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HOLDER REGULARITY FOR SIGNED SOLUTIONS TO
SINGULAR POROUS MEDIUM TYPE EQUATIONS

SIMONA PUGLISI

ABSTRACT. We prove Holder regularity for bounded signed solution to singular
porous medium type equations, whose prototype is

ur — divm|u|™ 1Dy =0 weakly in Er,
with m € (0,1).

1. INTRODUCTION AND STATEMENT OF MAIN RESULT

Let E be an open set in R, for 7> 0 denote the cylindrical domain
Er =FE x (0,7

and let I' = 0F7 \ E x {T} be its parabolic boundary. We consider quasi-linear
homogeneous singular parabolic partial differential equation

up — div A(z, t,u, Du) =0 weakly in Er, (1.1)
where A : Er x R¥V*T! — RY is measurable and subject to the structure conditions

{A(m,t,z,f) : 5 > COm|Z|m71‘€|2

. (1.2)
|A(z, 1, 2,§)| < Cim|z["[¢]

for a.e. (x,t) € Er, for every z € R, ¢ € RY, where Cy, C; are given positive
constants and 0 < m < 1.
The prototype of this class of parabolic equations is the porous medium equation

uy — divm|u|/™ 'Du =0 weakly in Er.

The modulus of ellipticity of this class of parabolic equations is m|u|™ 1. Whenever
m > 1, such a modulus vanishes when u vanishes, and for this reason we say that
the equation — is degenerate. Whenever 0 < m < 1, such a modulus
approaches infinity as v — 0, and for this reason we say that the equation —
is singular. One also speaks about slow, when m > 1, or fast diffusion, when
0 < m <1 (see the monograph [g]).
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We are interested only in local solutions to singular porous medium type equa-
tion. The parameters {N, m, Cy, C1} are the data, and we say that a generic con-
stant v = (N, m, Cy, C1) depends upon the data, if it can be quantitatively deter-
mined a priori only in terms of the indicated parameters. As usual, in the following
the constant v may change from line to line.

Let us give the notion of weak solution for this kind of equations as follows.
A function u € Cioc(0, T LIOC(E)) with |u|™ € L2 (0,T; HL.(E)) is a local weak
sub(super)-solution to if for every compact set L C E and every subinterval
[tl, tg] C (0, T]

ta
/ ugodx’tj —I—/ / [—upr + A(z, t,u, Du) - Dypldz dt < (>)0,
Ic t1 K

e (0, T5 L2(K)) N L{,,. (0, T Hy (K)).

Our aim is to show that locally bounded, local, weak solutions of variable sign
to our problem —, with 0 < m < 1, are locally Holder continuous.

Let us introduce the parabolic m-distance of a compact set K C Er from the
parabolic boundary IT" in the following way

for all non-negative test functions ¢ € Hj

. 1/2
medist(CT) = f (e 1o el =yl 1t = s72).

We can state the main result of this paper as follows.
Theorem 1.1. Let u be a bounded, local, weak solution to (1.1)-(1.2]). Then wu is

locally Hélder continuous in Er and there exist constants ¢ > 1 and o € (0,1) such
that for every compact set KK C Ep

ol = ol + |12 — ta] /2

m-dist(IC,T') ) ’

fur,t1) = w2, t2)| < ¢lullo, e

for every pair of points (x1,t1), (xe,t2) € K.

The constant ¢ depends only upon the data, the norm ||ul/co x and m-dist(1C, T');
the constant o depends only upon the data and the norm ||u||eo, £

In some physical applications it is natural to consider positive solutions to quasi-
linear parabolic equations of the form , and it is also a very useful simplification
from the mathematical point of view. Therefore, most of the papers directly deal
with positive solutions.

A Holder regularity result for signed solutions was obtained first by DiBenedetto
n [3] for degenerate (p > 2) p-laplacian type equations and then by Chen and
DiBenedetto in [I] for singular (1 < p < 2) p-laplacian type ones (see also [4]).
Later on, in 1993 Porzio and Vespri [7] considered the case of a degenerate doubly
non-linear equation, whose prototype is

— div (Ju|™ | Dul’~2Du) =0,

for p > 2 and m > 1. Notice that this kind of equations admits as a particular
case both the degenerate p-laplacian type equations (for m = 1 and p > 2) and the
degenerate porous medium type equations (for p = 2 and m > 1). As a consequence,
it only remained open the case of the singular porous medium type equations.

We want to point out that the difficulty in our case is due to the presence of the
term |u|™~! in the modulus of continuity; indeed, the fact that u changes sign plays
a crucial role here. In the p-laplacian case, the modulus of continuity is |Du|P~2,



EJDE-2012/200 HOLDER REGULARITY FOR SIGNED SOLUTIONS 3

thus the proof does not change if u is positive or if it changes sign. One could think
to follow the lines of [I] with minor modification, but at some point it will appear
|u|/™~1 that one cannot control from above in a sublevel of the modulus of u, being
0<m<1.

