(p,q)(f).

Furthermore, if all solutions of (1.1) are meromorphic solutions, then there is at
least one meromorphic solution, say f1, satisfies

σ(p+1,q)(f1) = σ(p,q)(As).

Now replacing the arbitrary coefficient As by the dominant fixed coefficient A0,
then we obtain the following result.

Theorem 1.4. Let A0, A1, . . . , Ak−1 be meromorphic functions in the plane satis-
fying

max{σ(p,q)(Aj), λ(p,q)(
1

A0
) : j = 1, 2, . . . , k − 1} < σ(p,q)(A0) < +∞,

then every meromorphic solution f whose poles are of uniformly bounded multiplic-
ities of (1.1) satisfies

σ(p+1,q)(f) = σ(p,q)(A0).
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If there exist some other coefficients Aj (j ∈ {1, 2, . . . , k − 1}) having the same
(p,q)-order as A0, then we have the following result by making use of the concept
of (p,q)-type.

Theorem 1.5. Let A0, A1, . . . , Ak−1 be meromorphic functions in the plane, as-
sume that

λ(p,q)(
1

A0
) < σ(p,q)(A0)

and

max{σ(p,q)(Aj) : j = 1, 2, . . . , k − 1} = σ(p,q)(A0) < +∞,

max{τ(p,q)(Aj) : σ(p,q)(Aj) = σ(p,q)(A0) > 0} < τ(p,q)(A0).

Then any nonzero meromorphic solution f whose poles are of uniformly bounded
multiplicities of (1.1) satisfies

σ(p+1,q)(f) = σ(p,q)(A0).

Obviously, Theorems 1.4 and 1.5 are a generalization of Theorems 1.1 and 1.2.
Considering nonhomogeneous linear differential equation (1.2), we obtain the fol-
lowing three results.

Theorem 1.6. Assume that A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions in
the plane satisfying

max{σ(p,q)(Aj), λ(p,q)(
1

A0
), σ(p+1,q)(F ) : j = 1, 2, . . . , k − 1} < σ(p,q)(A0),

then all meromorphic solutions f whose poles are of uniformly bounded multiplicities
of (1.2) satisfy

λ(p+1,q)(f) = λ(p+1,q)(f) = σ(p+1,q)(f) = σ(p,q)(A0)

with at most one exceptional solution f0 satisfying σ(p+1,q)(f0) < σ(p,q)(A0).

Theorem 1.7. Let A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions in the plane
satisfying

max{σ(p,q)(Aj) : j = 0, 1, . . . , k − 1} < σ(p+1,q)(F ).

Suppose that all solutions of (1.2) are meromorphic functions whose poles are of
uniformly bounded multiplicities, then σ(p+1,q)(f) = σ(p+1,q)(F ) holds for all solu-
tions of (1.2).

Theorem 1.8. Let H ⊂ (1,∞) be a set satisfying log dens{|z| : |z| ∈ H} > 0 and
let A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions in the plane satisfying

max{σ(p,q)(Aj) : j = 1, 2, . . . , k − 1} < α1,

where α1 is a constant, and there exists another constant α2 (α2 < α1) such than
for any given ε (0 < ε < α1 − α2), we have

|A0(z)| ≥ expp+1{(α1 − ε) logq r}, |Aj(z)| ≤ expp+1{α2 logq r}

for |z| ∈ H, j = 1, 2, . . . , k − 1. Then we have:
(i) If σ(p+1,q)(F ) ≥ α1, then all meromorphic solutions whose poles are of uni-

formly bounded multiplicities of (1.2) satisfy

σ(p+1,q)(f) = σ(p+1,q)(F ).
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(ii) If σ(p+1,q)(F ) < α1,then all meromorphic solutions whose poles are of uni-
formly bounded multiplicities of (1.2) satisfy

λ(p+1,q)(f) = λ(p+1,q)(f) = σ(p+1,q)(f) = α1

with at most one exceptional solution f2 satisfying

σ(p+1,q)(f2) < α1.

Recently, B. Beläıdi [3] investigated the growth of solutions of differential equa-
tions (1.1) and (1.2) with analytic coefficients of (p, q)-order in the unit disc. So,
it is also interesting to consider the growth of meromorphic solutions of differential
equations with coefficients of (p, q)-order in the unit disc?

2. Preliminaries and some lemmas

We shall introduce some notation. Let us define inductively, for r ∈ [0,+∞),
exp1 r = er and expn+1 r = exp(expn r), n ∈ N. For all r sufficiently large, we
define log1 r = log+ r = max{log r, 0} and logn+1 r = log(logn r), n ∈ N. We also
denote exp0 r = r = log0 r, log−1 r = exp1 r and exp−1 r = log1 r. Moreover, we
denote the linear measure and the logarithmic measure of a set E ⊂ (1,∞) by
mE =

∫
E

dt and mlE =
∫

E
dt
t . The upper logarithmic density of E ⊂ (1,∞) is

defined by

log densE = lim sup
r→∞

ml(E ∩ [1, r])
log r

.

We assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory of meromorphic
functions (e.g. see [11, 20]), such as T (r, f), m(r, f), and N(r, f). In this section, a
meromorphic function f means meromorphic in the complex plane C. To express
the rate of fast growth of meromorphic functions, we recall the following definitions
(e.g. see [4, 5, 15, 16, 18]).

Definition 2.1. The iterated p-order σp(f) of a meromorphic function f is defined
by

σp(f) = lim sup
r→∞

logp T (r, f)
log r

(p ∈ N).

If f is an entire function, then

σp,M (f) = lim sup
r→∞

logp+1 M(r, f)
log r

(p ∈ N).

Definition 2.2. The growth index of the iterated order of a meromorphic function
f is defined by

i(f) =


0 if f is rational,
min{n ∈ N : σn(f) < ∞} if f is transendental and σn(f) < ∞

for some n ∈ N,

∞ if σn(f) = ∞ for all n ∈ N.

Definition 2.3. The iterated p-type of a meromorphic function f with iterated
order p-order 0 < σp(f) < ∞ is defined by

τp(f) = lim sup
r→∞

logp−1 T (r, f)
rσp(f)

(p ∈ N).
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If f is an entire function, then

τp,M (f) = lim sup
r→∞

logp M(r, f)
rσp(f)

(p ∈ N).

Definition 2.4. The iterated convergence exponent of the sequence of zeros of a
meromorphic function f is defined by

λp(f) = lim sup
r→∞

logp N(r, 1
f )

log r
(p ∈ N).

Definition 2.5. The growth index of the iterated convergence exponent of the
sequence of zeros of a meromorphic function f with iterated order is defined by

iλ(f) =


0 if n(r, 1

f ) = O(log r),
min{n ∈ N : λn(f) < ∞} if λn(f) < ∞ for some n ∈ N,
∞ if λn(f) = ∞ for all n ∈ N.

Similarly, we can use the notation λp(f) to denote the iterated convergence
exponent of the sequence of distinct zeros, and use the notation iλ(f) to denote the
growth index of λp(f).

Now, we shall introduce the definition of meromorphic functions of (p, q)-order,
where p, q are positive integers satisfying p ≥ q ≥ 1. In order to keep accordance
with Definition 2.1, we will give a minor modification to the original definition of
(p, q)-order (e.g. see [13, 14]).

Definition 2.6. The (p, q)-order of a transcendental meromorphic function f is
defined by

σ(p,q)(f) = lim sup
r→∞

logp T (r, f)
logq r

.

If f is a transcendental entire function, then

σ(p,q)(f) = lim sup
r→∞

logp+1 M(r, f)
logq r

.

It is easy to show that 0 ≤ σ(p,q) ≤ ∞. By Definition 2.6 we note that σ(1,1)(f) =
σ1(f) = σ(f), σ(2,1)(f) = σ2(f) and σ(p,1)(f) = σp(f).

Remark 2.7. If f is a meromorphic function satisfying 0 ≤ σ(p,q) ≤ ∞, then
(i) σ(p−n,q) = ∞ (n < p), σ(p,q−n) = 0 (n < q), and σ(p+n,q+n) = 1 (n < p) for

n = 1 to ∞.
(ii) If (p1, q1) is another pair of integers satisfying p1 − q1 = p − q and p1 < p,

then we have σ(p1,q1) = 0 if 0 < σ(p,q) < 1 and σ(p1,q1) = ∞ if 1 < σ(p,q) < ∞.
(iii) σ(p1,q1) = ∞ for p1 − q1 > p− q and σ(p1,q1) = 0 for p1 − q1 > p− q.

Remark 2.8. Suppose that f1 is a meromorphic function of (p, q)-order σ1 and f2

is a meromorphic function of (p1, q1)-order σ2, let p ≤ p1. We can easily deduce
the result about their comparative growth:

(i) If p1 − q1 > p− q, then the growth of f1 is slower than the growth of f2.
(ii) If p1 − q1 < p− q, then f1 grows faster than f2.
(iii) If p1− q1 = p− q > 0, then the growth of f1 is slower than the growth of f2

if σ2 ≥ 1,and the growth of f1 is faster than the growth of f2 if σ2 < 1.
(iv) Especially, when p1 = p and q1 = q then f1 and f2 are of the same index-pair

(p, q). If σ1 > σ2, then f1 grows faster than f2; and if σ1 < σ2, then f1 grows slower
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than f2. If σ1 = σ2, Definition 1.6 does not show any precise estimate about the
relative growth of f1 and f2.

