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NONLINEAR FIRST-ORDER PERIODIC BOUNDARY-VALUE
PROBLEMS OF IMPULSIVE DYNAMIC EQUATIONS

ON TIME SCALES

WEN GUAN, DUN-GANG LI, SHUANG-HONG MA

Abstract. By using the fixed point theorem in cones, in this paper, existence
criteria for single and multiple positive solutions to a class of nonlinear first-
order periodic boundary value problems of impulsive dynamic equations on
time scales are obtained. An example is given to illustrate the main results in
this article.

1. Introduction

Let T be a time scale; i.e., is a nonempty closed subset of R. Let 0, T be points
in T, an interval (0, T )T denoting time scales interval, that is, (0, T )T := (0, T )∩T.
Other types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area
of investigation, since it is a lot richer than the corresponding theory of differential
equations without impulse effects. Moreover, such equations may exhibit several
real world phenomena in physics, biology, engineering, etc. (see [3, 17]). At the
same time, the boundary value problems for impulsive differential equations and
impulsive difference equations have received much attention [6, 11, 12, 18, 20, 24].
On the other hand, recently, the theory of dynamic equations on time scales has
become a new important branch (See, for example, [4, 5, 10]). Naturally, some
authors have focused their attention on the boundary value problems of impulsive
dynamic equations on time scales [1, 2, 7, 9, 13, 14, 15, 22, 23]. However, to the best
of our knowledge, few papers concerning PBVPs of impulsive dynamic equations
on time scales with semi-position condition [22, 23].

In this paper, we are concerned with the existence of positive solutions for the
following PBVPs of impulsive dynamic equations on time scales with semi-position
condition

x∆(t) + f(t, x(σ(t))) = 0, t ∈ J := [0, T ]T, t 6= tk, k = 1, 2, . . . ,m,

x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) = x(σ(T )),

(1.1)
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where T is a time scale, T > 0 is fixed, 0, T ∈ T, f ∈ C(J × [0,∞), (−∞,∞)),
Ik ∈ C([0,∞), (−∞,∞)), tk ∈ (0, T )T, 0 < t1 < · · · < tm < T , and for each
k = 1, 2, . . . ,m, x(t+k ) = limh→0+ x(tk +h) and x(t−k ) = limh→0− x(tk +h) represent
the right and left limits of x(t) at t = tk.

Using fixed point theorems, Wang [22, 23] considered the existence of one or
two positive solution to (1.1) when the following hypothesis holds (semi-position
condition):

(A) There exists a positive number M such that

Mx− f(t, x) ≥ 0 for x ∈ [0,∞), t ∈ [0, T ]T.

Motivated by the results mentioned above, in this paper, we shall obtain existence
criteria for single and multiple positive solutions to (1.1) by means of a fixed point
theorem in cones. It is worth noticing that: (i) Our hypotheses on nonlinearity f
in this paper are weaker than condition (A) of [22, 23]; (ii) For the case T = R and
Ik(x) ≡ 0, k = 1, 2, . . . ,m, problem (1.1) reduces to the problem studied in [16] and
for the case Ik(x) ≡ 0, k = 1, 2, . . . ,m, problem (1.1) reduces to the problem (in
the one-dimension case) studied by [19]. The ideas in this article come from [21].

Theorem 1.1 ([8]). Let X be a Banach space and K is a cone in X. Assume
Ω1,Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2. Let

Φ : K ∩ (Ω2 \ Ω1) → K

be a continuous and completely continuous operator such that
(i) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1;
(ii) there exists e ∈ K\{0} such that x 6= Φx + λe for x ∈ K ∩ ∂Ω2 and λ > 0.

Then Φ has a fixed point in K ∩ (Ω2 \ Ω1).

Remark 1.2. In Theorem 1.1, if (i) and (ii) are replaced by
(i) ‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2;
(ii) there exists e ∈ K\{0} such that x 6= Φx + λe for x ∈ K ∩ ∂Ω1 and λ > 0,

then Φ has also a fixed point in K ∩ (Ω2 \ Ω1).

