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SOLUTIONS FOR LINEAR DIFFERENTIAL EQUATIONS
WITH MEROMORPHIC COEFFICIENTS OF (P,Q)-ORDER
IN THE PLANE

LEI-MIN LI, TING-BIN CAO

ABSTRACT. In this article we study the growth of meromorphic solutions of
high order linear differential equations with meromorphic coefficients of (p, q)-
order. We extend some previous results due to Belaidi, Cao-Xu-Chen, Kin-
nunen, Liu- Tu -Shi, and others.

1. INTRODUCTION AND MAIN RESULTS
For k > 2, consider the linear differential equations
FO + a2+ @)+ Ao2)f =0, (1.1)
O+ A1 () D -+ ML)+ Ao(2)f = F(2), (1.2)

where Ay # 0 and F # 0. When the coefficients Ag, A1,..., Ax_1 and F are entire
functions, it is well known that all solutions of and are entire functions,
and that if some coefficients of are transcendental then has at least one
solution with infinite order. We refer to [16] for the literature on the growth of
entire solutions of and .

As far as we known, Bernal [4] firstly introduced the idea of iterated order to
express the fast growth of solutions of complex linear differential equations. Since
then, many authors obtained further results on iterated order of solutions of
and , see e.g. [II, 2, [l B [6, 15, 19]. Recently, Liu, Tu and Shi [I7] firstly
introduced the concept of (p, q)-order for the case p > ¢ > 1 to investigate the
entire solutions of and , and obtained some results which improve and
generalize some previous results.

Theorem 1.1 ([I7, Theorems 2.2-2.3]). Let p > q > 1, and let Ag, A1,..., Ar—1
be entire functions such that either

max{a(nq)(Aj) 17 75 0} < U(pﬂ)(Ao) < +00,

or

maX{U(PJI) (A]) ] 7é 0} < O(p,q) (AO) < 00,
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max{7(y,q)(4)) : 0(p,q) (A7) = T(p,q) (40) > 0} < 75,4 (Ao),
then every nontrivial solution f of (L.1)) satisfies o(,p11,q)(f) = 0(p,q)(Ao)-

Recently, Cao, Xu and Chen [5] considered the growth of meromorphic solutions
of equations (|1.1)) and ([1.2) with meromorphic coefficients of finite iterated order,
and obtained some results which improve and generalize some previous results.

Theorem 1.2 ([5, Theorem 2.1]). Let Ag, Ay,...,Ax—1 be meromorphic functions
in the plane, and let i(Ag) = p (0 < p < 00). Assume that either iA(A%)) <por

)‘P(A%)) < 0p(Ao), and that either
max{i(A4;):j=1,2,...,k=1} <p
or
max{op(4;):j=1,2,...,k—1} <op(4y) =0 (0<0 < 0),
max{7,(A4;) : 0p(4;) = 0p(A0)} < 1p(Ag) =7 (0< 7T < 00).

Then every meromorphic solution f Z% 0 whose poles are of uniformly bounded

multiplicities, of equation (1.1)) satisfies i(f) =p+1 and op11(f) = op(Ao).

There exists a natural question: How about the growth of meromorphic solutions

of equations and with meromorphic coefficients of finite (p, q)-order in
the plane?

The main purpose of this paper is to consider the above question. Now we show
our main results. For homogeneous linear differential equation , we obtain the
following results.

Theorem 1.3. Let Ag, Ay, ..., Aix_1 be meromorphic functions in the plane. Sup-
pose that there exists one coefficient As (s € {0,1,...,k —1}) such that

1 .
max{o(p, q) (Aj)’)\(pm(/T) D F 8t < 0p,g)(As) < Ho0,

S
then every transcendental meromorphic solution f whose poles are of uniformly
bounded multiplicities of (1.1) satisfies

O(p+1,9)(f) £ 0(p,g)(As) < () (f)-

Furthermore, if all solutions of (1.1 are meromorphic solutions, then there is at
least one meromorphic solution, say f1, satisfies

O (p+1,9) (fr) = I(p,q) (As)-

Now replacing the arbitrary coefficient A; by the dominant fixed coefficient Ay,
then we obtain the following result.

Theorem 1.4. Let Ay, A1, ..., Ax_1 be meromorphic functions in the plane satis-
Jying
1 ,
max{o(pyq)(Aj),)\(pyq)(A—o) J=1,2,... k= 1} <09 (Ao) < 00,

then every meromorphic solution f whose poles are of uniformly bounded multiplic-
ities of (1.1) satisfies
T(p+1,9)(f) = 0(p.q) (o).
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If there exist some other coefficients A; (j € {1,2,...,k — 1}) having the same
(p,q)-order as Ap, then we have the following result by making use of the concept

of (p,q)-type.