An important point of our strategy is to work with a different equation, ap-
parently more complicated, but instead easier to handle, to which we can reduce,
thanks to a change of variables introduced by Vespri in [9]. We will apply a tech-
nique due to DiBenedetto [3] 4] via an alternative argument; we will write energy
estimates for super(sub)-solutions and logarithmic estimates. We notice that, due
to the change of variables, our logarithmic function has to be different by the usual
one (see for instance []). Then we will use the so-called reduction of oscillation
procedure: the Holder continuity of a solution u to the transformed equation
will be heuristically a consequence of the following fact: for every (zo,t9) € Er
there exists a family of nested and shrinking cylinders in which the essential oscil-
lation of u goes to zero in a way that can be quantitatively determined in terms
of the data. Since this result is well known for non-negative solutions (see [4, [5]),
it will suffice to consider the case in which the infimum of our solution is negative
and the supremum is positive.

2. CHANGE OF VARIABLES

To justify some of the following calculations, we assume u to be smooth. In no
way this is a restrictive assumption: indeed the modulus of continuity of u will play
no role in the forthcoming calculations.

Let us consider n € N such that

1

n>—,
m

and define
lo[""tv = u,
which is equivalent to
v= |u|%*1u.
Notice that )
Du =nlv|" 'Dv, Dv==|u|+"'Du.
n
With this substitution equation (1.1)) becomes
(\U|”71v)t —div A(z,t,v,Dv) =0 weakly in Er,
where N
Az, t,v, Dv) = A(x, t, u, Du)|

Now, let us see what the structure conditions become. We have

u=lv|"~ 1y’

1
A(x,t,v, Dv) - Dv = —|u %71A(:L',t,u,Du) - Du
n

%+m72|Du|2

> " Colu
n

_ nmco‘v|1+nm72n|v‘2(nfl) ‘DU|2

= nmCo|v["™ | Dv|?;

since the exponent is nm — 1 > 0, the equation is “degenerate”.



4 S. PUGLISI EJDE-2012/200

In the same way
|A(z, t,v, Dv)| = |A(z, t, u, Du)| < mCy|u|™ | Du|
= mCy |v|"™ Ynjo[" "t Do| = nmCy |v|"™ | D).
If we denote our variable with u again, we are then led to consider equations of the

type _
(Ju|"*u); — div A(x, t,u, Du) = 0 weakly in Er,

with structure conditions
Az, t,2,€) - € = nmCol 2" |¢ |
{ | Az, t, 2,6)] < nmCh 2" f¢],
for a.e. (z,t) € Er and for every z € R, £ € RV,
Without loss of generality, we can assume n to be odd; in this case
o'~ =,
and we can rewrite the equation as
(u™)¢ — div A(z, t,u, Du) = 0 weakly in Er. (2.2)
Hence we have reduced problem - to with structure conditions .

Let us now see what the notion of weak solution becomes in this new setting. A
function u such that u™ € Cloe(0,T; LE (E)) with |u|"™ € L% (0,T; HL (E)) is a

loc loc

local weak sub(super)-solution to (2.2)) if for every compact set £ C E and every
subinterval [t1,t2] C (0,7

to -
/}Cu”go dx|ij —|—/ /}C[—u”g@t + A(z, t,u, Du) - Dy|dzdt < (>)0,
ty

for all non-negative test functions ¢ € H} (0,T; L*(K)) N LE (0, T; Hi (K)).

loc
3. PRELIMINARIES
Let r,s > 1 and let us consider the Banach spaces

VPS(Br) = L>®(0,T; L"(E)) N L* (0, T; W"*(E)),

VS (Br) = L=(0,T; L"(E)) N L*(0,T; Wy (E)),
both equipped with the norm

[ollvrs(pr) = esssup [[o( D) |lr. & + [ Dvlls,2r;
0<t<T

when r = s, let V™"(Erp) = V"(Er) and V)" (Er) = V' (Er). Both spaces are
embedded in LI(Er), for some ¢ > s (for a proof one can see [4]).

Proposition 3.1. Ifv € V,"*(Er), then there exists a positive constant v, depend-
ing only upon N,r, and s, such that

s/N
// |v|? dx dt < fyq<// |Dv|? d:rdt) (esssup/ |v|rdx)
Er Er 0<t<T JE

with ¢ = s In particular

[vllg,Er < 7HUHV”(ET)'

Note that, taking r = s in the previous proposition, and applying Holder in-
equality, one obtains the following result.
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Proposition 3.2. Ifv € Vj(Er), then there exists a positive constant v depending
only upon N and r, such that

loll7 < vl > O} ™ ol -
Given (y,s) € Ep, and A, R > 0, we will denote by Kr(y) the cube centered at
y with edge 2R; i.e.,
Kr(y) = {1’ eRY: 1211_525\,% -yl < R},
and let 0K R(y) be its boundary. Let (y, s) + Qr(A) be the generic cylinder
(y,8) + Qo(A) = Kp(y) x [s = A, s].
If k£ € R, introduce the truncated functions
(u—k)+ = max{£(u — k), 0}.
The following lemma, proved in [2], will be very useful in the sequel.

