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EXISTENCE OF SOLUTIONS TO SINGULAR FRACTIONAL
DIFFERENTIAL SYSTEMS WITH IMPULSES

XINGYUAN LIU, YUJI LIU

Abstract. By constructing a weighted Banach space and a completely con-
tinuous operator, we establish the existence of solutions for singular fractional
differential systems with impulses. Our results are proved using the Leray-
Schauder nonlinear alternative, and are illustrated with examples.

1. Introduction

Fractional differential equation is a generalization of ordinary differential equa-
tion to arbitrary non integer orders. The origin of fractional calculus goes back to
Newton and Leibniz in the seventieth century. Recent investigations have shown
that many physical systems can be represented more accurately through fractional
derivative formulation [18]. Fractional differential equations, therefore find nu-
merous applications in the field of visco-elasticity, feed back amplifiers, electrical
circuits, electro analytical chemistry, fractional multipoles, neuron modelling en-
compassing different branches of physics, chemistry and biological sciences [21].
There have been many excellent books and monographs available on this field [13],
[20] and [22], the authors gave the most recent and up-to-date developments on
fractional differential and fractional integro-differential equations with applications
involving many different potentially useful operators of fractional calculus.

The theory of impulsive differential equations describes processes which expe-
rience a sudden change of their state at certain moments. Processes with such a
character arise naturally and often, for example, phenomena studied in physics,
chemical technology, population dynamics, biotechnology and economics. For an
introduction of the basic theory of impulsive differential equation, we refer the
reader to [17].

Recently, the authors in papers [2, 3, 4, 5, 12, 27, 28] and the survey paper
[1] studied the existence of solutions of the different initial value problems for the
impulsive fractional differential equations.
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In [5], the author studied the existence of solutions of the following impulsive
anti-periodic boundary value problem

cDq
0+x(t) = f(t, x(t)), 1 < q ≤ 2, t ∈ [0, T ] \ {t1, . . . , tp},

x(0) = −x(T ),

x′(0) = −x′(T ),

∆x(tk) = Ik(x(t−k )), k = 1, . . . , p,

∆x′(tk) = Jk(x(t−k )), k = 1, . . . , p,

(1.1)

where cDα
0+ is the standard Caputo fractional derivative of order q, 0 < T <

+∞, 0 = t0 < t1 < · · · < tp < tp+1 = T , ∆x(tk) = limt→t+k
x(t) − limt→t−k

x(t)
and ∆x′(tk) = limt→t+k

x′(t)− limt→t−k
x′(t), f defined on [0, T ]× R is continuous,

Ik, Jk : R → R are also continuous.
Boundary-value problems for second-order differential equations with integral

boundary conditions constitute a very interesting and important class of problems.
They include as special cases two, three, multi-point and nonlocal boundary-value
problems as special cases. For such problems and comments on their importance,
we refer the readers to the papers [11, 15, 16] and the references therein. Various
problems arising in heat conduction [6, 7], chemical engineering [8], underground
water flow [10], thermo-elasticity [26], and plasma physics [24] can be reduced to
the nonlocal problems with integral boundary conditions. This type of boundary
value problems has been investigated in [25, 29, 9] for parabolic equations and in
[23] for hyperbolic equations.

Motivated by [5], in this paper, we discuss the anti-periodic type boundary value
problem of the nonlinear fractional differential system

Dα
t+k
u(t) = m(t)f(t, u(t), v(t)), t ∈ (tk, tk+1], k = 0, 1, . . . , p,

Dβ

t+k
v(t) = n(t)g(t, u(t), v(t)), t ∈ (tk, tk+1], k = 0, 1, . . . , p,

lim
t→1

t1−αu(t) + lim
t→0

t1−αu(t) =
∫ 1

0

φ(s)F (s, u(s), v(s))ds,

lim
t→1

t1−βv(t) + lim
t→0

t1−βv(t) =
∫ 1

0

ψ(s)G(s, u(s), v(s))ds,

lim
t→t+k

(t− tk)1−αu(t)− u(tk) = Ik(tk, u(tk), v(tk)), k = 1, 2, . . . , p,

lim
t→t+k

(t− tk)1−βv(t)− v(tk) = Jk(tk, u(tk), v(tk)), k = 1, 2, . . . , p,

(1.2)

where:
• 0 < α, β ≤ 1, Dα (or Dβ) is the Riemann-Liouville fractional derivative of

order α (or β ),
• p is a positive integer, 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1 are fixed

impulsive points,
• m,n : (0, 1) → R satisfy m|(tk,tk+1], n|(tk,tk+1] ∈ L1(tk, tk+1] (k = 0, 1, . . . , p),

both m and n may be singular at t = 0 or t = 1, there exist constants l1 ≥ 0,
l2 ≥ 0, k1 ≥ −α, k2 ≥ −β such that

|m(t)| ≤ l1t
k1 , |n(t)| ≤ l2t

k2 , t ∈ (0, 1),

• φ, ψ : (0, 1) → R satisfy φ|(tk,tk+1], ψ|(tk,tk+1] ∈ L1(tk, tk+1] (k = 0, 1, . . . , p),
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• f, g, F,G, Ik, Jk (k = 1, 2, . . . , p) defined on (0, 1]×R× R are impulsive Cara-
theodory functions that may be singular at t = 0.

