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TRAVELING WAVES IN A DIFFUSIVE PREDATOR-PREY
MODEL WITH GENERAL FUNCTIONAL RESPONSE

ZHAOQUAN XU, PEIXUAN WENG

Abstract. This article concerns the existence of traveling waves in a diffu-
sive predator-prey model with general functional response. By applying the
Schauder fixed theorem, we establish existence results of traveling wave solu-
tions. The results are then applied to the predator-prey model with Holling
type-II response. Our results indicate that there is a transition zone moving
from the state with no species to the coexistence state of both species.

1. Introduction

Dynamical relations among species can be very complicated. Due to their pres-
ence in natural environments, various types of predator-prey models have been
widely studied, for example, see [1]–[18]. Nonlinear reaction-diffusion equations de-
scribe the dynamical relationship between predator and prey. In many situations,
traveling waves determine the long term behavior of predator and prey.

Fundamental and important predator-prey models with diffusion are given by:

ut = D1uxx +Au(1− u

K
)− UW,

wt = D2wxx − Cw +Duw;
(1.1)

ut = D1uxx +Au(1− u

K
)−B

uw

1 + Eu
,

wt = D2wxx − Cw +D
uw

1 + Eu
;

(1.2)

and

ut = D1uxx +Au(1− u

K
)−B

u2w

1 + Eu2
,

wt = D2wxx − Cw +D
u2w

1 + Eu2
;

(1.3)

where u(t, x), w(t, x) are the density functions of prey and predator, respectively;
D1 > 0 and D2 > 0 represent the diffusive rates; A is the growth factor for the prey
species, K > 0 is the carrying capacity of prey species, C > 0 is the death rate for
the predator in the absence of prey. For more details about the biological meaning
of the parameters, we refer the readers to [4, 7, 9, 17].
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System (1.1) is the familiar Lotka-Volterra model (with Holling type-I functional
response) and the systems (1.2), (1.3) have the Holling type-II and Holling type-III
functional response, respectively. In [1, 2, 3], Dunbar obtained the existence of
several kinds of traveling wave solutions for diffusive predator-prey systems with
type I and type II functional responses (D1 = 0 [1] and D1 6= 0 [2] for (1.1), D1 = 0
[3] for (1.2)). He considered the existence of small amplitude periodic traveling
waves, and “heteroclinic traveling waves” that correspond to heteroclinic orbits
connecting two equilibria (point-to-point) or an equilibrium and a periodic orbit
(point-to-periodic). The methods used by Dunbar include the invariant manifold
theory, the shooting method, Hopf bifurcation analysis, and LaSalle’s invariance
principle. Huang, Lu & Ruan [9] extended the work in [2] to R4 (D1 6= 0 for (1.2))
using Dunbar’s method in [2]. An interesting question is whether those results can
be extended to a system with type III functional response. Recently, Li & Wu [12]
proved the existence of traveling waves in a diffusive predator-prey system (1.3)
with D1 = 0 by employing a method similar to that used in [1, 2]. We emphasize
that in [9] and [12] only heteroclinic orbits connecting equilibrium-to-equilibrium
(point-to-point) are considered.

The shooting method used by Dunbar is based on a variant of Wazewski’s the-
orem [1, 2, 3]. In Dunbar and Wazewski set W, there is an orbit starting at the
unstable manifold of an equilibrium that stays in W in the future. However, the
Wazewski set W constructed in [1, 2, 3] is unbounded. To ensure the boundedness of
the orbit, several additional lemmas were proved to rule out the possibility that the
constructed orbit may escape to infinity. The use of unbounded sets W in R3 or R4

makes the argument long and hard to read. In a recent work, Lin, Weng & Wu[14]
constructed a simple bounded Wazewski set W and use the original Wazewski’s
theorem to simplify the proof of the existence of heteroclinic traveling waves con-
necting two equilibria related to the following predator-prey system with Sigmoidal
response function:

∂u

∂t
= ru(1− u

K
)− u2

a1 + b1u+ u2
v

∂v

∂t
= D2

∂2v

∂x2
+ v

( αu2

a1 + b1u+ u2
− e

)
.

(1.4)

Liang, Weng and Wu [13] considered the delayed diffusive predator-prey system

∂u(t, x)
∂t

= Au(t, x)
(
1− u(t, x)

K

)
−B

u(t− τ, x)w(t, x)
1 + Eu(t− τ, x)

,

∂w(t, x)
∂t

= D2
∂2w(t, x)
∂x2

− Cw(t, x) +D
u(t− τ, x)w(t, x)
1 + Eu(t− τ, x)

,

(1.5)

where τ ≥ 0 measures the retarded response of growth for the prey species or the
time for the prey species taken from birth to maturity. They proved the existence
of small amplitude periodic traveling wave solutions of (1.5) for small τ > 0. Fur-
thermore, they developed a new method for combining the singular limit argument
and the singular perturbation technique to establish the existence of the point-to-
periodic traveling wave solutions for (1.5) with small delay τ > 0, and also proved
the existence of point-to-point traveling wave solutions for the any given τ > 0.