Lemma 3.3. Let v € WY (K,(y)) and let k,l € R, with k < . There exists a
constant v = y(N,p) independent of k,l,v,y, p such that
pN+1

H{v <k} {k<v<l}

Let us state now a lemma on fast geometric convergence one can find in [2]; for
a simple proof see again [4] and [6].

(—k){v>1} <~ |Dv| dx. (3.1)

Lemma 3.4. Let {Y, }nen be a sequence of positive numbers satisfying
Yoi1 < CHY,H,

being C,b>1 and o > 0. If
Yo < CTabT,

then Y, converges to 0, as n tends to +oo.

Let us prove energy estimates we will need later. We start with estimates for
super-solutions, then we will state the analogous ones for sub-solutions.

Proposition 3.5 (Energy estimates for super-solutions). Let u be a local, weak
super-solution to - in Ep. There exists a positive constant -y, depending
only upon the data, such that for every cylinder (y,s) + Qr(\) C Er, every level
k € R and every non-negative, piecewise smooth cutoff function ¢ vanishing on

DK nly),
g [ ([t o
" //@,SHQR(A) Jul™ Y| D[(u — k) ~¢]| d dr
<{/ (] ( s)sm s )Pl — N o)
i //(y,sHQR(A) (/uk(’“ — 8)4s"1ds) |G| dw dr

+// lu|"™ Y (u — k)2 | DC|? dach}.
(¥,5)+Qr(N)
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Proof. After a translation we may assume that (y, s) coincides with the origin and
it suffices to prove (3.2)) for the cylinder Qr(A). In the weak formulation of (2.2]),
take the test function

o=—(u—k)_¢?

over Q; = K x (=\,t], where —A <t <0.
Taking into account that

k
a%_(/ (k— s)+8"71ds> = —u""u—k)_u,,

and estimating the various terms separately, we have first

[ o b [ ([ Gt
>"/KR (/u (k — 5) 5" ds )¢, 1)
—n / (/ (b s)sm s ) 2, ) d
_2”//t/u )" ds )G | dar

From the structure conditions and Young’s inequality it follows that
- / o Az, 7, u, Du)D[(u —k)-¢*] dudr
—/Q Az, 7,u, Du)D(u — k)_¢* do dr
-2 / ; .Z(J;, T,u, Du)(u — k) (D¢ dx dr
> nmCj // lu|"™ | D(u — k)_|*¢* da dr

= oGy // ("1 D(u — k)_|(u— k)_c|D¢| da dr

> um &0 // u" | D[(u — k)_(]|* dx dr
2 JJa.
o Ci nm—1 _1)2 2
2nm |u (u — k)2 |DC|* dx dr.
Co ,

Combining these estimates and taking the supremum over ¢t € (=X, 0], completes
the proof. O

Proposition 3.6 (Energy estimates for sub-solutions). Let u be a local, weak sub-
solution to (2.1)-(2.2) in Er. There exists a positive constant v, depending only
upon the data, such that for every cylinder (y,s) + Qr(\) C Er, every level k € R
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and every non-negative, piecewise smooth cutoff function ¢ vanishing on OKg(y),

u
esssup/ (/ (s—k)Jrs"_lds)@(ac,t)dx
s—A<t<s JKgr(y) k

+// u|"™ | D[(u - k)4¢]|* da dr
(0:5)+Qr(Y)

< fy{ /KR(y) (/ku(s - k)+8"_1ds)ﬁ2(x,s — A dx (3.3)

+// (/ (s—k)+s"_1ds)|g|da:d7'
(v:9)+Qr(\) Nk

+// |u|”m*1(u7k)i|DC|2d:ch}.
(1,9 +@r(V)

Proof. The proof is analogous to the previous one; we just need to take the test
function ¢ = (u — k)4 ¢? and observe that

0 “ n—1 __ ., n—1
E(/k (s —k)ts ds) =u""(u—k)ju,. O

Let us introduce the logarithmic function

H'VL
H™ no__ fn Y — + ( )
¢( ,(U )+’1/ ) og H"*(un*kn)_i_ﬁ»l/n )
where
H" = esssup (u"—k™)y, 0<v" <min{l, H"},
(y’s)“rQR(/\)
and for s >0

logt s = max{log s, 0}.