Definition 2.9. The (p, q)-type of a meromorphic function f with (p, q)-order
σ(p,q)(f) ∈ (0,∞) is defined by

τ(p,q)(f) = lim sup
r→∞

logp−1 T (r, f)

(logq−1 r)σ(p,q)(f)
.

Definition 2.10. The (p, q) convergence exponent of the sequence of zeros of a
meromorphic function f is defined by

λ(p,q)(f) = lim sup
r→∞

logp N(r, 1
f )

logq r
.

Similarly, we can use the notation λ(p,q)(f) to denote the (p, q) convergence
exponent of the sequence of distinct zeros of f . To prove our results, we need the
following lemmas.

Lemma 2.11 ([8]). Let f1, f2, . . . , fk be linearly independent meromorphic solu-
tions of the differential equation (1.1) with meromorphic functions A0, A1, . . . , Ak−1

as the coefficients, then

m(r, Aj) = O{log( max
1≤n≤k

T (r, fn))} (j = 0, 1, . . . , k − 1).

Lemma 2.12 ([7]). Let f be a meromorphic solution of equation (1.1), assuming
that not all coefficients Aj are constants. Given a real constant γ > 1, and denoting
T (r) = Σk−1

j=0T (r, Aj), we have

log m(r, f) < T (r){(log r) log T (r)}γ , if s = 0,

log m(r, f) < r2s+γ−1T (r){log T (r)}γ , if s > 0

outside of an exceptional set Es with
∫

Es
ts−1dt < ∞.

By inequalities in [12, Chapter 6] and in [16, Corollary 2.3.5], we obtain the
following lemma.

Lemma 2.13. If f is a meromorphic function, then

σ(p.q)(f) = σ(p.q)(f ′).

Lemma 2.14 ([9]). Let f be a transcendental meromorphic function, and let α
be a given constant. Then there exist a set E1 ⊂ (1,∞) that has finite logarithmic
measure and a constant B > 0 depending only on α and (m,n)(m,n ∈ {0, 1, . . . , k}),
m < n such that for all z with |z| = r 6∈ [0, 1] ∪ E1, we have∣∣ f (n)(z)

f (m)(z)

∣∣ ≤ B
(T (αr, f)

r
(logα r)T (αr, f)

)n−m

.

Lemma 2.15. Let f be a meromorphic function of (p.q)-order satisfying σ(p.q)(f) <
∞. Then there exists a set E2 ⊂ (1,∞) having infinite logarithmic measure such
that for all r ∈ E2, we have

lim
r→∞

logp T (r, f)
logq r

= σ(p.q)(f).
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Proof. By Definition 2.6, there exists a sequence {rn}∞n=1 tending to ∞, satisfying
(1 + 1

n )rn < rn+1, and

lim
n→∞

logp T (rn, f)
logq rn

= σ(p.q)(f).

There exists a n1 ∈ N, such that for n ≥ n1, and for any r ∈ [rn, (1 + 1
n )rn], we

have
logp T (rn, f)
logq(1 + 1

n )rn

≤
logp T (r, f)

logq r
≤

logp T ((1 + 1
n )rn, f)

logq rn
.

Set E2 = ∪∞n=n1
[rn, (1 + 1

n )rn], then for any r ∈ E2, we have

lim
r→∞

logp T (r, f)
logq r

= lim
n→∞

logp T (rn, f)
logq rn

= σ(p.q)(f),

where

mlE2 = Σ∞n=n1

∫ (1+ 1
n )rn

rn

dt

t
= Σ∞n=n1

log(1 +
1
n

) = ∞. �

Lemma 2.16. Let ϕ(r) be a continuous and positive increasing function, defined
for r ∈ [0,∞] with σ(p.q)(ϕ) = lim supr→∞

logp ϕ(r)

logq r , then for any subset E3 ⊂ (0,∞)
that has a finite linear measure, there exists a sequence {rn}, rn 6∈ E3 such that

σ(p.q)(ϕ) = lim
rn→∞

logp ϕ(rn)
logq rn

.

Proof. Since σ(p.q)(ϕ) = lim supr→∞
logp ϕ(r)

logq r , then there exists a sequence {r′n}
tending to ∞,such that

lim
r′

n→∞

logp ϕ(r′n)
logq r′n

= σ(p.q)(ϕ).

Set mE3 = δ < ∞,then for rn ∈ [r′n, r′n + δ + 1], we have

logp ϕ(rn)
logq rn

≥
logp ϕ(r′n)

logq(r′n + δ + 1)
=

logp ϕ(r′n)

logq−1(log r′n + log (1 + δ+1
r′

n
))

.