It is very interesting to develop simpler methods to treat the problem of traveling
waves for diffusive predator-prey systems. Recently, Lin et al [11] studied the
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existence of point-to-point traveling wave solutions of the following Lotka-Volterra
system:

∂u1(t, x)
∂t

= d1∆u1(x, t) + r1u1[1− a11u1(t− τ1, x)− a12u2(t− τ2, x)],

∂u2(t, x)
∂t

= d2∆u2(x, t) + r2u2[1 + a21u1(t− τ3, x)− a22u2(t− τ4, x)]
(1.6)

by introducing the mixed quasi-monotone condition(MQM) and the exponentially
mixed quasi-monotone condition(EMQM).

Motivated by the work in [11], in the present article, we consider the existence
of traveling wave solutions of the following predator-prey system with general func-
tional response:

∂u

∂t
= D1

∂2u

∂x2
+ h1(u)− f(u)w,

∂w

∂t
= D2

∂2w

∂x2
+ h2(w) + µf(u)w,

(1.7)

where D1 > 0, D2 > 0 are the diffusive rates of the prey and predator, respectively.
Also h1(u) denotes the growth function of prey which is a positive function within
the maximal carrying capacity of the prey, and h2(v) denotes the growth function
of predator. If the predator only depends on the prey given in (1.6), then h2(v) is
a negative function. The function f denotes the predator response function.

For the functions h1, h2 and f , we make assumptions as follows.
(H1) There exist two positive numbers u0,w0 such that h1(u0) − f(u0)w0 = 0,

h2(w0) + µf(u0)w0 = 0, and f(0) = h1(0) = h2(0) = 0;
(H2) f , h1 and h2 are Lipschitz continuous functions on any compact interval;
(H3) f is nondecreasing on [0,+∞).

Remark 1.1. The hypothesis (H1) guarantees that (0, 0) is a steady state for
the system (1.6) and it has another positive steady state (u0, w0). Moreover all the
response functions in (1.1)-(1.3) satisfy the conditions (H2) and (H3). On the other
hand, (H1) and (H3) imply that f(u) ≥ 0 for u ∈ R.

The rest of the paper is organized as follows. In section 2, some preliminaries
are given. In section 3, we show the main results on the existence of traveling wave
solutions for (1.6). In the last section, as an application of our main results, we
shall establish the existence results of traveling wave solutions for system

ut = D1uxx + αu(β − u)− wf(u),

wt = D2wxx + γw(δ − w) + µwf(u),
(1.8)

with f(u) = u
1+u .

2. Preliminaries

In this article, we adopt the usual notation for the standard partial ordering in
R2; i.e., if a1 ≤ a2 and b1 ≤ b2, we say that (a1, b1) ≤ (a2, b2). Let | · | denote the
Euclidean norm in R2 and ‖ · ‖ denote the supermum norm in space C(R,R2).

A traveling wave solution of (1.6) is a solution with the form (u(t, x), w(t, x)) =
(ϕ(x+ct), ψ(x+ct)), where (φ, ψ) ∈ C2(R,R2) is the wave profile which propagates
at a constant velocity c > 0.
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We study traveling wave solutions of (1.6) that connect (0, 0) and (u0, v0). By
substituting such (ϕ,ψ) into (1.6) and replacing x + ct by t, we know that (ϕ,ψ)
satisfy the wave profile system

cϕ′(t) = D1ϕ
′′(t) + h1(ϕ(t))− f(ϕ(t))ψ(t),

cψ′(t) = D2ψ
′′(t) + h2(ψ(t)) + µf(ϕ(t))ψ(t)

(2.1)

accompanied with asymptotic boundary conditions

lim
t→−∞

(ϕ(t), ψ(t)) = (0, 0), lim
t→+∞

(ϕ(t), ψ(t)) = (u0, w0). (2.2)

If, for some c > 0, system (2.1) has a solution (ϕ(t), ψ(t)) satisfying the asymptotic
boundary conditions (2.2), then (u(t, x), v(t, x)) = (ϕ(x + ct), ψ(x + ct)) is the
traveling wave solution of system (1.6).