Proposition 3.7 (Logarithmic estimates). Let u be a local, weak solution to —
in Ep. There exists a positive constant vy, depending only upon the data,
such that for every cylinder (y,s) + Qr(\) C Er, every level k € R and every
non-negative, piecewise smooth cutoff function ¢ = {(x)

ess sup /K ( )wQ(H",(u" — k™), ") (@, ) P (2) da
RrR\Y

s—A<t<s

< / 2 (H™, (u™ — k™), v™) (2,8 — NP (2) da (3.4)
Kr(y)

+ v// "V (HT, (u™ — k™) 4, v™) | DC|? da dr.
(©.9)+Qr(A)

Proof. Again we assume that (y, s) coincides with the origin. Put v = ™ and, in
the weak formulation of (2.2)), take the test function

o? /2
=0t =2y,
over Q; = Kr x (=, t], where —\ <t <0.

By direct calculation

(¥?)" =201 +v)(¥')? € LS. (Er), (3.5)
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which implies that such a ¢ is an admissible testing function. Estimating the
various terms separately, we have

// 8¢2§2d dT—// wCQdasz

= wz(xat)cz(x) dx — w2(1_’7/\)<-2($) dz
KR KR
using and the structure conditions
~ o 2 9
/Qt Az, 7, u, Du)D(WC ) dx dr
— / A(z,7,u, Du)Dv(4?)"¢? dx dr + 2 / / (?) CA(x, 7, u, Du)DC da dr
Qt t
=2n // u" Az, 7, u, Du)Du(1 + ) ()22 da dr
+4 / W' CA(z, 7, u, Du)DC da dr
Qt
> 2n*mCy // u" Hu"™ D (u — k)£ 2(1 + ) ()2 ¢ dw dr

— 4nmCy // |u|"™ Y D(u — k)4 [¢| D¢y da dr.

Applying Young’s inequality, we obtain
~ 2
/ A(z, 7, u, Du)D ( oY ¢ ) drx dr
Qt
> 2nm(nCy — Cy€?) // lu|"™ | D (u — k) |*(y)2¢? da dr
Q1

—an%// |u["™=V| D¢y da dr.
& JJa

Combining these estimates, discarding the term with the gradient on the left-hand
side, and taking the supremum over ¢ € (—\, 0], proves the proposition. ]

4. REDUCTION OF THE OSCILLATION

To obtain the Holder regularity, we argue as usual with this kind of estimate by
a reduction-of-oscillation procedure. Let us state the basic result.

Theorem 4.1. Let (y,s) € Er, and p, w > 0 such that

(2p)?

( )+Q29p(ﬁ) C Er, €SS 0SC u<w,
()4 Q205 (;ﬁs}fl )

where
1—n
0=w72 .
Then, there exist ., ¢y € (0,1), depending only upon data, such that

essQosc U < Nyw
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where .
Q" = (y,5) + Qop (0.0%) , 0. = Eowl—nm.

As we show at the end, the local Holder continuity of locally bounded solutions
is a straightforward consequence of Theorem The proof of this theorem splits
into two alternatives.

Let e € (0,1), R > 0, and (y, s) € Er. Consider the cylinder

Qe == Kleé% (y) X (5 - RZ—e(nm—l)’ 5] C Er,

and set

g > esssup u, p- < essinf u, w=pp —p_.
(y,8)+Qe (¥,8)+Qe

Let us recall that, without loss of generality, we can assume py > 0, p— < 0 and
py = p—].

Indeed, otherwise just change the sign of u and work with the new function.
If we take 2p < R, and assume without loss of generality

w > R, (4.1)
then we guarantee that

2
(ya 8) + QZQp(%) C Qe~

5. THE FIRST ALTERNATIVE

We distinguish two alternatives; the first of them consists in assuming

Hu <p_+ %} N {(y,S) + QQGp(%)}‘ < Co)sz(u}(zZ)i)‘a (5.1)

being ¢ € (0,1) a constant to be determined later.
Let us prove now the following De Giorgi type lemma.

Lemma 5.1. There exists a number ¢y € (0,1), depending only upon data, such

that if (5.1) holds, then
2

w : P
u>pu_ + 7 e m (y,s) + er(wnm71>' (5.2)

Proof. Without loss of generality we may assume (y, s) = (0,0) and for £ = 0,1, ...,
set

2
p ~ ~ = p
pk=p+27, Ky = Koy, Qk:ka(_wnn{f—l’O]'

Let (. be a piecewise smooth cutoff function in @k vanishing on the parabolic
boundary of @y such that 0 < {, <1, {, =1 in Qry1 and

2k+2 S 2k
|DC]€‘ S (,(}T, 0 S Ck),t S 7u}nm_l.
p P
We consider the following levels
b LYY e s
k=H-T 7T o YH-=Z7%
4 2kt 8 (5.3)

w ) w
=+t ifpu. <——.