Hence

lim
rn→∞

logp ϕ(rn)
logq rn

≥ lim
r′

n→∞

logp ϕ(r′n)

logq−1(log r′n + log (1 + δ+1
r′

n
))

= lim
r′

n→∞

logp ϕ(r′n)
logq r′n

= σ(p.q)(ϕ),

this gives

σ(p.q)(ϕ) = lim
rn→∞

logp ϕ(rn)
logq rn

. �

Lemma 2.17 ([13]). Let f be an entire function of (p.q)-order,and let νf (r) be the
central index of f , then

lim sup
r→∞

logp νf (r)
logq r

= σ(p.q)(f).
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Lemma 2.18. Let f be a meromorphic function of (p.q)-order satisfying 0 <
σ(p.q)(f) < ∞, let τ(p.q)(f) > 0, then for any given τ(p.q)(f) > β, there exists a
set E4 ⊂ (1,∞) that has infinite logarithmic measure such that for all r ∈ E4, we
have

logp−1 T (r, f) > β(logq−1 r)σ(p.q)(f).

.

Proof. (i) (see [5]) when q = 1, it holds absolutely. (ii) when q ≥ 2, by Definition 2.9,
there exists an increasing sequence {rm}(rm → ∞) satisfying (1 + 1

m )rm < rm+1,
and

lim
m→∞

logp−1 T (rm, f)

(logq−1 rm)σ(p.q)(f)
= τ(p.q)(f).

Then there exists a positive constant m0 such that for all m > m0 and for any
given ε (0 < ε < τ(p.q)(f)− β) we have

logp−1 T (rm, f) > (τ(p.q)(f)− ε)(logq−1 rm)σ(p.q)(f). (2.1)

For any r ∈ [rm, (1 + 1
m )rm], we have

lim
rm→+∞

logq−1 rm

logq−1 r
= 1.

Since β < τ(p.q)(f)−ε, there exists a positive constant m1 such that for all m > m1,
we have

(
logq−1 rm

logq−1 r
)σ(p.q)(f) >

β

τ(p.q)(f)− ε
;

i.e.,
(τ(p.q)(f)− ε)(logq−1 rm)σ(p.q)(f)

> β(logq−1 r)σ(p.q)(f)
. (2.2)

Now we take m2 = max{m0,m1} and E4 = ∪∞m=m2
[rm, (1 + 1

m )rm], then by (2.1)-
(2.2), for any r ∈ E4, we have

logp−1 T (r, f) ≥ logp−1 T (rm, f)

> (τ(p.q)(f)− ε)(logq−1 rm)σ(p.q)(f)

> β(logq−1 r)σ(p.q)(f)
,

where

mlE4 = Σ∞m=m2

∫ (1+ 1
m )rm

rm

dt

t
= Σ∞m=m2

log(1 +
1
m

) = ∞. �

Lemma 2.19 ([10]). Let g(r) and h(r) be monotone nondecreasing functions on
[0,∞) such that g(r) ≤ h(r) for all r 6∈ [0, 1]∪E5, where E5 ∈ (1,∞) is a set of finite
logarithmic measure. Then for any constant α > 1, there exists r0 = r0(α) > 0
such that g(r) ≤ h(αr) for all r ≥ r0.

Lemma 2.20. Let A0, A1, . . . , Ak−1, F 6≡ 0 be meromorphic functions and let f
be a meromorphic solution of equation (1.2). If

max{σ(p+1,q)(Aj), σ(p+1,q)(F ) : j = 0, 1, . . . , k − 1} < σ(p+1,q)(f),

then we have
λ(p+1,q)(f) = λ(p+1,q)(f) = σ(p+1,q)(f).
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Proof. By (1.1), we have

1
f

=
1
F

(
f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ A0). (2.3)

It is easy to see that if f has a zero at z0 of order β (β > k) and if A0, A1, . . . , Ak−1

are all analytic at z0, then F has a zero at z0 of order at least β − k. Hence

n(r,
1
f

) ≤ kn(r,
1
f

) + n(r,
1
F

) + Σk−1
j=0n(r, Aj), (2.4)

N(r,
1
f

) ≤ kN(r,
1
f

) + N(r,
1
F

) + Σk−1
j=0N(r, Aj). (2.5)

By the lemma of the logarithmic derivative and (2.3), we have

m(r,
1
f

) ≤ m(r,
1
F

) + Σk−1
j=0m(r, Aj) + O(log T (r, f) + log r) (2.6)

holds for all |z| = r 6∈ E6, where E6 is a set of finite linear measure. By (2.5),(2.6)
and the first main theorem, we have

T (r, f) = T (r,
1
f

) + O(1) ≤ kN(r,
1
f

) + T (r, F ) + Σk−1
j=0T (r, Aj) + O(log(rT (r, f)))

(2.7)
holds for all sufficiently r 6∈ E6.

