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NONEXISTENCE OF SOLUTIONS TO SOME
BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER

ORDINARY DIFFERENTIAL EQUATIONS

GEORGE L. KARAKOSTAS

Abstract. We present a method to obtain concrete sufficient conditions which
guarantee non-existence of solutions lying into a prescribed domain of six two-
or three-point boundary value problems for second-order ordinary differential
equations.

1. Introduction

Let I be the interval [0,1] of the real line R and let C(I) be the Banach space of
all continuous functions x : I → R, endowed with the sup-norm ‖ ·‖. In this article,
we investigate the non-existence of a solution x of the equation

x′′(t) + (Fx)(t) = 0, a. a. t ∈ I, (1.1)

satisfying one of the following conditions:

x(0) = 0, x′(1) = αx′(0), (1.2)

x(0) = 0, x(1) = αx′(0), (1.3)

x′(0) = 0, x(1) = αx(η), (1.4)

x′(0) = 0, x′(1) = αx(0), (1.5)

x(0) = 0, x(1) = αx(η), (1.6)

x(0) = αx′(0), x(1) = 0, (1.7)

and lying into a prescribed domain of the space C(I). Here assume that α ≥ 0
and η ∈ [0, 1]. The dependence of the response F on the function x might be in a
moment or a functional way.

Some publications which deal with the existence of positive solutions of equations
of the form (1.1) lying in a certain domain, associated with the conditions (or the
multi-point version of them) respectively, are, for instance, [3, 4, 14, 16, 17] for
(1.2); [18] for (1.3), [1, 13] for (1.4); [7] for (1.5); [2, 5, 6, 8, 9, 10, 11, 15, 19, 20, 21,
22, 27, 23, 25, 24, 26, 28] for (1.6); [12] for (1.7). (See, also, the references therein)

In most of these cases the response factor (Fx)(t) has the Hammerstein form
q(t)f(x(t)) and the quotient f(u)/u plays a central role. In particular, its least
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and upper limiting values at 0+ and at +∞ are combined with some arguments
related to the Green’s function, in order to ensure the applicability of a method
leading to the existence of a fixed point of an appropriate integral operator. But, as
the sufficient conditions are important for the existence of solutions, the necessary
conditions are (more or less) equally important.

Working in this direction, in this paper we provide some rather simple sufficient
conditions for the nonexistence of (positive) solutions, which lie in an angular do-
main of the origin. Our discussion refers to the existence of a real number ρ > 0
such that no solution of the problem exists satisfying the inequality

|(Fx)(t)| < ρ‖x‖,

for almost all t ∈ I. This fact implies that, if we have the response q(t)f(x(t)), then
we can proceed further to obtain a more concrete domain not containing solutions.
Indeed, assume that (Fx)(t) is of the form q(t)f(x(t)), where, in the simplest case,
q is measurable and essentially bounded and f is nondecreasing. Then, the general
result is formulated as follows: There is no solution x of equation (1.1) satisfying
the conditions (1, j) such that

f(‖x‖) < ρj

‖q‖∞
‖x‖,

where j = 2, . . . , 7.

2. Problem (1.2)-(1.1)

We start with the following theorem.

Theorem 2.1. Assume that F is a function defined in a domain D(F ) of the space
C(I) such that for each x ∈ D(F ) the value Fx : I → R is a Lebesgue measurable
function.

(i) If α > 1, then there is no positive solution x of the problem (1.2)-(1.1) lying
in D(F ) and such that (Fx)(t) ≥ 0, a.e. on I.

(ii) If α ∈ [0, 1], then there is no solution x of problem (1.2)-(1.1) lying in D(F )
and such that

ess sup
(Fx)(t)
x2(t)

< +∞. (2.1)

Proof. (i) Assume that α > 1 and let x be a positive solution of the problem in
D(F ). Consider a real number λ 6= 0 and write equation (1.1) in the form

x′′(t) + λx′(t) = λx′(t)− (Fx)(t).

Multiply both sides with eλt and take(
x′(t)eλt

)′ = [x′′(t) + λx′(t)]eλt = [λx′(t)− (Fx)(t)]eλt.