T — w
F=H-F 58 T o558 3
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We first treat the least favorable case in which u might be close to zero; i.e., we
assume first that

w
> ——. 5.4
ez =3 (5.4)

Write down the energy estimates (3.2)) for (u— hy)_ over the cylinder @k, to obtain

h
ess sup /N (/ (hi — s)+s"_1ds)c,%(m,t) dx
03 K u

<t<0

onm—1

nm—1 _ 2 T
+//@k |l |D[(u — hi)-¢]|” dw d

<+{ /[ K / " (b = 5157 145) G| dndr

[t = w2 DG dedr ).
Qk

Let us introduce the truncation

w
UV = Imax u,27 s

in order to estimate the terms with the integral over [u, ht]; we have

hk hk
/ (hy — ) 45" tds > / (hy, — s) 15" tds

(v hy)? =1 (v — hy)? >
S B R Yo %)-
=Y 2 = (24> 2
On the other hand, as (u — hg)- < w and —% < p- <0, we have
hy _ h 2 n+1
/ (hy, — 8)48" " tds < B! (u = he)= < v (5.6)
; 2 2
By the definition of v, we obtain
//~ V"™ D[(v — hy,)_ G| de dr
Q
- /[ | D[ — h) G| d dr
Gunfu> 35}
+// (w)nmfl(w . )2 DG das dr (5.7)
N = = — Nk k
Qenfus s} N2 2
5 22(k+1)
< //~ [u|™™D[(u — hi)~Ci]|” dadr + 7 WMD) 4, ]
k
where B
A = {’LL < hk} N Qk.
Let us observe that B B
Ap = A = {’U < hk} N Q. (58)

Indeed, the inclusion A D gk follows by the definition of v; let us now prove the
other one: if v = u there is nothing to prove; if v = 57, by (5.4) we have

B — w w >w w w
kSRt t o 2 g o T o
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Taking into account that |u| < w, (5.5)-(5.8)) yield

(%)nfl ess sup /~ (v —hg)2CE(x,t) da + //@kvnm—llD[(v B hlc)—Ck”dedT

A
w

nm—1

22k -
S 772 wn(m+1) |Ak|7
1%

and again, thanks to the definition of v, it follows that

9 .9 w \ n(m—1) 2
ess sup /~ (v—hg)2 iz, t) do + (7) //~ |D[(v — hi)~Cil|” dadr
_iil<t<0 K 2 Qk

2k

2 ~
<y— WML Ay
p

(5.9)
The change of variables
T=x0"', t=w"m"lr
maps the cube K, into K,,, and the cylinder C~2k into Q = K,, x (—p2,0]. With

(z,t) — u(z,t) denoting again the transformed function, the assumption (5.1]) of
the lemma implies

w
’{U<M_+§}0Qo‘ §C0|Q0|. (510)
Performing such a change of variables in (5.9)), we have
ess sup / (v —hy)2 G (T,t) dT + // |D[(v — hk),Ckszidf
Ko, Quk

—p3<t<0
22k -
S ’YTW |Ak‘7
p

where
A = {'U < hk} N Qk.

This implies
9 22k -
H(v_hk)—c:kuvz(Qk) S'Y?W |A1€| (5'11)

Then from Proposition [3.2f with » = 2 and (5.11]), one obtains

v — hy)? dzdt < v — hg)? (P dzdt
//Q< ) J o-mre

_2 2
< A{v < b} N Qw7 || (v — hk)—CkHVQ(Qk)
2k
< ’7272"‘)2|Ak|1+%+25
p

the left-hand side is estimated by

// (v — hy)? dzdt = // (hy — v)*dzdt
Qr+1 Qr1N{v<hy}

> / / (i — v)2dzdE
Qr+1N{v<hiy1}

> (hi — hyeg1)?| Ag1 |
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w \2 -
= (gws) Munl
Combining the previous estimates yields
- 24k 2
|Ag1] < VFMHH Nz,
and setting

A

Y, = ,
" Q]

it follows that )
[ ——
Yk+1 < ~y 24k Yk b e )
Thanks to Lemma [3.4] we deduce that Y}, tends to zero as k — oo, provided

{v<hotNQo| [{v<p_+%}NQ

_ Ntz 2
e T Qd Sy
that is (5.10)), with cg := N 9 (N+2)?,

Therefore,

V> s +% a.e. in K, x (—p*,0].

Returning to the variables z,t, we have
2
v> -+ % a.e. in Qgp(pi>; (5.12)
w

nm—1

this implies that u = v in Qgp(winz,l) and, consequently, (5.2)). In fact, by contra-
diction, if there were a point (z,t) € Qgp(wnpij,l) such that v(x,t) = 51, by (5.12)
and (5.4]), we would obtain
w w
24 4
Assume now that (5.4) is violated; that is, u— < —%. Choosing the levels hy
according to (5.3]), we have

he = p— +

>+ =2

o] €

w w w w w w
¥+W<—§+275+

Thus on the set {u < hy}, one has

ok+5 < T 95

w \nm—1
U nm—1 > (j) .
It follows that |u|"™~! can be estimate above and below by w up to a constant,
depending only upon the data; the proof can be repeated as before, but in this case

there is no need to introduce the truncated function v. O

Therefore under assumption ({5.1)),

nm—1

. w
— essinf u<—p_ ——;

Qo (o) 4
adding esssup wu, gives
Qop(woe—r)
essosc u < esssup U — fh— — <

Qsp(#{l) QBp(WQ—l)

w.