Assume that max{σ(p+1,q)(Aj), σ(p+1,q)(F ) : j = 0, 1, . . . , k − 1} < σ(p+1,q)(f).
By Lemma 2.16, there exists a sequence {rn}, rn 6∈ E6 such that

lim
rn→∞

logp+1 T (rn, f)
logq rn

= σ(p+1,q)(f) =: σ1.

Hence , if rn 6∈ E6 is sufficiently large, since σ1 > 0, then we have

T (rn, f) ≥ expp+1{(σ1 − ε) logq rn} (2.8)

holds for any given ε (0 < 2ε < σ1−σ2), where σ2 = max{σ(p+1,q)(Aj), σ(p+1,q)(F ) :
j = 0, 1, . . . , k − 1}. We have

max{T (rn, F ), T (rn, Aj) : j = 0, 1, . . . , k − 1} ≤ expp+1{(σ2 + ε) logq rn}. (2.9)

Since ε (0 < 2ε < σ1 − σ2), then from (2.8) and (2.9) we obtain

max{T (rn, F )
T (rn, f)

,
T (rn, Aj)
T (rn, f)

: j = 0, 1, . . . , k − 1} → 0 (rn →∞). (2.10)

For sufficiently large rn, we have

O(log(rnT (rn, f))) = O(T (rn, f)).

Hence, by (2.7) and (2.10), we obtain that for sufficiently large rn 6∈ E6, there holds

(1− o(1))T (rn, f) ≤ kN(rn,
1
f

).

Then we have λ(p+1,q)(f) ≥ σ(p+1,q)(f), and by definitions we have λ(p+1,q)(f) ≤
λ(p+1,q)(f) ≤ σ(p+1,q)(f). Therefore

λ(p+1,q)(f) = λ(p+1,q)(f) = σ(p+1,q)(f). �
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3. Proofs of Theorems 1.3-1.8

Proof of Theorem 1.3. We shall divide the proof into two parts.
• Firstly, we prove that σ(p+1,q)(f) ≤ σ(p,q)(As) ≤ σ(p,q)(f) holds for every

transcendental meromorphic function f of (1.1). By (1.1), we know that the poles
of f can only occur at the poles of A0, A1, . . . , Ak−1, note that the multiplicities of
poles of f are uniformly bounded, then we have

N(r, f) ≤ C1N(r, f)

≤ C1Σk−1
j=0N(r, Aj)

≤ C2 max{N(r, Aj) : j = 0, 1, . . . , k − 1} ≤ O(T (r, As)),

where C1 and C2 are suitable positive constants. Then we have

log T (r, f) ≤ log m(r, f)+log N(r, f)+log 2 ≤ log m(r, f)+O{log T (r, As)}. (3.1)

By (3.1) and Lemma 2.12, we obtain

log T (r, f) ≤ log m(r, f) + O{log T (r, As)}

= O
(
T (r, As){(log r) log T (r, As)}λ

)
outside of an exceptional set E0 with

∫
E0

dt
t < ∞, this implies σ(p+1,q)(f) ≤

σ(p,q)(As). On the other hand, by (1.1), we obtain

−As =
f (k)

f (s)
+ Ak−1

f (k−1)

f (s)
+ · · ·+ As+1

f (s+1)

f (s)
+ As−1

f (s−1)

f (s)
+ · · ·+ A0

f

f (s)

=
f

f (s)
{f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ As+1

f (s+1)

f
+ As−1

f (s−1)

f
+ · · ·+ A0}.

Since

m(r,
f

f (s)
) ≤ T (r, f) + T (r,

1
f (s)

) = T (r, f) + T (r, f (s)) + O(1) = O(T (r, f)),

then by the lemma of logarithmic derivative we have

T (r, As) ≤ N(r, As) + Σj 6=sm(r, Aj) + O(log rT (r, f)) + O(T (r, f)) (3.2)

hold for all |z| = r 6∈ E7, where E7 is a set of finite linear measure. By Lemma
2.16 and similar discussion as in the proof of Lemma 2.20, we see that there exists
a sequence {rn} (rn →∞) such that

σ1 := σ(p,q)(As) = lim
rn→∞

logp T (rn, As)
logq rn

and

T (rn, As) ≥ expp{(σ1 − ε) logq rn}, (3.3)

N(rn, As) ≤ expp{(σ2 + ε) logq rn}, (3.4)

m(rn, Aj) ≤ expp{(σ2 + ε) logq rn} (j 6= s), (3.5)

where σ2 := max{σ(p,q)(Aj), λ(p,q)( 1
As

) : j 6= s} and 0 < 2ε < σ1 − σ2.
By (3.2)-(3.5), we obtain

(1− o(1)) expp{(σ1 − ε) logq rn} ≤ O{log rnT (rn, f)}+ O(T (rn, f)).