Integrating from 0 to t, we obtain

x′(t)eλt = x′(0) + λ

∫ t

0

x′(s)eλsds−
∫ t

0

(Fx)(s)eλsds.

= x′(0) + λx(t)eλt − λx(0)−
∫ t

0

z(s)eλsds,
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where z(s) := λ2x(s) + (Fx)(s). Thus we have

x′(t)− λx(t) = x′(0)e−λt −
∫ t

0

z(s)e−λ(t−s)ds. (2.2)

Multiplying both sides by e−λt, we obtain(
x(t)e−λt

)′ = [x′(t)− λx(t)]e−λt = x′(0)e−2λt −
∫ t

0

z(s)e−λ(2t−s)ds.

Integrate both sides from 0 to t and take

x(t)e−λt = x′(0)
∫ t

0

e−2λsds−
∫ t

0

∫ r

0

z(s)e−λ(2r−s)dsdr

=
x′(0)
2λ

(1− e−2λt)−
∫ t

0

z(s)eλs

∫ t

s

e−2λrdrds

=
x′(0)
2λ

(1− e−2λt)− 1
2λ

∫ t

0

z(s)eλs(e−2λs − e−2λt),

because of (1.2). Finally we obtain

x(t) =
x′(0)
λ

sinh(λt)− 1
λ

∫ t

0

z(s) sinh(λ(t− s))ds. (2.3)

By using (1.2) and (2.2) it follows that

αx′(0) = x′(1) = λx(1) + x′(0)e−λ −
∫ 1

0

z(s)e−λ(1−s)ds

= x′(0) cosh(λ)−
∫ 1

0

z(s) cosh(λ(1− s))ds

and therefore the solution x must satisfy

x′(0)(cosh(λ)− α) =
∫ 1

0

z(s) cosh(λ(1− s))ds, (2.4)

for all λ 6= 0. Observe that the right side is a positive quantity, while the left side
depends on λ. Hence, if it holds x′(0) > 0, choose λ such that cosh(λ) < α and if
x′(0) < 0, choose λ such that cosh(λ) > α, to get a contradiction.

(ii) Next assume that α ∈ [0, 1]. Let x be a solution satisfying relation (2.1).
Choose λ negative large enough such that

z(t) := (Fx)(t) + λx2(t) < 0,

for a.a. t ∈ I. This and (2.4) imply that x′(0) < 0 and so, due to the fact that
x(0) = 0, the solution x can not be positive. The proof is complete. �

In the sequel we shall assume that 0 < α < 1 and moreover the function F
satisfies the following condition:

(C) F is a function defined in a domain D(F ) of the space C(I) and for each
x ∈ D(F ) the value Fx : I → R is an element of L∞.

For each ρ > 0 we shall denote by Aρ the set of all functions x ∈ D(F ) satisfying
the inequality

‖Fx‖∞ < ρ‖x‖.
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Theorem 2.2. Assume that F satisfies condition (C). Then there is none x ∈ Aρ1

which solves problem (1.2)-(1.1), where

ρ1 := 1− α.

Proof. Assume that a solution exists satisfying the requirements of the theorem
and take ρ′ such that ρ′ < ρ1 and ‖Fx‖∞ < ρ′‖x‖. Since 1− α is the maximum of
the function

ψ(λ) :=
cosh(λ)− sinh2(λ)− α

sinh2(λ)
λ2, λ ≥ 0,

we can choose λ ≥ 0 such that
ρ′ < ψ(λ). (2.5)

Next, as in Theorem 2.1, we obtain relation (2.3). By using relation (2.2) and
the boundary condition (1.2) we obtain

αx′(0) = x′(1) = λx(1) + x′(0)e−λ −
∫ 1

0

z(s)e−λ(1−s)ds,

and due to (2.3) it follows that

x′(0) =
1

cosh(λ)− α

∫ 1

0

z(s) cosh(λ(1− s))ds.

Hence we have

x(t) =
sinh(λt)

λ[cosh(λ)− λα]

∫ 1

0

z(s) cosh(λ(1−s))ds− 1
λ

∫ t

0

z(s) sinh(λ(t−s))ds. (2.6)

Assume that ‖x‖ = x(t0), for some t0 ∈ [0, 1]. Dividing both sides of (2.6) by
x(t0), we obtain

λ[cosh(λ)− α] ≤ sinh(λ)
∫ 1

0

[
λ2x(s)
‖x‖

+
|(Fx)(s)|
‖x‖

]
cosh(λ(1− s))ds.