Theorem 1.5. Let Ay, Aq,...,Ax_1 be meromorphic functions in the plane, as-
sume that

1
A(p,Q)(IO) < O (p,q)(Ao)
and
max{a(nq)(Aj) i =12,...k— 1} = O’(p7q)(Ao) < +00,
max{7(, ¢)(A;) : 0(p,g)(A;) = 0 (p,g)(Ao) > 0} < 7(4)(Ao).
Then any nonzero meromorphic solution f whose poles are of uniformly bounded
multiplicities of satisfies
I(p+1,9)(f) = 0 (p.q) (Ao)-

Obviously, Theorems [T.4] and [I.5] are a generalization of Theorems [I.1] and [[.2}
Considering nonhomogeneous linear differential equation (|1.2)), we obtain the fol-
lowing three results.

Theorem 1.6. Assume that Ag, A1,...,Ax—1, F Z 0 be meromorphic functions in
the plane satisfying
1 .
HlaX{U(p’q) (Aj), A(p’q)(Ko)’ O‘(p+17q)(F) g=12,....k— 1} < O‘(p,q)(Ao),

then all meromorphic solutions f whose poles are of uniformly bounded multiplicities
of (T2) satisfy
Ap+1.0(F) = Ap1,0 () = 01,9 (f) = 0(p,9) (Ao)

with at most one exceptional solution fo satisfying o(,41,q)(fo) < 0(p,q)(Ao)-
Theorem 1.7. Let Ay, Ay, ..., Ax_1,F #Z 0 be meromorphic functions in the plane
satisfying

max{a(pﬂ)(Aj) : j = 0, ]., ceey k— 1} < U(p+17q)(F).

Suppose that all solutions of (1.2]) are meromorphic functions whose poles are of
uniformly bounded multiplicities, then o(,41,4)(f) = O (pt1,q)(F) holds for all solu-

tions of (1.2)).

Theorem 1.8. Let H C (1,00) be a set satisfying logdens{|z| : |z| € H} > 0 and
let Ag, A1,..., Ax_1, F #Z 0 be meromorphic functions in the plane satisfying

max{o(,q)(4;):j=1,2,... .k =1} < ay,

where oy is a constant, and there exists another constant as (g < ay) such than
for any given ¢ (0 < e < a1 — a3), we have

[Ao(2) = exppy1{(ar — €)log, }, [4;(2)] < exp,,ii{azlog,r}

for|zl€e H, j=1,2,...,k — 1. Then we have:
(i) If 0(py1,q)(F) = 1, then all meromorphic solutions whose poles are of uni-

formly bounded multiplicities of (1.2) satisfy
I (p+1,9) (f) = O(pt1,9) (F)-
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(i) If 0(ps1,q)(F) < ai,then all meromorphic solutions whose poles are of uni-
formly bounded multiplicities of (1.2) satisfy

X(;DJrl,q)(f) = /\(p+1,q)(f) = U(p+1,q)(f) = Qq

with at most one exceptional solution fo satisfying

Tpr1,g)(f2) < 1.

Recently, B. Belaidi [3] investigated the growth of solutions of differential equa-
tions and with analytic coefficients of (p, ¢)-order in the unit disc. So,
it is also interesting to consider the growth of meromorphic solutions of differential
equations with coefficients of (p, ¢)-order in the unit disc?

2. PRELIMINARIES AND SOME LEMMAS

We shall introduce some notation. Let us define inductively, for r € [0, 4+00),
exp; 7 = e and exp, ;v = exp(exp, ), n € N. For all r sufficiently large, we
define log, r = log* 7 = max{logr, 0} and log,_, r = log(log, r), n € N. We also
denote expyr = r = logyr, log_;r = exp; r and exp_; r = log; r. Moreover, we
denote the linear measure and the logarithmic measure of a set E C (1,00) by
mE = [, dt and mE = [, %. The upper logarithmic density of E C (1,00) is
defined by

log densE = lim sup M
r—00 logr

We assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory of meromorphic
functions (e.g. see [I1} 20]), such as T'(r, f), m(r, ), and N(r, f). In this section, a
meromorphic function f means meromorphic in the complex plane C. To express
the rate of fast growth of meromorphic functions, we recall the following definitions
(e.g. see [4 Bl 15 [I6] 18]).