Hence we have σ(p,q)(As) = σ1 ≤ σ(p,q)(f).
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• Secondly, we prove that there exists at least one meromorphic solution that
satisfies

σ(p+1,q)(f) = σ(p,q)(As).

Now we can assume that {f1, f2, . . . , fk} is a meromorphic solution base of (1.1).
By Lemma 2.11,

m(r, As) ≤ O

(
log( max

1≤n≤k
T (r, fn))

)
.

Now we assert that m(r, As) > N(r, As) holds for sufficiently large r. Indeed, if
m(r, As) ≤ N(r, As), then

T (r, As) = m(r, As) + N(r, As) ≤ 2N(r, As),

so

lim sup
r→∞

logp T (r, As)
logq r

≤ lim sup
r→∞

logp 2N(r, As)
logq r

,

then we have σ(p,q)(As) ≤ λ(p,q)( 1
As

), which contradicts the condition λ(p,q)( 1
As

) <

σ(p,q)(As). Hence,

T (r, As) = O(m(r, As)) ≤ O
(

log( max
1≤n≤k

T (r, fn))
)
.

By Lemma 2.16, there exists a set E9 ⊂ (0,∞) has finite linear measure , and a
sequence {rn}, rn 6∈ E9, such that

lim
rn→∞

logp T (rn, As)
logq rn

= σ(p,q)(As).

Set

Tn = {r : r ∈ (0,∞) \ E9, T (r, As) ≤ O(log(T (r, fn))) (n = 1, 2, . . . , k)

By Lemma 2.11, we have ∪k
n=1Tn = (0,∞) \ E9. It is easy to see that there exists

at least one Tn, say T1 ⊂ (0,∞) \ E9, that has infinite linear measure and satisfies

T (r, As) ≤ O(log T (r, f1)). (3.6)

From (3.6), we have σ(p+1,q)(f1) ≥ σ(p,q)(As).
In the first part we have proved that σ(p+1,q)(f1) ≤ σ(p,q)(As). Therefore, we

have that there is at least one meromorphic solution f1 satisfies

σ(p+1,q)(f1) = σ(p,q)(As).

Proof of Theorem 1.4. Suppose that f is a nonzero meromorphic solution whose
poles are of uniformly bounded multiplicities of (1.1), then (1.1) can be written

−A0 =
f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ A1

f ′

f
. (3.7)

By the lemma of the logarithmic derivative and (3.7), we have

m(r, A0) ≤
k−1∑
j=1

m(r, Aj) +
k∑

j=1

m(r,
f (j)

f
) + O(1)

=
k−1∑
j=1

m(r, Aj) + O{log(rT (r, f))}

(3.8)
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holds for all sufficiently large r 6∈ E10, where E10 ⊂ (0,∞) has finite linear measure.
Hence

T (r, A0) = m(r, A0)+N(r, A0) ≤ N(r, A0)+
k−1∑
j=1

m(r, Aj)+O{log(rT (r, f))} (3.9)

holds for all sufficiently large |r| = r 6∈ E10.
Since max{σ(p,q)(Aj) : j 6= 0} < σ(p,q)(A0) < ∞, by Lemma 2.15, there exist a

set E11 ⊂ (1,∞) having infinite logarithmic measure such that for all z satisfying
|z| = r ∈ E11, we have

lim
r→∞

logp T (r, A0)
logq r

= σ(p,q)(A0),
m(r, Aj)
m(r, A0)

= o(1) (r ∈ E10, j = 1, 2, . . . , k − 1).

(3.10)
By (3.8) and (3.10), for all sufficiently large r ∈ E11 \ E10, we have

1
2
m(r, A0) ≤ O{log(rT (r, f))}. (3.11)

Using a similar discussion as in second part of proof of Theorem 1.3, we can get
that

m(r, A0) > N(r, A0), (3.12)
hence,

T (r, A0) = m(r, A0) + N(r, A0) = O(m(r, A0)) = O(log rT (r, f))

for all sufficiently large r ∈ E11 \ E10, this means

σ(p+1,q)(f) ≥ σ(p,q)(A0).

On the other hand, by Theorem 1.3, we have

σ(p+1,q)(f) ≤ σ(p,q)(A0).

Therefore, every meromorphic solution f whose poles are of uniformly bounded
multiplicities of (1.1) satisfies

σ(p+1,q)(f) = σ(p,q)(A0).

Proof of Theorem 1.5. When A0, A1, . . . , Ak−1 satisfy

max{σ(p,q)(Aj) : j 6= 0} < σ(p,q)(A0),

then by Theorem 1.4, it is easy to see that Theorem 1.5 holds. Now we assume that
there exists at least one of Aj (j = 1, 2, . . . , k − 1) satisfies σ(p,q)(Aj) = σ(p,q)(A0).

