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NONLINEAR FIRST-ORDER PERIODIC BOUNDARY-VALUE
PROBLEMS OF IMPULSIVE DYNAMIC EQUATIONS
ON TIME SCALES

WEN GUAN, DUN-GANG LI, SHUANG-HONG MA

ABSTRACT. By using the fixed point theorem in cones, in this paper, existence
criteria for single and multiple positive solutions to a class of nonlinear first-
order periodic boundary value problems of impulsive dynamic equations on
time scales are obtained. An example is given to illustrate the main results in
this article.

1. INTRODUCTION

Let T be a time scale; i.e., is a nonempty closed subset of R. Let 0, T be points
in T, an interval (0, T)r denoting time scales interval, that is, (0,T)r := (0,7) N T.
Other types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area
of investigation, since it is a lot richer than the corresponding theory of differential
equations without impulse effects. Moreover, such equations may exhibit several
real world phenomena in physics, biology, engineering, etc. (see [3, [I7]). At the
same time, the boundary value problems for impulsive differential equations and
impulsive difference equations have received much attention [6] 111, [12] 18] 20, [24].
On the other hand, recently, the theory of dynamic equations on time scales has
become a new important branch (See, for example, [, B [10]). Naturally, some
authors have focused their attention on the boundary value problems of impulsive
dynamic equations on time scales [I}, 2] [7), @9, T3], 14} 15 22| 23]. However, to the best
of our knowledge, few papers concerning PBVPs of impulsive dynamic equations
on time scales with semi-position condition [22] 23].

In this paper, we are concerned with the existence of positive solutions for the
following PBVPs of impulsive dynamic equations on time scales with semi-position
condition

z2(t) + f(tz(o(t) =0, teJ:=[0,T|r, t#ty, k=1,2,...,m,
a(tf) —x(ty) = Ie(z(ty), k=1,2,...,m, (1.1)
z(0) = z(a(T)),
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where T is a time scale, T > 0 is fixed, 0,7 € T, f € C(J x [0,00), (—00,0)),
I, € C([0,00),(—00,00)), tr € (0,T)r, 0 < t; < -+ < t,, < T, and for each
k=1,2,...,m,z(t) = limy_o+ z(tx+h) and x(¢; ) = lim;, o~ (t; +h) represent
the right and left limits of x(t) at t = tx.

Using fixed point theorems, Wang [22] 23] considered the existence of one or
two positive solution to when the following hypothesis holds (semi-position
condition):

(A) There exists a positive number M such that

Mz — f(t,x) >0 for x € [0,00), t€[0,T]r.

Motivated by the results mentioned above, in this paper, we shall obtain existence
criteria for single and multiple positive solutions to by means of a fixed point
theorem in cones. It is worth noticing that: (i) Our hypotheses on nonlinearity f
in this paper are weaker than condition (A) of [22] 23]; (ii) For the case T = R and
Iy(x) =0,k =1,2,...,m, problem reduces to the problem studied in [16] and
for the case I(z) = 0,k = 1,2,...,m, problem reduces to the problem (in
the one-dimension case) studied by [19]. The ideas in this article come from [21].

Theorem 1.1 ([8]). Let X be a Banach space and K is a cone in X. Assume
Q1,Qy are open subsets of X with 0 € Q1, Q1 C Qo. Let

KN\ — K

be a continuous and completely continuous operator such that

(i) [|@x|| < |lz|| for z € K N0,
(ii) there exists e € K\{0} such that x # ®x + Xe for x € K N 0Ny and X > 0.

Then ® has a fized point in K N (Qz\ Q1).

Remark 1.2. In Theorem [1.1] if (i) and (ii) are replaced by

(i) [|[®z| < ||lz|| for z € K N Oa;
(i) there exists e € K\{0} such that = # ®x + e for z € K NIQ; and A > 0,
then ® has also a fixed point in K N (2 \ ©Q4).

2. PRELIMINARIES

Throughout the rest of this paper, we assume that the points of impulse ¢, are
right-dense for each k =1,2,...,m. We define

PC = {x € [0,0(D)r —R:ap € C(Jy, R), k=0,1,2,...,m and
there exist z(¢) and z(t; ) with (t;) = z(tx), k=1,2,... ,m},

where x, is the restriction of z to Jy = (tg, tg+1]r C (0,0(T)]r, k=1,2,...,m and
J() = [O,tl]ﬂl‘, tm+1 = O'(T) Let
X={z:2€PC, z(0)==z(c(T]))}

with the norm ||z = sup,c(o, o1y}, [2(t)], then X is a Banach space.