Let

C[0,K](R,R2) = {(ϕ,ψ) ∈ C(R,R2) : 0 ≤ (ϕ,ψ)(t) ≤ K for t ∈ R},

where K = (k1, k2) is some constant vector such that (u0, w0) ≤ (k1, k2).
For (ϕ,ψ) ∈ C[0,K](R,R2), define the operator Q = (Q1, Q2) : C[0,K](R,R2) →

C(R,R2) by

Q1(ϕ,ψ)(t) = d1ϕ(t) + h1(ϕ(t))− f(ϕ(t))ψ(t),

Q2(ϕ,ψ)(t) = d2ψ(t) + h2(ψ(t)) + µf(ϕ(t))ψ(t),
(2.3)

where d1 = Lh1 +k2Lf , d2 = Lh2 , Lh2 is the Lipschitz constant of h2 on [0, k2] and
Lf , Lh1 are the Lipschitz constants of f, h1 on [0, k1], respectively. Hence, (2.1) is
equivalent to

cϕ′(t) = D1ϕ
′′(t)− d1ϕ(t) +Q1(ϕ,ψ)(t),

cψ′(t) = D2ψ
′′(t)− d2ψ(t) +Q2(ϕ,ψ)(t) .

(2.4)

Let

ri1 =
c−

√
c2 + 4Didi

2Di
, ri2 =

c+
√
c2 + 4Didi

2Di
, i = 1, 2.

Clearly, we have ri1 < 0 < ri2 and

Dir
2
ij − crij − di = 0, i, j = 1, 2.

For (ϕ,ψ) ∈ C[0,K](R,R2), define an operator P = (P1, P2) : C[0,K](R,R2) →
C(R,R2) by

P1(ϕ,ψ)(t) =
1

D1(r12 − r11)

[ ∫ t

−∞
er11(t−s) +

∫ +∞

t

er12(t−s)
]
Q1(ϕ,ψ)(s)ds,

P2(ϕ,ψ)(t) =
1

D2(r22 − r21)

[ ∫ t

−∞
er21(t−s) +

∫ +∞

t

er22(t−s)
]
Q2(ϕ,ψ)(s)ds.

(2.5)
Note that fixed points of P are solutions to (2.1). Therefore, to prove the existence
of traveling wave solutions of (1.3) connecting (0, 0) and (u0, w0), it is sufficient to
consider fixed points of P that satisfy the asymptotic boundary conditions (2.2).
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3. Main results

We first give the definition of upper-lower solutions of (2.1) which is crucial in
proving our main results.

Definition 3.1. A pair of continuous functions Φ = (ϕ,ψ) and Φ = (ϕ,ψ) ∈
C[0,K](R,R2) is called an upper solution and a lower solution of (2.1), respectively,
if (ϕ′(t), ψ

′
(t)), (ϕ′′(t), ψ′′(t)) exist and bounded on R \Υ and satisfy

D1ϕ
′′(t)− cϕ′(t) + h1(ϕ(t))− f(ϕ(t))ψ(t) ≤ 0,

D2ψ
′′
(t)− cψ

′
(t) + h2(ψ(t)) + µf(ϕ(t))ψ(t) ≤ 0,

and

D1ϕ
′′(t)− cϕ′(t) + h1(ϕ(t))− f(ϕ(t))ψ(t) ≥ 0,

D2ψ
′′(t)− cψ′(t) + h2(ψ(t)) + µf(ϕ(t))ψ(t) ≥ 0

for R \ Υ, where Υ = {t1, t2, . . . , tn}, with t1 < t2 < · · · < tn, is a finite set of
points.

In what follows, we assume that (2.1) admits an upper solution Φ = (ϕ,ψ) and
a lower solution Φ = (ϕ,ψ) such that

(G1) (0, 0) ≤ (ϕ,ψ)(t) ≤ (ϕ,ψ)(t) ≤ (k1, k2), t ∈ R;
(G2) limt→−∞(ϕ,ψ)(t) = (0, 0),

limt→+∞(ϕ,ψ)(t) = limt→+∞(ϕ,ψ)(t) = (u0, w0);

(G3) (ϕ′, ψ
′
)(t+i ) ≤ (ϕ′, ψ

′
)(t−i ), (ϕ′, ψ′)(t+i ) ≥ (ϕ′, ψ′)(t−i ).

Lemma 3.2. If Φ1 = (ϕ1, ψ1), Φ2 = (ϕ2, ψ2) ∈ C(R,R2) with 0 ≤ Φ2(t) ≤ Φ1(t) ≤
K, t ∈ R, then

(1) Q1(ϕ2, ψ1)(t) ≤ Q1(ϕ1, ψ2)(t), P1(ϕ2, ψ1)(t) ≤ P1(ϕ1, ψ2)(t),
(2) Q2(ϕ2, ψ2)(t) ≤ Q2(ϕ1, ψ1)(t), P2(ϕ2, ψ2)(t) ≤ P2(ϕ1, ψ1)(t) .