Suppose that f is a nonzero meromorphic solution of (1.1), we have

|A0| ≤ |f
(k)(z)
f(z)

|+ |Ak−1||
f (k−1)(z)

f(z)
|+ · · ·+ |A1||

f ′(z)
f(z)

|. (3.13)

Using a similar discussion as in the proof of Theorem 1.4, we can get that (3.8)
and (3.9) hold for all sufficiently large r 6∈ E12, where E12 ⊂ (0,∞) has finite linear
measure. Since

max{σ(p,q)(Aj) : j = 1, 2, . . . , k − 1} = σ(p,q)(A0)

and
max{τ(p,q)(Aj) : σ(p,q)(Aj) = σ(p,q)(A0) > 0} < τ(p,q)(A0),

then there exists a set J ⊂ {1, 2, . . . , k−1} such that for j ∈ J , we have σ(p,q)(Aj) =
σ(p,q)(A0) and τ(p,q)(Aj) < τ(p,q)(A0).
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Hence, there exist two constants β1 and β2 satisfying max{τ(p,q) : j ∈ J} < β1 <
β2 ≤ τ(p,q)(A0). By Definitions 2.6 and 2.9, we obtain that

m(r, Aj) ≤ T (r, Aj) < expp−1{β1(logq−1 r)σ(p,q)(A0)}. (3.14)

Since λ(p,q)( 1
A0

) < σ(p,q)(A0), we have

N(r, A0) ≤ expp{(λ(
1

A0
) + ε) logq r} ≤ expp−1{β1(logq−1 r)σ(p,q)(A0)}. (3.15)

By Lemma 2.18, there exists a set of E13 having infinite logarithmic measure such
that for all r ∈ E13, we have

T (r, A0) ≥ expp−1{β2(logq−1 r)σ(p,q)(A0)}. (3.16)

Now, substituting (3.14)-(3.16)into (3.9), we have

(1− o(1)) expp−1{β2(logq−1 r)σ(p,q)(A0)} ≤ O(log(rT (r, f)))

for all r ∈ E13 \ E12, this implies

σ(p+1,q)(f) ≥ σ(p,q)(A0).

On the other hand ,by Theorem 1.3, we have

σ(p+1,q)(f) ≤ σ(p,q)(A0).

Then we have that
σ(p+1,q)(f) = σ(p,q)(A0)

holds for any nonzero meromorphic solution f whose poles are of uniformly bounded
multiplicities of (1.1).

Proof of Theorem 1.6. Since all solutions of equation (1.2) are meromorphic
functions, all solutions of the homogeneous differential equation (1.1) corresponding
to equation (1.2) are still meromorphic functions.

Now we assume that {f1, f2, . . . , fk} is a meromorphic solution base of (1.1),
then by the elementary theory of differential equations (see, e.g. [16]), any solution
of (1.2) has the form

f = c1(z)f1 + c2(z)f2 + · · ·+ ck(z)fk, (3.17)

where c1, c2, . . . , ck are suitable meromorphic functions satisfying

c′j = FGj(f1, f1, . . . , fk)W (f1, f1, . . . , fk)−1 (j = 1, 2, . . . , k), (3.18)

where Gj(f1, f1, . . . , fk) are differential polynomials in {f1, f2, . . . , fk} and their
derivatives, and W (f1, f1, . . . , fk)−1 is the Wronskian of {f1, f2, . . . , fk}. By The-
orem 1.4, we have

σ(p+1,q)(fj) = σ(p,q)(A0) (j = 1, 2, . . . , k).

By Lemma 2.13, (3.17) and (3.18), we obtain

σ(p+1,q)(f) ≤ max{σ(p+1,q)(fj), σ(p+1,q)(F ) : j = 1, 2, . . . , k} = σ(p,q)(A0).

Now we assert that all solutions f of (1.2) satisfy σ(p+1,q)(f) = σ(p,q)(A0) with at
most one exceptional solution, say f0, satisfying σ(p+1,q)(f0) < σ(p,q)(A0). In fact,
if there exists two distinct meromorphic functions f0 and f1 of (1.2) satisfying

σ(p+1,q)(fj) < σ(p,q)(A0) (j = 0, 1),

then f = f0 − f1 is a nonzero meromorphic solution of (1.1), and satisfying
σ(p+1,q)(f) < σ(p,q)(A0), this contradicts Theorem 1.4.
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For all the solutions f of (1.2) satisfying σ(p+1,q)(f) = σ(p,q)(A0), we have

max{σ(p+1,q)(Aj), σ(p+1,q)(F ) : j = 0, 1, . . . , k − 1} < σ(p+1,q)(f).

Thus by Lemma 2.20, we obtain

λ(p+1,q)(f) = λ(p+1,q)(f) = σ(p+1,q)(f).