Lemma 2.1 ([22] 23]). Suppose M >0 and h : [0,T]r — R is rd-continuous, then
x is a solution of

o(T) m
x(t):/ Gt )h(s)0s + 3 Glt ti) u(a(t), € [0,0(T)]r,
0 k=1
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where
en (U(T),O)—l

en(5,1) 0<t<s<o(T),

emv(s,t)en (o(T),0) 0<s<t< O'(T)
G(t,s) = ’ -~ ’
61\4(0'(7‘),0)717

if and only if x is a solution of the boundary-value problem
22(t) + Mx(o(t)) = h(t), teJ:=[0,T|r, t#ty, k=1,2,...,m,
o(tf) —a(ty) = L(a(ty), k=1,2,...,m,
2(0) = z(o(T)).
Lemma 2.2. Let G(t,s) be defined as in Lemma[2.1] Then

1 en(o(T),0)
— < G(t,5) < ——————
em(o(T),0)—1 — (t9) em(o(T),0) -1
for allt,s € [0,0(T)]r.
Remark 2.3. Let G(t, s) be defined as in Lemma then fOU(T) G(t,s)As=1/M.
Let

K={zxe X :z(t) > 0|z, t €[0,0(T)]r},
where § = m € (0,1). It is not difficult to verify that K is a cone in X.

For u € K, we consider the problem
e®(t) + Mx(o(t)) = Mu(a(t)) — f(t,u(o(t))),
te[0,T)r, t £ty k=1,2,...,m,
z(t)) —z(ty) = L(z(t,)), k=1,2,...,m,
2(0) = z(o(T)).
It follows from Lemma that has a unique solution,

o(T) m
x(t) = /0 G(t, s)hy(s)As + Z G(t, tg) Ip(z(t)), t€[0,0(T)]r,

k=1
where hy(s) = Mu(o(s)) — f(s,u(o(s))), s € [0,T]r.
We define an operator ® : K — X by
o(T) m
d,(t) = / G(t,s)hy(s)As + ZG(t,tk)Ik(m(tk))7 t€[0,0(T)]r.
0 k=1
It is obvious that fixed points of ® are solutions of (L.1)).

Lemma 2.4. The operator ® : K — X 1is completely continuous.

The proof similar to that in [22] 23], so we omit it here.

3. MAIN RESULTS

In this section, by defining an appropriate cones, we impose the conditions on f
which allow us to apply the fixed point theorem in cones to establish the existence
criteria for single and multiple positive solutions of the problem (L.1)).
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Theorem 3.1. Suppose that there exist a positive number M >0 and 0 < a < 3
such that

Mz — f(t, z)>0 forte|0,T]r, = € [da, 3]
Then (1.1)) has at least one positive solution if one of the following two conditions
holds: (i)

ft,z) <0  forte|0,T)r, x € [ba, a]; Yk, Ix(z) >0, x € [0, ],
f(t,x) 20 fort € [0,T]r, = €[6p,0]; Vk,Ix(z) <0, z € [64,0],
(i)
flt,z) >0 fortel0,T)r, x € [0, a; Yk, I(x) <0, x € [do, o],
ft,z) <0 forte|0,T|r, € [68,0); Vk, In(x) >0, x € [§8, 5].
Proof. Define the open sets
H={reX:|z|<a}, Q={recX:|z|<p}

Firstly, we claim that ® : K N (Q2\ Q1) — K. In fact, for any x € K N (Q2\ ),
we have da < x < 3, by Lemma

et ((T),0) o(T) i
[Pz]| < —F— = (Mz(a(s)) — f(s,2(0(s))As + > Ti(x(tx))
eM<a<T>,o>—1[/o ,; £ (a(t)]

and

o(T) m
(@)(t) = /O G(t, 5)ha ()55 + 3 Gt 1) I ((ty)

k=1
1
em(o(T),0)—1

v

o(T) m
[/ (Mx(o(s)) = f(s,2(0(s) As + Y Te(x(tr))].
0 k=1

So
1

em(a(T),0)
Therefore, ® : KN (Q2\ Q1) — K.

Secondly, we prove the result provided conditions (i) holds. By the first inequality
of (i), we have

(®x)(t) > [@x|| = d||Pxl; ie., Pz € K.

Mz — f(t, z)>Mz, t€]0,T)r, z € [do, ]
Let e =1, then e € K. We assert that
x# Pz + de forz e KNOQ; and A > 0. (3.1)

If not, there would exist g € K N 901 and \g > 0 such that zg = ®xg + Age.
Since zg € K N 0904, it follows that da = d||xg|| < x0(t) < . Let p =
mine(o,o (7)), To(t), then for any ¢ € [0,0(T)]r, we have

zo(t) = (Pzo)(t) + Ao

o(T) m
= /0 G(t,s)[Mzo(0(s)) = f(s,z0(o(s)]Ds + Y Gt t) (o (tr)) + Ao

k=1

o(T)
> / G(t,s)Mxzo(o(s))As + Ao
0
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o(T)
Zu/ G(t,s)MAs+ Ao = p+ Ao.
0