2. Preliminaries

Throughout the rest of this paper, we assume that the points of impulse tk are
right-dense for each k = 1, 2, . . . ,m. We define

PC =
{

x ∈ [0, σ(T )]T → R : xk ∈ C(Jk, R), k = 0, 1, 2, . . . ,m and

there exist x(t+k ) and x(t−k ) with x(t−k ) = x(tk), k = 1, 2, . . . ,m
}

,

where xk is the restriction of x to Jk = (tk, tk+1]T ⊂ (0, σ(T )]T, k = 1, 2, . . . ,m and
J0 = [0, t1]T, tm+1 = σ(T ). Let

X = {x : x ∈ PC, x(0) = x(σ(T ))}
with the norm ‖x‖ = supt∈[0,σ(T )]T |x(t)|, then X is a Banach space.

Lemma 2.1 ([22, 23]). Suppose M > 0 and h : [0, T ]T → R is rd-continuous, then
x is a solution of

x(t) =
∫ σ(T )

0

G(t, s)h(s)4s +
m∑

k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ(T )]T,
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where

G(t, s) =

{
eM (s,t)eM (σ(T ),0)

eM (σ(T ),0)−1 , 0 ≤ s ≤ t ≤ σ(T ),
eM (s,t)

eM (σ(T ),0)−1 , 0 ≤ t < s ≤ σ(T ),

if and only if x is a solution of the boundary-value problem

x∆(t) + Mx(σ(t)) = h(t), t ∈ J := [0, T ]T, t 6= tk, k = 1, 2, . . . ,m,

x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) = x(σ(T )).

Lemma 2.2. Let G(t, s) be defined as in Lemma 2.1. Then

1
eM (σ(T ), 0)− 1

≤ G(t, s) ≤ eM (σ(T ), 0)
eM (σ(T ), 0)− 1

for all t, s ∈ [0, σ(T )]T.

Remark 2.3. Let G(t, s) be defined as in Lemma 2.1, then
∫ σ(T )

0
G(t, s)4s = 1/M .

Let
K = {x ∈ X : x(t) ≥ δ‖x‖, t ∈ [0, σ(T )]T},

where δ = 1
eM (σ(T ), 0) ∈ (0, 1). It is not difficult to verify that K is a cone in X.

For u ∈ K, we consider the problem

x∆(t) + Mx(σ(t)) = Mu(σ(t))− f(t, u(σ(t))),

t ∈ [0, T ]T, t 6= tk, k = 1, 2, . . . ,m,

x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) = x(σ(T )).

(2.1)

It follows from Lemma 2.1 that (2.1) has a unique solution,

x(t) =
∫ σ(T )

0

G(t, s)hu(s)4s +
m∑

k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ(T )]T,

where hu(s) = Mu(σ(s))− f(s, u(σ(s))), s ∈ [0, T ]T.
We define an operator Φ : K → X by

Φx(t) =
∫ σ(T )

0

G(t, s)hx(s)4s +
m∑

k=1

G(t, tk)Ik(x(tk)), t ∈ [0, σ(T )]T.

It is obvious that fixed points of Φ are solutions of (1.1).

Lemma 2.4. The operator Φ : K → X is completely continuous.

The proof similar to that in [22, 23], so we omit it here.

3. Main results

In this section, by defining an appropriate cones, we impose the conditions on f
which allow us to apply the fixed point theorem in cones to establish the existence
criteria for single and multiple positive solutions of the problem (1.1).
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Theorem 3.1. Suppose that there exist a positive number M > 0 and 0 < α < β
such that

Mx− f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δα, β].

Then (1.1) has at least one positive solution if one of the following two conditions
holds: (i)

f(t, x) ≤ 0 for t ∈ [0, T ]T, x ∈ [δα, α]; ∀k, Ik(x) ≥ 0, x ∈ [δα, α],

f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δβ, β]; ∀k, Ik(x) ≤ 0, x ∈ [δβ, β],

(ii)

f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δα, α]; ∀k, Ik(x) ≤ 0, x ∈ [δα, α],

f(t, x) ≤ 0 for t ∈ [0, T ]T, x ∈ [δβ, β]; ∀k, Ik(x) ≥ 0, x ∈ [δβ, β].

Proof. Define the open sets

Ω1 = {x ∈ X : ‖x‖ < α}, Ω2 = {x ∈ X : ‖x‖ < β}.