Proof. From the definition of Q, we have

Q1(ϕ1, ψ2)(t)−Q1(ϕ2, ψ1)(t)

= d1(ϕ1(t)− ϕ2(t)) + [h1(ϕ1(t))− h1(ϕ2(t))]− f(ϕ1(t))ψ2(t) + f(ϕ2(t))ψ1(t)

= d1(ϕ1(t)− ϕ2(t)) + [h1(ϕ1(t))− h1(ϕ2(t))]− f(ϕ1(t))[ψ2(t)− ψ1(t)]

− ψ1(t)[f(ϕ1(t))− f(ϕ2(t))]

≥ (d1 − Lh1 − k2Lf )(ϕ1(t)− ϕ2(t))− f(ϕ1(t))[ψ2(t)− ψ1(t)] ≥ 0,

Q2(ϕ1, ψ1)(t)−Q2(ϕ2, ψ2)(t)

= d2(ψ1(t)− ψ2(t)) + [h2(ψ1(t))− h2(ψ2(t))] + µf(ϕ1(t))ψ1(t)− µf(ϕ2(t))ψ2(t)

= d2(ψ1(t)− ψ2(t)) + [h2(ψ1(t))− h2(ψ2(t))] + µf(ϕ1(t))[ψ1(t)− ψ2(t)]

+ µψ2(t)[f(ϕ1(t))− f(ϕ2(t))]

≥ (d2 − Lh2)(ψ1(t)− ψ2(t)) + µψ2(t)[f(ϕ1(t))− f(ϕ2(t))] ≥ 0.

A similar argument leads to the inequalities about P . We omit the details. �

Define a set

Ω = {Φ = (ϕ,ψ) ∈ C[0,K](R,R2) : (ϕ,ψ) ≤ (ϕ,ψ) ≤ (ϕ,ψ)}.
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Clearly, Ω is nonempty, bounded, closed and convex subset of C(R,R2) with respect
to the norm ‖ · ‖.

Lemma 3.3. The operator P = (P1, P2) : C[0,K](R,R2) → C(R,R2) is continuous
with respect to the norm ‖ · ‖.

Proof. For any Φ1 = (ϕ1, ψ1), Φ2 = (ϕ2, ψ2) ∈ C[0,K](R,R2), we have

|Q1(ϕ1, ψ1)(t)−Q1(ϕ2, ψ2)(t)|
= |d1(ϕ1(t)− ϕ2(t)) + [h1(ϕ1(t))− h1(ϕ2(t))]− f(ϕ1(t))ψ1(t) + f(ϕ2(t))ψ2(t)|
= |d1(ϕ1(t)− ϕ2(t)) + [h1(ϕ1(t))− h1(ϕ2(t))]− f(ϕ1(t))[ψ1(t)− ψ2(t)]

− ψ2(t)[f(ϕ1(t))− f(ϕ2(t))]|
≤ (d1 + Lh1 + k2Lf )|ϕ1(t)− ϕ2(t)|+ f(k1)|ψ1(t)− ψ2(t)|

which implies

sup
t∈R

|Q1(ϕ1, ψ1)(t)−Q1(ϕ2, ψ2)(t)| → 0 as ‖Φ1 − Φ2‖ → 0.

By the definition of P , we have

|P1(ϕ1, ψ1)(t)− P1(ϕ2, ψ2)(t)|

=
1

D1(r12 − r11)

[ ∫ t

−∞
er11(t−s) +

∫ +∞

t

er12(t−s)
]

×
∣∣Q1(ϕ1, ψ1)(s)−Q1(ϕ2, ψ2)(s)

∣∣ds
≤ 1
D1(r12 − r11)

sup
s∈R

∣∣Q1(ϕ1, ψ1)(s)−Q1(ϕ2, ψ2)(s)
∣∣

×
[ ∫ t

−∞
er11(t−s)ds+

∫ +∞

t

er12(t−s)ds
]

=
−1

D1r11r12
sup
s∈R

|Q1(ϕ1, ψ1)(s)−Q1(ϕ2, ψ2)(s)|

=
1
d1
‖Q1(ϕ1, ψ1)−Q1(ϕ2, ψ2)‖.