Definition 2.1. The iterated p-order o,(f) of a meromorphic function f is defined
by
log, T'(r,
op(f) = limsup M

r—o0 1

If f is an entire function, then

(p €N).

. log,, 1 M(r, f)
opm(f) = limsup ZHTT

(p €N).

Definition 2.2. The growth index of the iterated order of a meromorphic function
f is defined by
0 if f is rational,
min{n € N: 0,,(f) < oo} if f is transendental and o, (f) < co
for some n € N,
00 if 0,(f) = oo for all n € N.

i(f) =

Definition 2.3. The iterated p-type of a meromorphic function f with iterated
order p-order 0 < 0,(f) < oo is defined by
log,_ T(r,
7p(f) = limsup logp1 T(r, /) (p eN).
ro'p(f)

T—00
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If f is an entire function, then

. log, M(r, f)
p.u (f) = limsup 7’;%( 5 (p € N).

r—00

Definition 2.4. The iterated convergence exponent of the sequence of zeros of a
meromorphic function f is defined by

) log, N(r, %)
Ap(f) = limsup plogr /

(p €N).

Definition 2.5. The growth index of the iterated convergence exponent of the
sequence of zeros of a meromorphic function f with iterated order is defined by

0 if n(r,%) = O(logr),
ix(f) = ¢min{n € N: \,(f) < oo} if A\, (f) < oo for some n € N,
00 it A\p(f) = oo for all n € N.

Similarly, we can use the notation Xp( f) to denote the iterated convergence
exponent of the sequence of distinct zeros, and use the notation iy(f) to denote the
growth index of \,(f).

Now, we shall introduce the definition of meromorphic functions of (p, ¢)-order,
where p, ¢ are positive integers satisfying p > ¢ > 1. In order to keep accordance
with Definition [2.I] we will give a minor modification to the original definition of
(p, q)-order (e.g. see [13, [14]).

Definition 2.6. The (p,g)-order of a transcendental meromorphic function f is
defined by

. log, T'(r, f)
O’(p7q)(f) = limsup 22—~

r—00 log, r
If f is a transcendental entire function, then

. IOg 1 M(rv f)
T(p,q)(f) = limsup —p+log "
rT—00 q

It is easy to show that 0 < 0, 4y < co. By Definition [2.6|we note that o, 1)(f) =
o1(f) =a(f), o (f) = o2(f) and o, 1)(f) = op(f).
Remark 2.7. If f is a meromorphic function satisfying 0 < o, 4) < oo, then

(1) O(p—n,q) = 00 (N < D), O(pg—n) = 0 (n < q), and O(p4n,qn) = 1 (n < p) for
n =1 to oo.

(ii) If (p1,q1) is another pair of integers satisfying p1 — ¢1 = p — q and p; < p,
then we have o, 4,) =0if 0 <o, <1 and o, ¢) =00 if 1 <o, < c0.

(iii) o(p,,q) =00 for p1 —q1 > p—qand o(,, 4y =0forp1 —q1 >p—q.

Remark 2.8. Suppose that f is a meromorphic function of (p, ¢)-order o1 and fo
is a meromorphic function of (p1,qi)-order o2, let p < p;. We can easily deduce
the result about their comparative growth:

(i) If p1 — 1 > p — q, then the growth of f; is slower than the growth of f.
(ii) If p1 — 1 < p — q, then f; grows faster than fo.

(iii) If p1 — g1 = p— ¢ > 0, then the growth of f; is slower than the growth of fo
if 09 > 1,and the growth of f; is faster than the growth of f5 if o5 < 1.

(iv) Especially, when p; = p and ¢; = ¢ then f; and f5 are of the same index-pair
(p,q). If 01 > 09, then f; grows faster than fy; and if 01 < o9, then f; grows slower
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than fo. If 01 = 09, Definition 1.6 does not show any precise estimate about the
relative growth of f; and fs.

Definition 2.9. The (p,q)-type of a meromorphic function f with (p,q)-order
U(p,q)(f) € (0,00) is defined by

. Ing,1 T(Tv f)
Tipa(f) = lmswp GBS

Definition 2.10. The (p,q) convergence exponent of the sequence of zeros of a
meromorphic function f is defined by

log, N(r, %)
A =1 R
(p,q) (f) 1£H—>Sogp logq ,

Similarly, we can use the notation X(pyq)(f) to denote the (p,q) convergence
exponent of the sequence of distinct zeros of f. To prove our results, we need the
following lemmas.