] w

w
4
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6. THE SECOND ALTERNATIVE
Let us recall the two fundamental hypotheses we assume, namely

iu’+>07 M—<O7 M+Z|:u’—|
Throughout this new section, let us assume that (5.1)) does not hold; i.e.,

= e+ 23 0 {05) + Qan (22} < (1 = )| @an (2255

wnm— 1

For simplicity in the following we assume (y, s) = (0,0).

Lemma 6.1. There exists a time level t* in the interval (— w(fff“—%ow(fﬁ)i)
such that .
’{u < H— + — } N Kggp‘ §0|K29p|. (6.1)

This in turn implies
‘{u ) = Hg — *} N K299} < (1 - *>|K299‘ (6.2)

Proof. By contradiction, suppose that . does not hold for any t* in the indicated
range; then

cg _(2p)2
w (2p)2 770er7n T
fu<n+530Qu(oor)| = | o [{uet) <+ 510 Kagfar

onm—1

/4 (2p)2 ‘{u <M T3 }szep‘d

< D, (1- D) OO 11, 0 2T
< cor@wp(%ﬂ.
This proves . follows by the fact that (| is equivalent to
’{u ) >+ — }ﬁKggp’ < (1——)|K29p|,
and p_ + 3 < py — 7. O

The next lemma asserts that a property similar to (6.2) continues to hold for all
time levels from t* up to zero.

Lemma 6.2. There exists a positive integer j*, depending upon the data and cg,
such that
w c2
‘{U(',t) > g — 27} n K20p’ < (1- Z)|K29P|’
for all times t* <t < 0.

Proof. Consider the logarithmic estimates (3.4) written over the cylinder Ksg, X

(t*,0) for the function (u™ — k™) and for the level k = (u7 — (%)")Un. Notice
that, thanks to our assumptions, p14 > 7, so k > 0. The number v in the definition
of the logarithmic function is taken as v = 5745, where j is a positive number to
be chosen. Thus we have

HTL

o (H", (u" = k")4,v") = log™

(H" — (u = k") + 55w )
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where
w
H" = esssup {u" —(uf - (—)")}
K2Gp><(t*70)
The cutoff function x — () is taken such that

+

1
¢=1 on K_g9, for o€ (0,1), [D(| < e

With these choices, inequality (3.4) yields

/ 2 (x,t) dx
Ka-s)26p

0
< ¢2(x,t*)dx+7// [u|" M=V D¢|? da dr,
t* JKag,

Koo,

(6.3)

for all t* <t < 0. Let us observe that

wn

P < log( iT:: ) = jnlog?2.

2GIDn

To estimate the first integral on the right-hand side of 1' observe that 1 vanishes
on the set {u" < k"} and that p% — (2)" > (uy — %)"; therefore by (6.2)

2 (z,t") dz < j*n?log? 2(1 - c—0>|K29p\.
Ko, 2

The remaining integral is estimated as follows

0
y / / "D D[R der dr
t* Kggp

Y . (210)2 n(m—1) 0.
< (00p)? jnlog?2 Cam—T Y | Kop| = gjn\KggpL
Combining the previous estimates,
/ V2 (z,t) dr < {j2n2 log? 2(1 - C—O) + lzjn} [ K9, (6.4)
K@1-5)26p 2 g

for all t* < ¢ < 0. The left-hand side of (6.4) is estimated below by integrating over

the smaller set
wn

n n .
{U > ,LL_;,_ - 2(j+2)n }7
on such a set, since 1 is a decreasing function of H", we have

w™
2 > log? ( 3}2" ) =(j—1)*n? log? 2:
2G+Dn
hence, for all t* <t < 0, we obtain

n n w" ] 2 Co Y
Hu ('»t) > Hy — QUT)”} N K(l—o’)Z@p‘ < {(7) (1 - E) + O_?j}|K20p|o

j—1
On the other hand,

n n w"
‘{U (at) > Hy = 9G+2)n } N K20p‘

n n wn
< HU (1) > ply — m} n K(l*U)QGp‘ + [ K205 \ K(1-0)26]
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n n wn
< Hu (1) > plf — W} N K(170)29p‘ + No|Kagp|.
Then
n n w" j 2 Co Y
H" (58) > = 2(j+2>n} sze’" = {(j - 1) (1 - 5) 2 +NU}|K29”"
for all t* <t < 0. Now choose ¢ so small and then j so large as to obtain

n wn 1/n Cg .
[{ut,t) > (= 5o ) YN Ko| < (1= D)Koy v <t <0

Notice that our hypotheses imply pq > %, 4 < w; therefore,

n

n w” 1/n n ult 1/n 1 1/n
<u+ a 2(j+2)n) < (“+ B 2(j+2)n> = H+ (1 B 2(j+2)n)