Therefore,

sup
t∈R

|P1(ϕ1, ψ1)(t)− P1(ϕ2, ψ2)(t)| → 0 if ‖Φ1 − Φ2‖ → 0.

which implies P1 is continuous. In a similar way, we can get that P2 is also contin-
uous. �

Lemma 3.4. For P and Ω as above, P (Ω) ⊂ Ω.

Proof. For any Φ = (ϕ,ψ) ∈ Ω, we have from Lemma 3.2 that

Q1(ϕ,ψ)(t) ≤ Q1(ϕ,ψ)(t) ≤ Q1(ϕ,ψ)(t),

Q2(ϕ,ψ)(t) ≤ Q2(ϕ,ψ)(t) ≤ Q2(ϕ,ψ)(t),

P1(ϕ,ψ)(t) ≤ P1(ϕ,ψ)(t) ≤ P1(ϕ,ψ)(t),

P2(ϕ,ψ)(t) ≤ P2(ϕ,ψ)(t) ≤ P2(ϕ,ψ)(t).

(3.1)
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Now, it is sufficient to show that

ϕ(t) ≤ P1(ϕ,ψ)(t) ≤ P1(ϕ,ψ)(t) ≤ ϕ(t) ,

ψ(t) ≤ P2(ϕ,ψ)(t) ≤ P2(ϕ,ψ)(t) ≤ ψ(t) .
(3.2)

According to the definitions of upper-lower solutions and the operator P , we have
that

Q1(ϕ,ψ)(t) ≥ d1ϕ(t) + cϕ′(t)−D1ϕ
′′(t), t ∈ R \Υ.

Let t0 = −∞ and tn+1 = +∞, then for tk−1 < t < tk with k = 1, 2, . . . , n + 1, we
have from (G3) that

P1(ϕ,ψ)(t)

=
1

D1(r12 − r11)

[ ∫ t

−∞
er11(t−s) +

∫ +∞

t

er12(t−s)
]
Q1(ϕ,ψ)(s)ds

≥ 1
D1(r12 − r11)

[ ∫ t

−∞
er11(t−s) +

∫ +∞

t

er12(t−s)
]
(d1ϕ(s) + cϕ′(s)−D1ϕ

′′(s))ds

= ϕ(t) +
1

r12 − r11

[ k∑
i=1

er11(t−ti)(ϕ′(t+i )− ϕ′(t−i ))

+
n∑

i=k+1

er12(t−ti)(ϕ′(t+i )− ϕ′(t−i ))
]

≥ ϕ(t) for t ∈ R \Υ.

By the continuity of P1(ϕ,ψ)(t) and ϕ(t), we obtain

ϕ(t) ≤ P1(ϕ,ψ)(t) for t ∈ R.

In a similar way, we can show that (3.2) holds for t ∈ R. �

Lemma 3.5. The operator P : Ω → Ω is compact with respect to the norm ‖ · ‖.

The proof of of the above lemma is similar to that of [11, Lemma 3.5]; since it
is independent of the monotone condition, so we omit it here. Now, we are in a
position to state and prove our main results.

Theorem 3.6. Assume (H1)–(H3) hold. If (2.1) has a pair of upper-lower so-
lutions Ψ = (ϕ,ψ) and Ψ = (ϕ,ψ) satisfying (G1)-(G3). Then (1.6) admits a
traveling wave solution connecting (0, 0) and (u0, w0).

Proof. By Lemma 3.3-3.5 and the Schauder’s fixed point theorem, we know that the
operator P admits a fixed point (ϕ∗, ψ∗) ∈ Ω which is a solution of (2.1). Noting
the fact that

(ϕ,ψ) ≤ (ϕ∗, ψ∗) ≤ (ϕ,ψ),

then we have from (G2) that

lim
t→−∞

(ϕ∗, ψ∗) = (0, 0) and lim
t→+∞

(ϕ∗, ψ∗) = (u0, w0).

Therefore, the fixed point (ϕ∗, ψ∗) satisfies the asymptotic boundary condition
(2.2), and thus it is a traveling wave solution of (1.6) connecting (0, 0) and (u0, w0).

�
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4. Applications

In this section we apply our results in section 3 to establish the existence of
traveling wave solution for (1.8) with f(u) = u

1+u . In view of Theorem 3.6, the key
point is to construct a pair of upper-lower solutions satisfying (G1)–(G3).

Example 4.1. Consider the existence of traveling wave solution for the system

ut = D1uxx + αu(β − u)− uw

1 + u
,

wt = D2wxx + γw(δ − w) +
µuw

1 + u
.