From this relation we obtain

λ(cosh(λ)− α) < sinh(λ)
∫ 1

0

[λ2 + ρ′] cosh(λ(1− s))ds

and so
λ2(cosh(λ)− α) < sinh2(λ)[λ2 + ρ′].

The latter contradicts to (2.5) and so there is no solution of the problem. �

3. Problem (1.3)-(1.1)

Before we will discuss the problem, we need some information about the function
defined by

φ(λ) :=
sinh(λ)
λ

(2− cosh(λ)), λ ∈ [0, 1].

Observe that 2 − cosh(λ) > 0 for all λ ∈ [0, 1]. Also, since φ(0) = 1 we conclude
that for each α ∈ (0, 1) there is a λ ∈ (0, 1) such that α < φ(λ). Thus the set

Dα := {λ ∈ [0, 1) : φ(λ) > α}

is nonempty and it contains a right neighborhood of 0.
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Theorem 3.1. Assume that F satisfies condition (C). Then there is none x ∈ Aρ2

which solves problem (1.3)-(1.1), where

ρ2 := 2(1− α).

Proof. Assume that a solution exists satisfying the requirements of the theorem
and take ρ′ such that ρ′ < ρ2 and ‖Fx‖∞ < ρ′‖x‖. Since the number 2(1 − α) is
the maximum of the quantity

ψ1(λ) :=
φ(λ)− α

[cosh(λ)− 1] sinh(λ)
λ3, λ ≥ 0,

we can choose λ > 0 such that

ρ′ < ψ1(λ). (3.1)

Next, following the same method as in Theorem 2.1, we obtain relation (2.3). By
using the boundary condition (1.3) we obtain

αx′(0) = x(1) =
x′(0)
λ

sinh(λ)− 1
λ

∫ 1

0

z(s) sinh(λ(1− s))ds,

from which it follows that

x′(0) =
1

sinh(λ)− λα

∫ 1

0

z(s) sinh(λ(1− s))ds.

Hence we have

x(t) =
sinh(λt)

λ[sinh(λ)− λα]

∫ 1

0

z(s) sinh(λ(1−s))ds− 1
λ

∫ t

0

z(s) sinh(λ(t−s))ds. (3.2)

From here and our assumptions we conclude that sinh(λ) > λα.
Next assume that ‖x‖ = x(t0), for some t0 ∈ [0, 1]. Dividing both sides of (3.2)

by x(t0), we obtain

λ[sinh(λ)− λα] ≤ sinh(λ)
∫ 1

0

[
λ2x(s)
‖x‖

+
|(Fx)(s)|
‖x‖

]
sinh(λ(1− s))ds.

From this relation we obtain

λ(sinh(λ)− λα) < sinh(λ)
∫ 1

0

[λ2 + ρ′] sinh(λ(1− s))ds

and so

λ2(sinh(λ)− λα) < sinh(λ)[λ2 + ρ′](cosh(λ)− 1).

The latter contradicts to (3.1) and so there is no solution of the problem. �

4. Problem (1.4)-(1.1)

Theorem 4.1. Assume that F satisfies condition (C). Then there is no x ∈ Aρ3

that solves problem (6.2)-(1.2), where

ρ3 := sup
λ>0

2− cosh(λ)− αeλ(η−1)

cosh(λ)− 1
λ2.