Lemma 2.11 ([8]). Let fi, fa,..., fr be linearly independent meromorphic solu-
tions of the differential equation (1.1)) with meromorphic functions Ag, A1, ..., Ax—1
as the coefficients, then

m(r, Aj) = O{log(lrgnr?;(k T(r,fn)} (G =0,1,....k—1).

Lemma 2.12 ([7]). Let f be a meromorphic solution of equation (1.1)), assuming
that not all coefficients A; are constants. Given a real constant y > 1, and denoting
T(r) = E?;&T(r, Aj), we have

logm(r, f) <T(r){(logr)logT(r)}”, ifs=0,
logm(r, f) < r**T1T(){log T(r)}?, ifs >0
outside of an exceptional set Es with fE ts7ldt < .

By inequalities in [I2, Chapter 6] and in [I6, Corollary 2.3.5], we obtain the
following lemma.

Lemma 2.13. If f is a meromorphic function, then

U(P~¢1)(f) = 0O(p.q) (f/)

Lemma 2.14 ([9]). Let f be a transcendental meromorphic function, and let «
be a given constant. Then there exist a set By C (1,00) that has finite logarithmic

measure and a constant B > 0 depending only on o and (m,n)(m,n € {0,1,...,k}),
m < n such that for all z with |z| =r & [0,1] U E1, we have
T(ar, f)

FM(z2) rf) o o nom
‘f(m)(z)’ < B( " (log® )T (ar, f)) )

Lemma 2.15. Let f be a meromorphic function of (p.q)-order satisfying o (,.q)(f) <
oo. Then there exists a set Ey C (1,00) having infinite logarithmic measure such
that for all r € E5, we have

log, T(r,
o 080 (r, f)

r—oo logq r

= 0(p.q)(f)-
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Proof. By Definition there exists a sequence {r,,}22; tending to oo, satisfying
(14 L), <rpq, and

log, T'(7n, f)
m et s /)

n—oo  log, 1y

= 0(p.q)(f)-
There exists a ny € N, such that for n > n;, and for any r € [r,, (1 + %)rn], we

have
log, T(ra. f) _ log, T(r.f) _ log, T((1+ H)ru. f)

log,(1+ X)r, = loggr  — log, T
Set By = U2, [rn, (14 1)r,], then for any r € Es, we have
o log, T'(r, f) _ lim log, T(rn, f) _ e
r—oo  log, T n—oo  log, Ty
where )
mi By = 32, /T(H")T" % =522 log(1+ %) = oo, 0

n

Lemma 2.16. Let ¢(r) be a continuous and positive increasing function, defined

forr € [0, 00] with o(;,.4)(¢) = limsup,._, loipgwg), then for any subset E5 C (0, 00)
q
that has a finite linear measure, there exists a sequence {rn},r, ¢ E3 such that
log,, ¢(7n)

U(p_q)<t,0) - r hinoo log T
n qg™n

log,, ¢ (r)

s then there exists a sequence {ry}
q

Proof. Since o(;,.)(¢) = limsup,

tending to co,such that

log,, ¢(r7,)

r oo log r! :O—(pq)(so)
n q'n

Set mE3 = § < oo,then for r,, € [r],,7], + 6 + 1], we have

log, ¢(ra) _log () _ log, (1%
log,rn ~ logy(r, +d+1) log, (logr) +log (1 + )’
Hence
lo T, lo, r!
- gp P(Tn) . gp (1) _
e Togy = vt log, 1 (log %, 1 log (1 + 231))
. log, ()
- T;}Enoo log, 7, = %0a)($),
this gives

. log, p(rn)

O

Lemma 2.17 ([13]). Let f be an entire function of (p.q)-order,and let v¢(r) be the
central index of f, then
log,, v¢(r)

hm sup logir = J(p.q) (f)
T—00 q
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Lemma 2.18. Let f be a meromorphic function of (p.q)-order satisfying 0 <
Op.q)(f) < 00, let Ty (f) > 0, then for any given 7,4 (f) > B, there exists a
set By C (1,00) that has infinite logarithmic measure such that for all v € Ey, we
have

1ng—l T(r, f) > ﬂ(logq_1 ’r‘)a‘(pq)(f).