(4.1)

We are interested in the co-existence of species, so we assume that (4.1) has a
unique positive equilibrium (u0, w0) satisfying

αβ − αu0 −
w0

1 + u0
= 0, γδ − γw0 +

µu0

1 + u0
= 0. (4.2)

It is clear that γw0 >
µu0
1+u0

. Moreover, for the technique reason, we assume that

αu0 > 2w0. (4.3)

Clearly, the wave system corresponding to (4.1) is

cϕ′ = D1ϕ
′′ + αϕ(β − ϕ)− ϕψ

1 + ϕ
,

cψ′ = D2ψ
′ + γψ(δ − ψ) +

µϕψ

1 + ϕ
.

(4.4)

As mentioned above, we are interested in the solution of (4.4) with asymptotic
boundary conditions

lim
t→−∞

(ϕ(t), ψ(t)) = (0, 0), lim
t→+∞

(ϕ(t), ψ(t)) = (u0, w0). (4.5)

In this example, we choose k1 = β, k2 = δ + µβ
γ(1+β) , then we have k1 > u0 and

k2 > w0. Let c > c∗ := max{2
√
D1αk1, 2

√
D2γk2}, then there exist

0 < λ11 < λ12, 0 < λ21 < λ22

such that

D1λ1i − cλ1i + αk1 = 0, D2λ2i − cλ2i + γk2 = 0, i = 1, 2.

Since γw0 >
µu0
1+u0

, αu0 > 2w0, there exist ε1 ∈ (0, u0), ε2 ∈ (0, w0) such that

γε2 >
µu0

1 + u0
, αε1 > 2w0. (4.6)

For a small λ > 0, let f(t) := min{eλ11t, u0 + u0e
−λt}, g(t) := min{eλ21t, w0 +

w0e
−λt} and denote

m1 = max
t∈R

{f(t)}, m2 = max
t∈R

{g(t)}.

If m1 > k1, m2 > k2, define the following continuous functions:

ϕ(t) =


eλ11t, t ≤ t1,

k1, t1 < t < t2,

u0 + u0e
−λt, t ≥ t2,

ϕ(t) =

{
0, t ≤ t3,

u0 − ε1e
−λt, t > t3,
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ψ(t) =


eλ21t, t ≤ t4,

k2, t4 < t < t5,

w0 + w0e
−λt, t ≥ t5,

ψ(t) =

{
0, t ≤ t6,

w0 − ε2e
−λt, t > t6.

If m1 ≤ k1, m2 ≤ k2, then redefine the above ϕ(t), ψ(t) as

ϕ(t) =

{
eλ11t, t ≤ t1,

u0 + u0e
−λt, t ≥ t1,

ψ(t) =

{
eλ21t, t ≤ t4,

w0 + w0e
−λt, t ≥ t4.

The other two cases: either m1 > k1, m2 ≤ k2, or m1 ≤ k1, m2 > k2 can be
considered similarly.

In what follows, we consider only the situation: m1 > k1, m2 > k2. The discus-
sions of other cases will be omitted. It is easily seen that (ϕ(t), ψ(t)), (ϕ(t), ψ(t))
satisfy (G1)-(G3). Furthermore, we have from (4.2) and (4.3) that

k1 − u0 = β − u0 =
w0
α

1 + u0
<

u0

2 + 2u0
< u0,

which leads to u0
k1−u0

> 1. Note that ε2
w0

< 1, and thus we have

t2 =
1
λ

ln
u0

k1 − u0
> 0 > t6 =

1
λ

ln
ε2
w0
.

Lemma 4.2. If λ > 0 is small enough, then Φ(t) = (ϕ,ψ)(t) and Φ(t) = (ϕ,ψ)(t)
is a pair of upper-lower solutions of (4.4).

Proof. For t < t1, we have ϕ(t) = eλ11t and

D1ϕ
′′(t)− cϕ′(t) + αϕ(t)(β − ϕ(t))− ϕ(t)

1 + ϕ(t)
ψ(t)

≤ D1λ
2
11e

λ11t − cλ11e
λ11t + αβeλ11t

= eλ11t[D1λ
2
11 − cλ11 + αk1] = 0.

For t1 < t < t2, then we have ϕ(t) = k1 = β and

D1ϕ
′′(t)− cϕ′(t) + aϕ(t)(β − ϕ(t))− ϕ(t)

1 + ϕ(t)
ψ(t)

≤ D1ϕ
′′(t)− cϕ′(t)− αϕ(t)(β − ϕ(t)) = 0.