6 G. L. KARAKOSTAS EJDE-2012/20

Proof. Assume that a solution exists satisfying the requirements of the theorem
and take ρ′ such that ρ′ < ρ3 and ‖Fx‖∞ < ρ′‖x‖. Choose λ > 0 such that

ρ′ <
2− cosh(λ)− αeλ(η−1)

cosh(λ)− 1
λ2. (4.1)

Following the same method as in Theorem 2.1, we obtain relation (2.2), which due
to (1.4) becomes

x′(t)− λx(t) = −
∫ t

0

z(s)e−λ(t−s)ds. (4.2)

Multiplying both sides with eλt we obtain

x(t) = x(0)eλt −
∫ t

0

z(s) sinh(λ(t− s))ds. (4.3)

From this relation and (1.4) we derive

x(0) =
1

λ(eλ − αeλη)

[ ∫ 1

0

z(s) sinh(λ(1− s))ds− α

∫ η

0

z(s) sinh(λ(η − s))ds
]
,

and therefore we have

x(t) =
eλt

λ(eλ − αeλη)

[ ∫ 1

0

z(s) sinh(λ(1− s))ds

− α

∫ η

0

z(s) sinh(λ(η − s))ds
]
− 1
λ

∫ t

0

z(s) sinh(λ(t− s))ds.
(4.4)

Assume that ‖x‖ = x(t0), for some t0 ∈ [0, 1]. Dividing both sides of (4.4) by
x(t0), we obtain

λ2[eλ − αeλη] ≤ eλ[λ2 + ρ′](cosh(λ)− 1)).

The latter contradicts to (4.1) and so there is no solution of the problem. �

The following table shows the values of the bound ρ3 for some values of the
coefficient α and the argument η.

η
α
ρ3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 1.808 1.628 1.464 1.307 1.160 1.020 0.888 0.761 0.639
0.1 1.806 1.625 1.453 1.291 1.137 0.990 0.849 0.714 0.585
0.2 1.805 1.620 1.444 1.275 1.114 0.959 0.811 0.667 0.529
0.3 1.804 1.615 1.434 1.260 1.092 0.929 0.772 0.620 0.472
0.4 1.803 1.611 1.426 1.246 1.071 0.900 0.735 0.573 0.416
0.5 1.802 1.608 1.418 1.233 1.051 0.873 0.699 0.528 0.361
0.6 1.801 1.605 1.412 1.221 1.034 0.849 0.667 0.487 0.310
0.7 1.800 1.603 1.407 1.212 1.019 0.828 0.639 0.451 0.265
0.8 1.800 1.599 1.403 1.205 1.009 0.813 0.618 0.423 0.230
0.9 1.800 1.600 1.400 1.201 1.002 0.803 0.604 0.379 0.207

5. Problem (1.5)-(1.1)

Theorem 5.1. Assume that F satisfies condition (C). Then there is none x ∈ Aρ4

which solves problem (1.5)-(1.1), where

ρ4 := sup
λ>0

λ[eλ − α]
λ cosh(λ)− λ+ 1− e−λ

− λ2.
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Proof. Assume that a solution x exists satisfying the requirements of the theorem
and take ρ′ such that ρ′ < ρ4 and ‖Fx‖∞ < ρ′‖x‖. Choose λ > 0 such that

ρ′ <
λ[eλ − α]

λ cosh(λ)− λ+ 1− e−λ
− λ2. (5.1)

Next, following the same method as in Theorem 4.1, we obtain relation (4.3), which
because of (1.5) gives

αx(0) =
1

λeλ − α

∫ 1

0

z(s)
[
sinh(λ(1− s)) + e−λ(1−s)

]
ds.

Therefore,

x(t) =
eλt

λeλ − α)

∫ 1

0

z(s)
[
sinh(λ(1− s)) + e−λ(1−s)

]
ds−

∫ t

0

z(s)eλ(t−s)ds. (5.2)

Next assume that ‖x‖ = x(t0), for some t0 ∈ [0, 1]. Dividing both sides of (5.2) by
x(t0), we, finally, obtain

λ[λ− e−λα] ≤ [λ2 + ρ′](λ cosh(λ)− λ+ 1− e−λ).

The latter contradicts (5.1) and so there is no solution of the problem. �

The parameter ρ4 for various values of the coefficient α is given in the following
table.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ4 1.480 1.375 1.271 1.167 1.063 0.961 0.859 0.757 0.657

6. Problem (1.6)-(1.1)

Theorem 6.1. Assume that F satisfies condition (C) and, moreover, assume that
0 < α < 1 and 0 < η < 1. Then there is none x ∈ Aρ5 which solves the problem
(1.6)-(1.1), where

ρ5 := sup
λ>0

λ2[sinh(λ)− α sinh(ηλ)]
sinh(λ)

(
cosh(λ)− 1

) − λ2.