Proof. (i) (see [5]) when ¢ = 1, it holds absolutely. (i) when ¢ > 2, by Definition[2.9]
there exists an increasing sequence {ry, }(rm, — oo) satisfying (14 L)r, < rpi1,

and
lng71 T(Tﬂ% f)

m— o0 (logq—l Ty )7 (P-) ()

= T(p.a) (f):

Then there exists a positive constant mg such that for all m > mg and for any
given € (0 < € < 7(.¢)(f) — B) we have

10g,_1 T(rm, ) > (1(p.q) (f) = €)(log_y 72) @0 D). (2.1)
For any 7 € [rp,, (1 + L)ry,], we have

log, 1 7m

i =1
rm—+oo log, 4T

Since 3 < 7(;.q)(f) —¢, there exists a positive constant m; such that for all m > my,
we have

lqu71 Tm )o(p,q)(f) > ﬁ ’
log, 17 Tp.q) () — €
ie.,
(Tp.g) (f) = €)(10gg_1 )"0 D) > B(log,_, r)7@0 ), (2:2)

Now we take mo = max{mo, m1} and Ey = Upe_,,,_ [, (1 + %)rm], then by (2.1)-
(2.2), for any r € E4, we have

log,, 1 T'(r, f) > log, 1 T'(rm, f)
> (T(nq)(f) - 6)(logq_1 rm)‘7<m)(f)
> f(log,_; T)”(p.q)(f)’

where

(t5)rm gy 1
miEy =%%_., / 7= Yo log(1 + E) 0. ([l

m

Lemma 2.19 ([10]). Let g(r) and h(r) be monotone nondecreasing functions on
[0,00) such that g(r) < h(r) for allr & [0,1]UEs, where E5 € (1,00) is a set of finite
logarithmic measure. Then for any constant o > 1, there exists 1o = ro(a) > 0
such that g(r) < h(ar) for all v > r.

Lemma 2.20. Let Ag, Ay,...,Ar_1, F # 0 be meromorphic functions and let f
be a meromorphic solution of equation (1.2)). If

max{o(p41,9)(A4;), Opt1,9)(F) 15 =0,1,....k =1} < 0pp1,9)(f),

then we have

/\(P-‘rl,q)(f) = /\(p-i-l,q)(f) = O(p+1,9) (f)
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Proof. By (1.1]), we have

1 1 f) fE=1)

fF<f+Ak1f

It is easy to see that if f has a zero at zg of order 8 (8 > k) and if Ay, Ay,..., Ap_1
are all analytic at zg, then F' has a zero at zy of order at least § — k. Hence

F et Ay). (2.3)

1 1 1
n('n ?) < kﬁ( Ty ?) ( ) + E (’I“, Aj)7 (2‘4)
1 — 1
N(r, ?) < kN(r, ?) + N(r, )+ SEON(r, Ay). (2.5)
By the lemma of the logarithmic derivative and (2.3)), we have
1 1
m(r, ?) <m(r, f) + ShZgm(r, Aj) + O(log T(r, f) + logr) (2.6)

holds for all |z| = r & Eg, where Eg is a set of finite linear measure. By ([2.5),(2.6)
and the first main theorem, we have

1 —

T(r ) =T(r, )+ 0Q1) < kN(r, f) +T(r, F) + 25T (r, A7) + Olog(rT(r, 1))
(2.7)

holds for all sufficiently r ¢ Eg.
Assume that max{o(p11,4)(A4;), 0441, (F) 15 =0,1,...,k =1} < 0(pq1,9)(f)-

By Lemma [2.16] there exists a sequence {r,}, r,, & Eg such that

108 T f)

e log, = O(pt1,9)(f) =1 01.

Hence , if r,, & Ejg is sufficiently large, since o1 > 0, then we have

T(rn, f) = expyi{(o1 — €)log, ra} (2.8)

holds for any given € (0 < 2¢ < 01 —03), where 03 = max{o(p41,q)(4;), 0 (ps1,9)(F) :
j=0,1,...,k—1}. We have

max{T (rp, '), T(rn, Aj) : j =0,1,...,k — 1} <exp, 1{(02 +¢€)log, . }. (2.9)
Since € (0 < 2¢ < 01 — 02), then from and we obtain
T(rn, F) T(rn,Aj) .
T(ra, f)" T(ra,f)
For sufficiently large r,,, we have

O(log(rnT'(rn, f))) = O(T (rn, [))-

Hence, by and 7 we obtain that for sufficiently large r,, & Eg, there holds
1
7
Then we have Xpi1,q)(f) = 0(pi1,9)(f), and by definitions we have X419 (f) <
Ap+1,g)(f) £ 0pt1,q)(f). Therefore

)‘(p+1,q)(f) = /\(p-i-l,q)(f) = U(]H-Lq)(f)' O

max{

=0,1,....,k—1} =0 (r, — o0). (2.10)