Firstly, we claim that Φ : K ∩ (Ω2 \ Ω1) → K. In fact, for any x ∈ K ∩ (Ω2 \ Ω1),
we have δα ≤ x ≤ β, by Lemma 2.2

‖Φx‖ ≤ eM (σ(T ), 0)
eM (σ(T ), 0)− 1

[ ∫ σ(T )

0

(Mx(σ(s))− f(s, x(σ(s))))4s +
m∑

k=1

Ik(x(tk))
]

and

(Φx)(t) =
∫ σ(T )

0

G(t, s)hx(s)4s +
m∑

k=1

G(t, tk)Ik(x(tk))

≥ 1
eM (σ(T ), 0)− 1

[
∫ σ(T )

0

(Mx(σ(s))− f(s, x(σ(s))))4s +
m∑

k=1

Ik(x(tk))].

So

(Φx)(t) ≥ 1
eM (σ(T ), 0)

‖Φx‖ = δ‖Φx‖; i.e., Φx ∈ K.

Therefore, Φ : K ∩ (Ω2 \ Ω1) → K.
Secondly, we prove the result provided conditions (i) holds. By the first inequality

of (i), we have

Mx− f(t, x) ≥ Mx, t ∈ [0, T ]T, x ∈ [δα, α].

Let e ≡ 1, then e ∈ K. We assert that

x 6= Φx + λe for x ∈ K ∩ ∂Ω1 and λ > 0. (3.1)

If not, there would exist x0 ∈ K ∩ ∂Ω1 and λ0 > 0 such that x0 = Φx0 + λ0e.
Since x0 ∈ K ∩ ∂Ω1, it follows that δα = δ‖x0‖ ≤ x0(t) ≤ α. Let µ =

mint∈[0,σ(T )]T x0(t), then for any t ∈ [0, σ(T )]T, we have

x0(t) = (Φx0)(t) + λ0

=
∫ σ(T )

0

G(t, s)[Mx0(σ(s))− f(s, x0(σ(s)))]4s +
m∑

k=1

G(t, tk)Ik(x0(tk)) + λ0

≥
∫ σ(T )

0

G(t, s)Mx0(σ(s))4s + λ0
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≥ µ

∫ σ(T )

0

G(t, s)M4s + λ0 = µ + λ0.

This implies that µ ≥ µ + λ0, and this is a contradiction. Therefore (3.1) holds.
On the other hand, by using the second inequality of (i), we have

Mx− f(t, x) ≤ Mx, t ∈ [0, T ]T, x ∈ [δβ, β].

We assert that
‖Φx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2. (3.2)

In fact, if x ∈ K ∩ ∂Ω2, then δβ = δ‖x‖ ≤ x(t) ≤ β; we have

(Φx)(t) =
∫ σ(T )

0

G(t, s)[Mx(σ(s))− f(s, x(σ(s)))]4s +
m∑

k=1

G(t, tk)Ik(x(tk))

≤
∫ σ(T )

0

G(t, s)Mx(σ(s))4s

≤
∫ σ(T )

0

G(t, s)M4s‖x‖ = ‖x‖.

Therefore, ‖Φx‖ ≤ ‖x‖.
It follows from Remark 1.2, (3.1) and (3.2) that Φ has a fixed point x ∈ K ∩

(Ω2 \ Ω1). In a similar way, we can prove the result by Theorem 1.1 if condition
(ii) holds. �

Theorem 3.2. Suppose that there exist a positive number M > 0 and 0 < α < ρ <
β such that

Mx− f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δα, β].

Then (1.1) has at least two positive solutions if one of the following two conditions
holds (i)

f(t, x) ≤ 0 for t ∈ [0, T ]T, x ∈ [δα, α]; ∀k, Ik(x) ≥ 0, x ∈ [δα, α],

f(t, x) > 0 for t ∈ [0, T ]T, x ∈ [δρ, ρ]; ∀k, Ik(x) < 0, x ∈ [δρ, ρ],

f(t, x) ≤ 0 for t ∈ [0, T ]T, x ∈ [δβ, β]; ∀k, Ik(x) ≥ 0, x ∈ [δβ, β],

(ii)

f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δα, α]; ∀k, Ik(x) ≤ 0, x ∈ [δα, α],

f(t, x) < 0 for t ∈ [0, T ]T, x ∈ [δρ, ρ]; ∀k, Ik(x) > 0, x ∈ [δρ, ρ],

f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δβ, β]; ∀k, Ik(x) ≤ 0, x ∈ [δβ, β],

Proof. We prove only the result when condition (i) holds. In a similar way we can
obtain the result if condition (ii) holds. Define Ω1, Ω2 as in Theorem 3.1 and define

Ω3 = {x ∈ X : ‖x‖ < ρ}.