For t > t2, by (4.2), we have ϕ(t) = u0 + u0e
−λt, ψ(t) = w0 − ε2e

−λt and

D1ϕ
′′(t)− cϕ′(t) + αϕ(t)(β − ϕ(t))− ϕ(t)

1 + ϕ(t)
ψ(t)

= D1u0λ
2e−λt + cu0λe

−λt + (u0 + u0e
−λt)

×
[
αβ − α(u0 + u0e

−λt)− w0 − ε2e
−λt

1 + (u0 + u0e−λt)
]

= D1u0λ
2e−λt + cu0λe

−λt + (u0 + u0e
−λt)

×
[
− αu0e

−λt +
w0

1 + u0
− w0 − ε2e

−λt

1 + (u0 + u0e−λt)
]

=: I1(λ, t) = p1(λ, t) + q1(λ, t),

where

p1(λ, t) = D1u0λ
2e−λt + cu0λe

−λt, q1(λ, t) = q1(λ, t) · q1(λ, t),
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q1(λ, t) = u0 + u0e
−λt, q

1
(λ, t) = −αu0e

−λt +
w0

1 + u0
− w0 − ε2e

−λt

1 + (u0 + u0e−λt)
.

Since αu0 > 2w0, then for t > t2 uniformly, we have

I1(0, t) = 2u0(−αu0 +
w0

1 + u0
− w0 − ε2

1 + 2u0
) < 2u0(−αu0 + w0) < 0.

Furthermore, q
1
(λ, 0) = −αu0 + w0

1+u0
− w0−ε2

1+2u0
< 0, and for any fixed λ > 0,

I(λ,∞) = 0. Note that for any fixed λ > 0, q1(λ, t) = u0 + u0e
−λt > 0 and is

decreasing on t > 0, and q
1
(λ, t) < 0 and is increasing on t > 0. We know that

q1(λ, t) < 0 and is increasing on t > 0. On the other hand, p1(λ, t) > 0 and is
decreasing on t > 0. For all λ1 > 0, t > t2, we have

p1(λ1, t) = D1u0λ
2e−λt + cu0λe

−λt < D1u0λ
2
1 + cu0λ1 for λ ∈ (0, λ1).

From the monotone property of p1(λ, t) and q1(λ, t), one can choose λ1 > 0 small
such that D1u0λ

2
1 + cu0λ1 is small and I1(λ, t) = p1(λ, t) + q1(λ, t) < 0 for t > t2

and λ ∈ (0, λ1). That is,

D1ϕ
′′(t)− cϕ′(t) + αϕ(t)(β − ϕ(t))− ϕ(t)

1 + ϕ(t)
ψ(t) < 0

for λ ∈ (0, λ1), t > t2.
Note that f(u) = u

1+u is nondecreasing on [0,+∞), then for t < t4, we have
ψ(t) = eλ21t and

D2ψ
′′
(t)− cψ

′
(t) + γψ(t)(δ − ψ(t)) +

µϕ(t)
1 + ϕ(t)

ψ(t)

≤ D2λ
2
21e

λ21t − cλ21e
λ21t + γδeλ21t +

µk1

1 + k1
eλ21t

= eλ21t[D2λ
2
21 − cλ21 + γδ +

µk1

1 + k1
]

= eλ21t[D2λ
2
21 − cλ21 + γk2] = 0.

For t4 < t < t5, we have ψ(t) = k2 and

D2ψ
′′
(t)− cψ

′
(t) + γψ(t)(δ − ψ(t)) +

µϕ(t)
1 + ϕ(t)

ψ(t)

≤ D2ψ
′′
(t)− cψ

′
(t) + ψ(t)(γδ − γψ(t) +

µk1

1 + k1
) = 0.

For t > t5, by (4.2), we have ψ(t) = w0 + w0e
−λt, ϕ(t) ≤ u0 + u0e

−λt, and

D2ψ
′′
(t)− cψ

′
(t) + γψ(t)(δ − ψ(t)) +

µϕ(t)
1 + ϕ(t)

ψ(t)

≤ D2w0λ
2e−λt + cw0λe

−λt + (w0 + w0e
−λt)

×
[
γδ − γ(w0 + w0e

−λt) +
µ(u0 + u0e

−λt)
1 + (u0 + u0e−λt)

]
= D2w0λ

2e−λt + cw0λe
−λt + (w0 + w0e

−λt)

×
[
− γw0e

−λt − µu0

1 + u0
+

µ(u0 + u0e
−λt)

1 + (u0 + u0e−λt)
]

=: I2(λ, t).
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Since γw0 >
µu0
1+u0

, then for t > t5 uniformly, we have

I2(0, t) = 2w0(−γw0 −
µu0

1 + u0
+

2µu0

1 + 2u0
) < 2w0(−γw0 +

µu0

1 + u0
) < 0.