(1= o(1)T(rp, ) < kN(rn,
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3. PROOFS OF THEOREMS [1.3H1.8

Proof of Theorem We shall divide the proof into two parts.

e Firstly, we prove that o(,41,)(f) < 0(p,q)(As) < 0(p,q)(f) holds for every
transcendental meromorphic function f of (L.1). By (1.1]), we know that the poles

of f can only occur at the poles of Ay, Ay, ..., Ax_1, note that the multiplicities of
poles of f are uniformly bounded, then we have

N(r,f) < CiN(r, f)

< CiSEZIN(r, A))

< Comax{N(r,A;):j=0,1,...,k—1} < O(T(r, Ay)),
where C7 and (s are suitable positive constants. Then we have

log T (r, f) < logm(r, f)+log N(r, f)+log2 <logm(r, f)+O{logT(r, As)}. (3.1)

By and Lemma we obtain

log T(r, f) < logm(r, f) + O{log T(r, A,)}

= O (T(r,A){(log)log T (r, AS)})‘)

dt

outside of an exceptional set Fy with fE & < oo, this implies o(pq1,)(f) <
O(p,q)(As). On the other hand, by ., we obtain
B f(k) f(kfl) f(SJrl f(sfl) f
A f(s) A W"’"""As_i_lﬁ"'fls_l f(s) ++AOW
f(k) f(kfl) f(8+1 f(sfl)
f<*>{ + Ag-1 7 ot Aspr—— 7 +AS_1T+ o+ Ao}
Since
1
mir, 7)< T f) + 70 57) = T ) + 702 £) +0() = OT (1, ).

then by the lemma of logarithmic derivative we have
T(r,As) < N(r, As) + Zjzsm(r, Aj) + O(logrT'(r, f)) + O(T'(r, f)) (3.2)

hold for all |z| = r € E;, where E; is a set of finite linear measure. By Lemma
and similar discussion as in the proof of Lemma [2.20] we see that there exists
a sequence {r,} (r, — 00) such that

. log, T(rn, As)
o1 = ) =ty PO
and
T(rp, As) > exp,{(o1 — €) log, 7}, (3.3)
N(rn, As) < exp,{(o2 +¢€)log, rn},
m(rn, A;) < exp,{(o2 +€)log,mn} (j # 5),
where o3 1= max{o, ) (4;), \p,g) (- -):j#spand 0 <2 <01 — 02,
By (3.2)-(3.5]), we obtain
(L —o(1)) exp,{(o1 — €)log, rn} < O{log /T (7, £)} + O(T'(rn, )
Hence we have o, )(As) = 01 < 0(p,9) (f)-
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e Secondly, we prove that there exists at least one meromorphic solution that
satisfies
T(pt1,)(f) = T (p,q) (As).-
Now we can assume that {f1, f2,..., fx} is @ meromorphic solution base of (1.1)).
By Lemma |2.11]

(v, 4.) < 0 (1og s 701 ) )

Now we assert that m(r, As) > N(r, As) holds for sufficiently large r. Indeed, if
m(r, As) < N(r, As), then

T(r,As) =m(r, As) + N(r, As) < 2N(r, As),

SO
log, T'(r, A log, 2N(r, Ag
lim sup M < lim sup gp—()
r—00 log,, 7 r—o00 log, 7

then we have o, ¢)(As) < ’\(p,q)(A%)’ which contradicts the condition A, 4 (
T(p,q)(As). Hence,

T(r.A.) = O(m(r, A.)) < O( log( max, T(r, f)))-

) <

By Lemma [2.16] there exists a set Fg C (0,00) has finite linear measure , and a
sequence {r,}, r, € Ey, such that

log, T'(ry, A
lim M = 0(p.q)(As).
Ty — 00 logq Tn ’
Set
T, ={r:re(0,00)\ Eg, T(r,As) <O(log(T(r, frn))) (n=1,2,...,k)
By Lemma we have UF_ T;, = (0,00) \ Eg. It is easy to see that there exists
at least one T,,, say Tt C (0,00) \ Eg, that has infinite linear measure and satisfies

T(r, A,) < O(log T(r, f1)). (3.6)

From " we have G(p+1,q)(f1) > O’(p7q) (As)
In the first part we have proved that o(,41,4)(f1) < 0(p,q)(As). Therefore, we

have that there is at least one meromorphic solution f; satisfies
T(p+1,9)(f1) = T(p,g) (As)-