Proof. Assume that a solution x exists satisfying the requirements of the theorem
and take ρ′ such that ρ′ < ρ5 and ‖Fx‖∞ < ρ′‖x‖. Choose λ > 0 such that

ρ′ <
λ2[sinh(λ)− α sinh(ηλ)]
sinh(λ)

(
cosh(λ)− 1

) − λ2. (6.1)

Next, following the same method as in Theorem 2.1, we obtain relation (2.3), which
because of (1.6) gives

x′(0) =
1

sinh(λ)− α sinh(λη)

[ ∫ 1

0

z(s) sinh(λ(1−s))ds−
∫ η

0

z(s) sinh(λ(η−s))ds
]
.

Therefore,

x(t) =
sinh(λt)

λ
(
sinh(λ)− α sinh(λη)

)[ ∫ 1

0

z(s) sinh(λ(1− s))ds

−
∫ η

0

z(s) sinh(λ(η − s))ds
]
− 1
λ

∫ t

0

z(s) sinh(λ(t− s))ds.

(6.2)
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Next assume that ‖x‖ = x(t0), for some t0 ∈ [0, 1]. Dividing both sides of (6.2) by
x(t0), we, finally, obtain

λ2[sinh(λ)− α sinh(λη)] ≤ [sinh(λ)[λ2 + ρ′](cosh(λ)− 1).

The latter contradicts (6.1) and so there is no solution of the problem. �

The following table shows the values of the bound ρ5 for some values of the
coefficient α and the argument η.

α
η
ρ5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.978 1.959 1.939 1.919 1.899 0.878 0.858 0.839 0.818
0.2 1.958 1.919 1.878 1.839 1.798 1.759 1.718 1.679 1.637
0.3 1.938 1.919 1.878 1.839 1.798 1.759 1.718 1.518 1.458
0.4 1.917 1.838 1.758 1.679 1.598 1.519 1.439 1.355 1.267
0.5 1.897 1.797 1.697 1.599 1.498 1.398 1.298 1.195 1.097
0.6 1.879 1.759 1.638 1.519 1.399 1.279 1.159 1.037 0.918
0.7 1.858 1.719 1.578 1.439 1.296 1.159 1.017 0.879 0.736
0.8 1.839 1.678 1.518 1.359 1.195 1.039 0.879 0.719 0.559
0.9 1.819 1.637 1.458 1.278 1.099 0.917 0.738 0.559 0.379

7. Problem (1.7)-(1.1)

Theorem 7.1. Assume that F satisfies condition (C). Then there is no x ∈ Aρ6

which solves problem (1.7)-(1.1), where

ρ6 := sup
λ>0

λ2[αλ+ cosh(λ)]
sinh(λ)

(
λαeλ + cosh(λ)

) − λ2.

Proof. Assume that a solution x exists satisfying the requirements of the theorem
and take ρ′ such that ρ′ < ρ5 and ‖Fx‖∞ < ρ′‖x‖. Choose λ > 0 such that

ρ′ <
λ2[sinh(λ)− α sinh(ηλ)]
sinh(λ)

(
cosh(λ)− 1

) − λ2. (7.1)

Next, following the same method as previously, we obtain

x′(0) =
1

αλ+ cosh(λ)

∫ 1

0

z(s) sinh(λ(1− s))ds.

Therefore,

x(t) =
λαeλt + sinh(λt)
λ
(
αλ+ cosh(λ)

) ∫ 1

0

z(s) cosh(λ(1− s))ds− 1
λ

∫ t

0

z(s) cosh(λ(t− s))ds.

(7.2)
Next assume that ‖x‖ = x(t0), for some t0 ∈ [0, 1]. Dividing both sides of (7.2) by
x(t0), we, finally, obtain

λ2[αλ+ cosh(λ)] ≤ sinh(λ)[λ2 + ρ′](λαeλ + sinh(λ)).

The latter contradicts (7.1) and so there is no solution of the problem. �

The following tableshows the values of the bound ρ6, for some values of the
coefficient α.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ρ6 0.223 0.216 0.211 0.206 0.202 0.198 0.195 0.192 0.190
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