This implies that p > p + Ag, and this is a contradiction. Therefore (3.1 holds.
On the other hand, by using the second inequality of (i), we have
Mz~ f(t, @) <Mz, te0,Tl o< [56,6]
We assert that
[|Dz|| < ||z|| for 2 € K N ONs. (3.2)
In fact, if x € K N 0Oy, then 66 = d|jz|| < z(t) < B; we have

o(T) m
(®z)(t) = /0 G(t,s)[Mx(o(s) — f(s, x(o(s))]As+ Y Gt tr) Tn(x(t))

k=1

o(T)
< /0 G(t, s)Mz(o(s)) s

o(T)
< / G(t, )M As|z] = ]|

Therefore, ||Px| < ||z
It follows from Remark and that ® has a fixed point z € K N
(Q2\ ©Q1). In a similar way, we can prove the result by Theorem if condition
(ii) holds. O
Theorem 3.2. Suppose that there exist a positive number M > 0 and 0 < a < p <
B such that
Mz — f(t, z)>0 forte|0,T]r, z € [dc, ]

Then (1.1)) has at least two positive solutions if one of the following two conditions
holds (i)

ft, ) <0 forte[0,T]r, z € [0, af; VE, I(z) >0, x € [da, ],
flt,z) >0 forte0,T|r, x € [dp,p]; Vk, I(x) <0, = € [0p, pl,
f(t,l’) < 0 fOTt € [O7T]Ta T € [Jﬂaﬂ]a Vk7 Ik(x) > Oa T € [5576}7

(i)
ft,x) >0 forte|0,T)r, z € [0, a]; Vk, I(x) <0, x € [0, a],
ft,x) <0 forte[0,T|r, x € [0p,p|; Yk, Ip(z) > 0, = € [dp, p],
ft,z) >0 forte|0,T|r, z € [68,0]; Vk, Ip(x) <0, z €[04, 5],

Proof. We prove only the result when condition (i) holds. In a similar way we can
obtain the result if condition (ii) holds. Define €1, €3 as in Theorem [3.1]and define

Qs ={zeX:|z| < p}.
Similar to the proof of Theorem [3.I] we can prove that

x # ®x + de for x € KN OO and A > 0, (3.3)
x # @z + Xe for z € K N0Qy and A > 0, (3.4)

where e =1 € K, and
[Pzl < ||z|| for x € K NOQs. (3.5)
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Thus we can obtain the existence of two positive solutions x; and xo by using
Theorem and Remark respectively. It is easy to see that a < [|z1|| < p <
O

22| < 8.

Theorem 3.3. Suppose that there exist a positive number M > 0 and 0 < a1 <
01 <ag <Py < <ay < B such that

Mz — f(t, z)>0 fortel0,T)r, x € [daz, Bn]-

Then (L.1) has at least n multiple positive solutions x; (1 < i < n) satisfying
a; < |lzi|| < B, 1 <i<m, if one of the following two conditions holds (i)

f(t,z) <0 fortel0,Tr, x € [doy, v]; Yk, Ix(x) >0, z € [day, ], 1 <3<,

f(t,z) 20 fort €0,Tlr, = € [08;, Bi]; Yk, Iy(x) <0, x € [65;, 8], 1 <i <m,
(i)

ft,x) >0 fortel0,T)r, z € [do,u]; VE, I(x) <0, z € [0y, ), 1 <i<mn,
ft,z) <0 fortel0,Tr, x €[66:, Bil; Vk, I(x) >0, x € [66;, 5i], 1 < i <n.
Remark 3.4. In theorem [3.3] if (i) and (ii) are replaced by (iii)

ft,z) <0 forte[0,T)r, z € [0, o]; Yk, I(z) >0, x € [day,04], 1 <i<n

flt,z) >0 fortel0,T|r, x €[00, 0i); Vk, Ir(x) <0, z € [06;, 0], 1 <i<n;
(iv)

ft,z) >0 forte[0,T)r, z € [0y, o); Yk, I(z) <0, x € [day, 4], 1 <i<n

ft,z) <0 forte0,T)r, x €[00, Bi]; Yk, I(x) >0, x € [06;,8:], 1 <i<mn
Then has at least 2n — 1 multiple positive solutions.

4. EXAMPLES

Example 4.1. Let T = [0,1] U [2,3]. We consider the following problem on T:
1
288 + f(t,2(o(1)) =0, t€[0,3]n, t# 5,

n _
oG ) -l ) =1G(), b
2(0) = 2(3),
where T' =3, f(t,z) =2 — 1/2—1—64,andl( )= —z.

Let M =1, a = €?/32, 3 = 4€. Then eM(U(T) O) =22, § = 1/(2€2), it is easy
to see that

7 1 7 1 1
Mz — fto) =2/ — — > - — = — f 0 Y
x—f(t,x) == 123 ® 64>0 orz€[64 e] [0c, 3],
and
7 1 1 7 1 €2
t — r — 1/2 — < — = = — = f 0 )
fho) =z s gte =0 forzelg,g5l=0aa;
flt,x) ==z — g2y 614 >0, forze [2,462] =160, O;
11 1 €
1($):x1/2_m>§—6—4>0 forx€[64 ;2] 0o, al;

I(z) =22 -2 <22 -2<0, forxzel2,4e?] =[63,0]
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Therefore, by Theorem it follows that (4.1)) has at least one positive solution.
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