Proof of Theorem Suppose that f is a nonzero meromorphic solution whose
poles are of uniformly bounded multiplicities of (1.1f), then (|1.1)) can be written

(k) (k=1) !
— Ay = ff + Aj_ 1f 7 + - —‘rAl]; (37)
By the lemma of the logarithmic derivative and @, we have
(@)
m(r, Ag) <Z (r, A;) +Z rf— )+ 0(1)
1 (3.8)

Z ) + O{log(rT'(r, f))}
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holds for all sufficiently large r & Ejg, where 1o C (0, 00) has finite linear measure.
Hence
k—1
T(r,Ag) = m(r,Ag)+N(r, Ag) < N(r, Ao)—l—Zm(r, A;)+O0{log(rT(r, f))} (3.9)
j=1
holds for all sufficiently large |r| =r & Eyp.
Since max{o(, q)(4;) : j # 0} < 0(p,q)(Ao) < 00, by Lemma there exist a
set Eq11 C (1,00) having infinite logarithmic measure such that for all z satisfying
|z| = r € Eq1, we have

log, T'(r, Ao) m(r, A;)
—op 0 Ag), L0 o € Fij=1,2,....k—1).
rﬂnc}o logqr 0—(10711)( 0) m(r, AO) 0( ) (T 10, J )
(3.10)
By (3.8)) and (3.10)), for all sufficiently large r € E11 \ E19, we have
1
im(r, Ap) < O{log(rT'(r, )} (3.11)

Using a similar discussion as in second part of proof of Theorem [I.3] we can get
that
m(r, Ag) > N(r, Ap), (3.12)
hence,
T(r, Ag) = m(r, Ao) + N(r, Ao) = O(m(r, Ao)) = O(log rT'(r, f))
for all sufficiently large r € Ey; \ Fig, this means

I(p+1,9)(f) = 0 (p.q) (Ao)-
On the other hand, by Theorem [I.3] we have

I (p+1,9) () < O (p,q) (Ao)-
Therefore, every meromorphic solution f whose poles are of uniformly bounded
multiplicities of (|1.1)) satisfies

T (p+1,9) () = O (p,q) (Ao)-
Proof of Theorem When Ag, Ay, ..., A,_1 satisfy

max{a(p’q) (A]) 27 75 0} < O(p,q) (AQ),

then by Theorem[I.4] it is easy to see that Theorem [I.5 holds. Now we assume that
there exists at least one of A; (j =1,2,...,k — 1) satisfies 0, )(4;) = 0(p,¢)(Ao)-
Suppose that f is a nonzero meromorphic solution of , we have
¥ () FE () f'(z)
ol < P 2+ Al 2+
Using a similar discussion as in the proof of Theorem we can get that
and hold for all sufficiently large r & Ej2, where Ej5 C (0, 00) has finite linear
measure. Since

. (3.13)

max{o(,.q)(A;):j=1,2,....k =1} = 0, 9 (Ao)
and
max{7(y,q)(4;) : 0(p,q)(Aj) = O(p,q)(A0) > 0} < 7(p,q) (Ao),
then there exists a set J C {1,2,...,k—1} such that for j € J, we have o(, 4)(4;) =
7 (p.q)(Ao) and 7,4 (A;) < 7p,q) (Ao).
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Hence, there exist two constants 3; and (s satisfying max{7(, 4 :j € J} < 1 <
B2 < T(p,q)(Ao). By Definitions [2.6| and [2.9] we obtain that

m(r, A;) < T(r,A;) < exppfl{ﬂl(logqfl 7")"<qu)(‘40)}. (3.14)
Since )‘(P,q)<A%]) < O(p,q)(Ao), we have
N(r, Ap) < expp{wAiO) +e)log, r} < exp, 1 {Bi(log,_,r)7w0 (A} (3.15)
By Lemma [2.18] there exists a set of E3 having infinite logarithmic measure such
that for all » € E13, we have
T(r, Ag) > exp,_1{B2(log,_; 7")”<qu)(‘4°)}. (3.16)
Now, substituting —into , we have
(1—o(1)) exp, 1{fa(log, , r)?@»0} < O(log(rT'(r, f)))
for all r € E13 \ E12, this implies

T(p+1,9)(f) 2 0 (p.q) (o).
On the other hand ,by Theorem we have

I(p+1,9)(f) < 0(p,q) (Ao)-
Then we have that
O(p+1,9) (f) = 0 (p,g)(Ao)
holds for any nonzero meromorphic solution f whose poles are of uniformly bounded

multiplicities of (|1.1)).