Similar to the proof of Theorem 3.1, we can prove that

x 6= Φx + λe for x ∈ K ∩ ∂Ω1 and λ > 0, (3.3)

x 6= Φx + λe for x ∈ K ∩ ∂Ω2 and λ > 0, (3.4)

where e ≡ 1 ∈ K, and

‖Φx‖ < ‖x‖ for x ∈ K ∩ ∂Ω3. (3.5)
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Thus we can obtain the existence of two positive solutions x1 and x2 by using
Theorem 1.1 and Remark 1.2, respectively. It is easy to see that α ≤ ‖x1‖ < ρ <
‖x2‖ ≤ β. �

Theorem 3.3. Suppose that there exist a positive number M > 0 and 0 < α1 <
β1 < α2 < β2 < · · · < αn < βn such that

Mx− f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δα1, βn].

Then (1.1) has at least n multiple positive solutions xi (1 ≤ i ≤ n) satisfying
αi ≤ ‖xi‖ ≤ βi, 1 ≤ i ≤ n, if one of the following two conditions holds (i)

f(t, x) ≤ 0 for t ∈ [0, T ]T, x ∈ [δαi, αi]; ∀k, Ik(x) ≥ 0, x ∈ [δαi, αi], 1 ≤ i ≤ n,

f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δβi, βi]; ∀k, Ik(x) ≤ 0, x ∈ [δβi, βi], 1 ≤ i ≤ n,

(ii)

f(t, x) ≥ 0 for t ∈ [0, T ]T, x ∈ [δαi, αi]; ∀k, Ik(x) ≤ 0, x ∈ [δαi, αi], 1 ≤ i ≤ n,

f(t, x) ≤ 0 for t ∈ [0, T ]T, x ∈ [δβi, βi]; ∀k, Ik(x) ≥ 0, x ∈ [δβi, βi], 1 ≤ i ≤ n.

Remark 3.4. In theorem 3.3, if (i) and (ii) are replaced by (iii)

f(t, x) < 0 for t ∈ [0, T ]T, x ∈ [δαi, αi]; ∀k, Ik(x) > 0, x ∈ [δαi, αi], 1 ≤ i ≤ n,

f(t, x) > 0 for t ∈ [0, T ]T, x ∈ [δβi, βi]; ∀k, Ik(x) < 0, x ∈ [δβi, βi], 1 ≤ i ≤ n;

(iv)

f(t, x) > 0 for t ∈ [0, T ]T, x ∈ [δαi, αi]; ∀k, Ik(x) < 0, x ∈ [δαi, αi], 1 ≤ i ≤ n,

f(t, x) < 0 for t ∈ [0, T ]T, x ∈ [δβi, βi]; ∀k, Ik(x) > 0, x ∈ [δβi, βi], 1 ≤ i ≤ n.

Then (1.1) has at least 2n− 1 multiple positive solutions.

4. Examples

Example 4.1. Let T = [0, 1] ∪ [2, 3]. We consider the following problem on T:

x∆(t) + f(t, x(σ(t))) = 0, t ∈ [0, 3]T, t 6= 1
2
,

x(
1
2

+

)− x(
1
2

−
) = I(x(

1
2
)),

x(0) = x(3),

(4.1)

where T = 3, f(t, x) = x− x1/2 + 7
64 , and I(x) = x1/2 − x.

Let M = 1, α = e2/32, β = 4e2. Then eM (σ(T ), 0) = 2e2, δ = 1/(2e2), it is easy
to see that

Mx− f(t, x) = x1/2 − 7
64

≥ 1
8
− 7

64
=

1
64

> 0, for x ∈ [
1
64

, 4e2] = [δα, β],

and

f(t, x) = x− x1/2 +
7
64

≤ 1
64

− 1
8

+
7
64

= 0, for x ∈ [
1
64

,
e2

32
] = [δα, α];

f(t, x) = x− x1/2 +
7
64

> 0, for x ∈ [2, 4e2] = [δβ, β];

I(x) = x1/2 − x ≥ 1
8
− 1

64
> 0, for x ∈ [

1
64

,
e2

32
] = [δα, α];

I(x) = x1/2 − x ≤ 21/2 − 2 < 0, for x ∈ [2, 4e2] = [δβ, β].
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Therefore, by Theorem 3.1, it follows that (4.1) has at least one positive solution.
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