Similar to the discussion of I1(λ, t), there exists λ2 > 0 such that

D2ψ
′′
(t)− cψ

′
(t) + γψ(t)(δ − ψ(t)) +

µϕ(t)
1 + ϕ(t)

ψ(t) < 0

for λ ∈ (0, λ2) and t > t5.
For t < t3, we have ϕ(t) = 0, and

D1ϕ
′′(t)− cϕ′(t) + αϕ(t)(β − ϕ(t))−

ϕ(t)
1 + ϕ(t)

ψ(t) = 0.

For t > t3, by (4.2), we have ϕ(t) = u0 − ε1e
−λt, ψ(t) ≤ w0 + w0e

−λt and

D1ϕ
′′(t)− cϕ′(t) + αϕ(t)(β − ϕ(t))−

ϕ(t)
1 + ϕ(t)

ψ(t)

≥ −D1ε1λ
2e−λt − cε1λe

−λt + (u0 − ε1e
−λt)

×
[
αβ − α(u0 − ε1e

−λt)− w0 + w0e
−λt

1 + (u0 − ε1e−λt)
big]

= −D1ε1λ
2e−λt − cε1λe

−λt + (u0 − ε1e
−λt)

×
[
αε1e

−λt +
w0

1 + u0
− w0 + w0e

−λt

1 + (u0 − ε1e−λt)
]

=: I3(λ, t).

It follows from (4.6) that for t > t3 uniformly, we have

I3(0, t) = (u0 − ε1)
[
αε1 +

w0

1 + u0
− 2w0

1 + (u0 − ε1)

]
> (u0 − ε1)(αε1 − 2w0) > 0.

Therefore, there exists λ3 > 0 such that

D1ϕ
′′(t)− cϕ′(t) + αϕ(t)(β − ϕ(t))−

ϕ(t)
1 + ϕ(t)

ψ(t) > 0

for λ ∈ (0, λ3) and t > t3.
For t < t6, we have ψ(t) = 0 and

D2ψ
′′(t)− cψ′(t) + γψ(t)(δ − ψ(t)) +

µϕ(t)
1 + ϕ(t)

ψ(t) = 0

For t > t6, by (4.2), we have ψ(t) = w0 − ε2e
−λt, and

D2ψ
′′(t)− cψ′(t) + γψ(t)(δ − ψ(t)) +

µϕ(t)
1 + ϕ(t)

ψ(t)

≥ −D2ε2λ
2e−λt − cε2λe

−λt + (w0 − ε2e
−λt)[γδ − γ(w0 − ε2e

−λt)]

= −D2ε2λ
2e−λt − cε2λe

−λt + (w0 − ε2e
−λt)(γε2e−λt − µu0

1 + u0
) =: I4(λ, t).

It follows from (4.6) that for t > t6 uniformly, we have

I4(0, t) = (w0 − ε2)(γε2 −
µu0

1 + u0
) > 0.
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Therefore, there exists λ4 > 0 such that

D2ψ
′′(t)− cψ′(t) + γψ(t)(δ − ψ(t)) +

µϕ(t)
1 + ϕ(t)

ψ(t) < 0

for λ ∈ (0, λ4) and t > t6. By the above argument, we know that Φ = (ϕ,ψ)(t) and
Φ = (ϕ,ψ) is a pair of upper-lower solutions of (4.4) for λ > 0 small enough. �

As a direct consequence of Theorem 3.6, we have the following result.

Theorem 4.3. Assume that (4.3) holds and c > c∗ := max{2
√
D1αk1, 2

√
D2γk2},

where k1 = β, k2 = δ + µβ
γ(1+β) . For c > c∗, system (4.1) has a traveling wave

Ψ(t) = (ϕ(t), ψ(t)) satisfying Ψ(−∞) = (0, 0), Ψ(∞) = (u0, w0).

5. Concluding discussion

In this article we have dealt with the existence of traveling wave solutions for a
reaction-diffusion system based on a predator-prey model with a general functional
response. By constructing an admissible pair of upper and lower solutions and
using Schauder’s fixed point theorem, we show that there is a traveling wave solution
connecting the trivial equilibrium (0, 0) and the positive equilibrium (u0, w0). That
is, there is a zone of transition from the steady state with no species to the steady
state with the coexistence of both species. In comparison, the technique used here
is simpler than those of the works mentioned in the introduction.

Predator-prey systems admit multiple equilibria. Our work here considered only
one case. Traveling waves connecting other pairs of equilibrium are also possible.
It would be interesting to use the techniques in the present paper to investigate
the existence of traveling waves connecting (β, 0) and (u0, w0) which would explain
the situation where the habitat is first saturated with prey to its carrying capacity,
then the invasion of predator may result in co-existence of both species in the long
term.
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