Proof of Theorem Since all solutions of equation are meromorphic
functions, all solutions of the homogeneous differential equation corresponding
to equation are still meromorphic functions.

Now we assume that {f1, f2,..., fx} is a meromorphic solution base of ,
then by the elementary theory of differential equations (see, e.g. [16]), any solution

of (1.2)) has the form

f=a@)fit+c@)fot+- -+ ck(2)f, (3.17)
where ¢, co, ..., ¢k are suitable meromorphic functions satisfying
c;‘:FGj(f17f17'"ufk)W(f17f17"'7fk)_1 (j:172a"'7k)7 (318)

where G;(fi1, f1,..., fr) are differential polynomials in {fi, fa,..., fi} and their
derivatives, and W (f1, f1,..., fr) ! is the Wronskian of {f1, fa, ..., fx}. By The-
orem [T.4] we have
Opt1,9)(f5) = 0 (A0) (1 =1,2,...k).
By Lemma [2.13] (3.17) and (3.18]), we obtain
Ip1.)(f) < max{0(p11,9) (i) Oi1,9)(F) 15 = 1,2, K} = 05,9 (Ao)-
Now we assert that all solutions f of (1.2)) satisfy o (,41,q)(f) = 0(p,q)(Ao) with at
most one exceptional solution, say fo, satisfying o(,1,9)(fo) < 0p,q)(Ao). In fact,
if there exists two distinct meromorphic functions fy and f1 of (1.2)) satisfying
U(:DJrl,q)(fj) < O(p,q) (Ao) (1 =0,1),

then f = fo — f1 is a nonzero meromorphic solution of (1.1}, and satisfying
T(p+1,9)(f) < 0(p,q)(Ao), this contradicts Theorem
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For all the solutions f of (1.2) satisfying o(,41,4)(f) = 0(p,q)(A0), we have

max{a(p+1,q) (Aj)a 0(p+1,q)(F) :j=0,1,..., k — 1} < 0(p+1,q)(f)'
Thus by Lemma we obtain

X(p+1,q)(f) = Ap+1,0)(f) = T(p11,9)(f)-
Therefore, Theorem [1.6]is proved.

3.1. Proof of Theorem Suppose that {g1,g2,...,gx} is a meromorphic so-
lution base of (|1.1)) corresponding to (1.2]). By a similar discussion as in the proof
of Theorem [I.6] we obtain

O(p+1,9) (f) S max{o(11,4)(95) 01,9 (F) 1 j=1,2,... k}
By the first part of the proof of Theorem [I.3] we can get that

G(P+1,q)(gj) S max{a(p,q)(Aj) : .] = 07 17 ceey k— 1} S O.(P+1,q)(F)7
then we can get
I(p+1,0)(f) < O(pt1,9) (F)- (3.19)

On the other hand, by the simple order comparison from , we have
O(pt1,q)(F) S max{o(p41,9)(45), 041,90 (f) 17 =0,1,..., k= 1}.
Since o(p41,9)(Aj) < O(pt1,q)(F), we have
Tpt1,0)(F) < 0 (pr1,9)(f)- (3.20)
By —, we obtain

I(p+1,9)(F) = O(ps1.9) (f)-
Therefore, the proof of Theorem [1.7]is complete.

Proof of Theorem (1.8, (i) By the simple order comparison from (1.2)) it is easy
to see that all meromorphic solutions of (1.2) satisfy

Tp+1,9) () 2 Opt1,q) (F).

On the other hand, by the similar proof in (3.17))-(3.18]), we obtain that all mero-
morphic solutions of (1.2]) satisfy

Tp+1,9) () S Opt1,)(F)

if 0(p41,9)(F) > a1. Therefore, all meromorphic solutions whose poles are of uni-
formly bounded multiplicities of (1.2)) satisfy

I(p+1,0)(f) = O (pt1.9) (F)-
(ii) By the hypotheses that

[Ao(2)] = exppy1{(ar — €)log, r},

and [A;(z)| < exp,y1{azlog, r}, we can easily obtain that (11 4)(A¢) = a;. Since
Opt1,9)(F) < a1 = 0(p11,9)(Ao), by the similar proof in Theorem we obtain
that all meromorphic solutions whose poles are of uniformly bounded multiplicities
of satisfy

Aw+1.0) () = Apr1,9)(f) = 0pr1,9(f) = 1
with at most one exceptional solution fy satisfying o(,11,4)(f2) < a1. Therefore,
we completely prove Theorem [1.8
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