1 w
< (1= gumany) < e sgmmeTy

The proof is completed once we choose j* as the smallest integer such that

Mg — G Dy, < py — DY |
Corollary 6.3. For all j > j* and for all times —%‘Jw(fﬁ)i <t <0,
w c2
Hu(.,t) >y — 2—]} N Kggp] < (1 - ZO) K 20,|- (6.5)

Motivated by Corollary introduce the cylinder

Q- = Kaop x (= 0-(20)%,0], with 6, = Zw'=m,

Lemma 6.4. For every v, € (0,1), there exists a positive integer q. = qs(data, vy)
such that

{uzm—gimine

U= Het 2t *

Proof. Write down the energy estimates (3.3) for the truncated functions (u—k;)+,
with k; = py — 57, for j = ji,..., j« + g« over the cylinder

~ 2p)2

Q = Kugp X (—Co%ﬁ] D Qx;
the cutoff function ( is taken to be one on (), vanishing on the parabolic boundary
of @ and such that

< v, | Qx|

nm—1

1
D¢ < — 0<G <
‘ Cl—opa 7<t Cop2

Thanks to these choices, the energy estimates (3.3 take the form

// lu["™ D (u — kj)4 |*¢? dw dr
Q
nm—1 u
< ’Y{wco,o2 //Q (/k (s — kj)+s"*1ds) dx dr
//Q "™ (u — ky)3 da dT}.

w
+

n—1
2
1%
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Estimating

u —k“)Q (U—k)2
k). s s < a1 (U — k)L < -1 i)+
/k(s i)+S s<u 5 <w 5 ,

J

and taking into account that (u — k;); < 5%, yields

nm— w\Z -
S n k) B drar <4 () w0

Note that v > k; > %: indeed the second inequality is equivalent to

e D))
e A VTRV T

and this is implied by our assumptions. Thus we can estimate

J[ it = kP> [[ DG ) dedr
Q Qx

nm—1
%) // |D(u — kj)4|? da dr;
Qx
it follows that

2 1

Next, apply the isoperimetric inequality (3.1]) to the function wu(-,t), for ¢ in the
range (—0.(2p)?,0], over the cube Kg,, and for the levels

I{,’:k‘j<l:k‘j+1;
in this way (I — k) = 545+ .
Taking into account (6.5)), this gives
w
pYas) Hu(-t) > kjp1} N Koyl
(er)N+1
= Hulst) <k} 0 Kaopl J kg <u(t)<hyin}nKao,

86
< —p |Du| dx;

4 {kj <u(-,t)<kjt1}NK20,

| Du| dx

integrating in dt over the indicated interval and applying the Holder inequality, one
gets

gl < ([ D=k drar) (4114

where
Aj = {u > ]4}]} ﬂQ*.

Square both sides of this inequality and estimate above the term containing |D(u —
k;)+| by inequality (6.6), to obtain

5
|Aj]? < CT\Q»J (1451 = [Ajal) -
0
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Add these recursive inequalities for j = j. + 1,...,j« + ¢« — 1, where ¢, is to be
chosen. Majorizing the right-hand side with the corresponding telescopic series,
gives

Jxtqs—1

Y
<) Al < Sl
0

J=g=+1

1 [
< —, [ —+= |Q4].

The number v, being fixed, choose ¢, from

L T 0
Vi =2\ &

Now let £ € (0, 3), a € (0,1) be fixed numbers.

(4x = 2)|Aj. +q.

From this

‘Aj*Jrq*

Lemma 6.5. There exists a number ¢, € (0,1), depending upon the data, £, and
a, such that if

>y — €0} NQu < ealQul (6.7)
then
u< py —akw  ae. in Qgy(0.p%).
Proof. For k=0,1,..., set

Pk =p+ 2%7 Kk:Kepkv Qk:ka(—Q*p%,O].

Let ((z,t) = (1(x)(2(t) be a piecewise smooth cutoff function in @y such that

1 in K 2k+2
G=q IDG| < ——,
0 in RY\ K, 0p
2
1 if ¢ > —Prn 2k
— - wnm—l O < < .
C2 {0 ift < _wﬂfz—l’ B 4'27t N 9*p2

Choose the sequence of truncating levels
1-a
hi = py —&pw, where § = a + ZT&
and write down the energy estimates (3.3)) for (u — hy)4 over the cylinder Q,

ess sup u(s — hg)ps" s ) P (x,t) da
Jo (L, )

2
-k <t<0

oam—T

* //Qk [l | Dl(u = hi) ]| der dr

<+ //Q (/h:<s — hi)as"ds) G| dedr

+ // [l (= )2 | DG da i }.

Let us estimate

U —h 2
/ (s — hi)4s" s > h2—17(“ B+ ;
hg 2
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h — hg)? — )2
/ (5 — hg)ys" tds < un_lu < wn—lu .
hi 2 5
Taking into account that (u — hx)4+ < Ew and the definition of § and 0., one has

132
ess sup hZ_l/K M@(x,t)dm +//Q |u|"m_1‘D[(u—hk)+(]’2dmd7'

2 2
— e <t<0

9 1 2k N 22k
< n— nm—
Y(Ew)*{w R —(QP)Q}MM
22k 2 1 1
=g (G WA

where
A = {u < hk} N Q.