Therefore, Theorem 1.6 is proved.

3.1. Proof of Theorem 1.7. Suppose that {g1, g2, . . . , gk} is a meromorphic so-
lution base of (1.1) corresponding to (1.2). By a similar discussion as in the proof
of Theorem 1.6, we obtain

σ(p+1,q)(f) ≤ max{σ(p+1,q)(gj), σ(p+1,q)(F ) : j = 1, 2, . . . , k}
By the first part of the proof of Theorem 1.3, we can get that

σ(p+1,q)(gj) ≤ max{σ(p,q)(Aj) : j = 0, 1, . . . , k − 1} ≤ σ(p+1,q)(F ),

then we can get
σ(p+1,q)(f) ≤ σ(p+1,q)(F ). (3.19)

On the other hand, by the simple order comparison from (1.2), we have

σ(p+1,q)(F ) ≤ max{σ(p+1,q)(Aj), σ(p+1,q)(f) : j = 0, 1, . . . , k − 1}.
Since σ(p+1,q)(Aj) < σ(p+1,q)(F ), we have

σ(p+1,q)(F ) ≤ σ(p+1,q)(f). (3.20)

By (3.19)-(3.20), we obtain

σ(p+1,q)(F ) = σ(p+1,q)(f).

Therefore, the proof of Theorem 1.7 is complete.

Proof of Theorem 1.8. (i) By the simple order comparison from (1.2) it is easy
to see that all meromorphic solutions of (1.2) satisfy

σ(p+1,q)(f) ≥ σ(p+1,q)(F ).

On the other hand, by the similar proof in (3.17)-(3.18), we obtain that all mero-
morphic solutions of (1.2) satisfy

σ(p+1,q)(f) ≤ σ(p+1,q)(F )

if σ(p+1,q)(F ) ≥ α1. Therefore, all meromorphic solutions whose poles are of uni-
formly bounded multiplicities of (1.2) satisfy

σ(p+1,q)(f) = σ(p+1,q)(F ).

(ii) By the hypotheses that

|A0(z)| ≥ expp+1{(α1 − ε) logq r},

and |Aj(z)| ≤ expp+1{α2 logq r}, we can easily obtain that σ(p+1,q)(A0) = α1. Since
σ(p+1,q)(F ) < α1 = σ(p+1,q)(A0), by the similar proof in Theorem 1.6, we obtain
that all meromorphic solutions whose poles are of uniformly bounded multiplicities
of (1.2) satisfy

λ(p+1,q)(f) = λ(p+1,q)(f) = σ(p+1,q)(f) = α1

with at most one exceptional solution f2 satisfying σ(p+1,q)(f2) < α1. Therefore,
we completely prove Theorem 1.8.
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[2] B. Beläıdi; Growth and oscillation of solutions to linear differential equations with entire
coefficients having the same order, Electron. J. Diff. Equ. 2009(2009), No. 70, 1-10.
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[13] O. P. Juneja, G. P. Kapoor, S. K. Bajpai; On the (p,q)-order and lower (p,q)-order of an

entire function, J. Reine Angew. Math. 282 (1976), 53-57.
[14] O. P. Juneja, G. P. Kapoor, S. K. Bajpai; On the (p,q)-type and lower (p,q)-type of an entire

function, J. Reine Angew. Math. 290 (1977), 180-190.
[15] L. Kinnunen; Linear differential equations with solutions of finite iterated order, Southeast

Asian Bull. Math. 22 (1998), 385-405.
[16] I. Laine; Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin,

1993.
[17] J. Liu, J. Tu, L. Z. Shi; Linear differential equations with entire coefficients of (p,q)-order in

the complex plane, J. Math. Anal. Appl. 372(2010), No. 1, 55-67.
[18] D. Sato; On the rate of growth of entire functions of fast growth, Bull. Amer. Math. Soc. 69

(1963) 411-414.
[19] J. Tu, C. F. Yi; On the growth of solutions of a class of higher order linear differential

equations with coefficients having the same order, J. Math. Anal. Appl. 340 (2008) 487-497.
[20] L. Yang; Value Distribution Theory, Springer-Verlag, Berlin, 1993, and Science Press, Beijing,

1982.

Lei-Min Li
Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330031, China

E-mail address: leiminli@hotmail.com

Ting-Bin Cao
Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330031, China

E-mail address: tbcao@ncu.edu.cn, tingbincao@hotmail.com (corresponding author)


	1. Introduction and main results
	2. Preliminaries and some lemmas
	3. Proofs of Theorems 1.3-1.8
	Proof of Theorem 1.3
	Proof of Theorem 1.4
	Proof of Theorem 1.5
	Proof of Theorem 1.6
	3.1. Proof of Theorem 1.7
	Proof of Theorem 1.8
	Acknowledgements

	References