Note that u > hy > (5 — f)w: indeed the last inequality is equivalent to

1 1 -1
> Z t _
M+_|Mf|(2 §+§k)(2+§ §k) ,
and this follows by our hypotheses. Therefore, we obtain

2k n
esssup | w=mi e nde <z (5-6) e,

Ky
- wnrn wnm—1 <t<0

1—nm
// (= b (P dadr <7 25 ( —6) A,

By (u—hg)y > 2,:—+al ¢w, applying the Holder inequality, and then Proposition
yields

1— 2
gﬂ%(&u)ﬂflmrﬂ < // (u— hg)3 dedr < // (u— hg)3¢*dudr
Q41 Qr

2(N+2) N/(N+2)
< (// [(u—hg)sC]™~ dCEdT) |Ak|2/(N+2)
k

<( / /Q 1Pl h) 1 e ar)

/(N+2)
X < esssup / [(uw— hk)+§}2dg;> |Ak|2/(N+2)
Ky,

<t<0

(6.8)

'n.m 1
2%k 2(nm—1)+N(n=1) /1 Hlonp)pidon) 1oz
S O O Ay

It follows that

4k

A G —
‘ k+1| — ’Y (1 _a)gpgw

N(1—nm)+2(1—n)
2(nm—1)+N(n—1) /1 —  N¥z 142
R el A+ 55

2
Setting
| Ag|

Y= im0
" Q4]
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we obtain
04k 2(mm-1)+N(n-1) /1 NQ-nmi420on) 142
Yii1 < ’ymw N+2 (5 _ 5) p2(9N9*) N+2 Yk N2
B 24]{) 1 N(lfnx_)*:;ﬂlfn) Y1+ N2+2
_7(1_a)2(§_5) koo

Applying Lemma [3.4] Y}, tends to zero as k — oo, provided
_ Hu>ho} Qo _ Hu> py —Ew}NQol

Yo
|Qol |Qol
_ N+42 N(nm—1)+2(n—1)
b (1 —¢ 2 9—(N+2)*
T (1 —a)~N+2)\2 ’
which is with ¢, := i(lff) e 2-(N+2)* " This completes
* T A (VD) \2 : p
the proof. O

Thanks to Lemma we can apply Lemma with £ = ﬁ and a = %,
getting

w .
u< g — Zites1 e in QgP(Q*pQ),

which implies

w
esssup u < - —_—
er(e*ppz) Y S
Hence
< inf v < (1 L )
€esS0sC U — essinf u—— <wll— —— .
Qop(0.p2) e Qo,p(6.02) s +ax+1 — Jx+aqx+1

7. CONCLUSION

The two alternatives just discussed can be combined to prove Theorem

Proof of Theorem[{.1 The concluding statement of the first alternative says that
3
essosc  u < —w;
er(ﬁ)
analogously, the conclusion of the second alternative is that
1
essoscu = essosc u < w(l — 7)

o Qop(0.p2) Jx+ax+1

Recalling the definition of 6., we observe that
2 p’
Q" = Qép(e*p ) C Q%(W)

The thesis follows by defining

1

nei=1 - o

We are now ready to prove the local Holder regularity.
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Proof of Theorem[I1. Let us remind that we fixed € € (0,1), R > 0, (y,s) € Erp,
and we considered the cylinder

Q. = KRl_eanl (y) x (s — R2-elnm=1), s] C Er.

Let now 3,6 € (0,1) to be chosen, and let us introduce the sequences

1-n R?
Ry = BkR, Wg = (Skw, 0 = wy, 2, Q= (y, S) + Qo, Ry (Wk—l)’
k

for k € N. The thesis follows by standard arguments once we prove that
Qri1 C O CQ. C Er VkeN,

essoscu < Wy. (7.1)
k

The inclusion Qg C Q. immediately follows by assumption , while Q41 C Qp,
is equivalent to

B<min{6"7, 6% } =57 .
To prove , we will argue by induction. The validity for £k = 0 is true by
construction since

essoscu < essoscu < w.
0 €

Assume that (7.1) holds for & and apply Theorem taking p = % and w = wy;
thanks to these choices

0=0,, (y,9) +Q29p<%) = QO

wnm—l

The assumptions of Theorem are satisfied because (|7.1)) holds for k; hence, we
have essoscg- u < n,wy, where in this setting
* Co —
Q" = (5,5) + Qs (Fwi " BY).
This leads us to choose § = 7, € (0,1), so that n.wi = wk41. It remains only to
check Q41 C QF, which by a simple calculation is equivalent to

6 < min{lé%l,wc—oénwgl}.
2 8
We conclude by choosing 3 small enough. ([l
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