A pair of functions (x, y) with x : (0, 1] → R and y : (0, 1] → R is said to
be a solution of (1.2), if x|(tk,tk+1], y|(tk,tk+1] ∈ C0(tk, tk+1] (k = 0, 1, . . . , p) and
Dβ

0+y,D
α
0+x ∈ L1(0, 1) and (x, y) satisfies all equations in (1.2). We will obtain at

least one solution of (1.2).

Remark 1.1. When α = β = 1, F (t, x, y) = G(t, x, y) ≡ 0 and all of the impulse
effects disappears, i.e., (Ik(t, x, y) = Jk(t, x, y) ≡ 0 and limt→t+k

(t − tk)1−αu(t) −
u(tk) = ∆u(tk) = 0, limt→t+k

(t−tk)1−βv(t)−v(tk) = ∆v(tk) = 0 at this case), (1.2)
becomes the anti-periodic boundary value problem for ordinary differential system

u′(t) = m(t)f(t, u(t), v(t)), t ∈ (0, 1),

v′(t) = n(t)g(t, u(t), v(t)), t ∈ (0, 1),

u(0) = −u(1), v(0) = −v(1).

So we call (1.2) the anti-periodic type boundary-value problem of the nonlinear
singular fractional differential system with impulse effects.

The remainder of this paper is as follows: in Section 2, we present preliminary
results. In Section 3, we state and prove the main theorems. In Section 4, we give
an example to illustrate the main results.

2. Preliminary results

For the convenience of the readers, we present the necessary definitions from
the fractional calculus theory. These definitions and results can be found in the
monograph [20] and [18]. Let the Gamma and beta functions Γ(α) and B(p, q) be
defined by

Γ(α) =
∫ +∞

0

xα−1e−xdx, B(p, q) =
∫ 1

0

xp−1(1− x)q−1dx.

Definition 2.1 ([20]). The Riemann-Liouville fractional integral of order α > 0 of
a function g : (0,∞) → R is given by

Iα
0+g(t) =

1
Γ(α)

∫ t

0

(t− s)α−1g(s)ds,

provided that the right-hand side exists.

Definition 2.2 ([20]). The Riemann-Liouville fractional derivative of order α > 0
of a continuous function g : (0,∞) → R is given by

Dα
0+g(t) =

1
Γ(n− α)

dn

dtn

∫ t

0

g(s)
(t− s)α−n+1

ds,

where n − 1 ≤ α < n, provided that the right-hand side is point-wise defined on
(0,∞).

Definition 2.3. Let X and Y be Banach spaces. L : D(L) ⊂ X → Y is called a
Fredholm operator of index zero if ImL is closed inX and dim kerL = codim ImL <
+∞.
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It is easy to see that if L is a Fredholm operator of index zero, then there exist
the projectors P : X → X, and Q : Y → Y such that

ImP = kerL, kerQ = ImL, X = kerL⊕ kerP, Y = ImL⊕ ImQ.

If L : D(L) ⊂ X → Y is called a Fredholm operator of index zero, the inverse of

L|D(L)∩ker P : D(L) ∩ kerP → ImL

is denoted by Kp.

Definition 2.4. Suppose that L : D(L) ⊂ X → Y is called a Fredholm operator of
index zero. The continuous map N : X → Y is called L-compact if both QN(Ω)
and Kp(I − Q)N : Ω → X are compact for each nonempty open subset Ω of X
satisfying D(L) ∩ Ω 6= ∅.

To obtain the main results, we need the following abstract existence theorem,
the Leray-Schauder Nonlinear Alternative.

Lemma 2.5 ([19]). Let X,Y be Banach spaces and L : D(L)∩X → Y a Fredholm
operator of index zero with kerL = {0 ∈ X}, N : X → Y L-compact. Suppose
Ω is a nonempty open subset of X satisfying D(L) ∩ Ω 6= ∅. Then either there
exists x ∈ ∂Ω and θ ∈ (0, 1) such that Lx = θNx or there exists x ∈ Ω such that
Lx = Nx.

Definition 2.6 ([14]). An odd homeomorphism Φ of the real line R onto itself
is called a sup-multiplicative-like function if there exists a homeomorphism ω of
[0,+∞) onto itself which supports Φ in the sense that for all v1, v2 ≥ 0 it holds

Φ(v1v2) ≥ ω(v1)Φ(v2). (2.1)

The function ω is called the supporting function of Φ.

Remark 2.7. Note that any sup-multiplicative function is sup-multiplicative-like
function. Also any function of the form

Φ(u) :=
k∑

j=0

cj |u|ju, u ∈ R

is sup-multiplicative-like, provided that cj ≥ 0. Here a supporting function is
defined by ω(u) := min{uk+1, u}, u ≥ 0.

Remark 2.8. It is clear that a sup-multiplicative-like function Φ and any cor-
responding supporting function ω are increasing functions vanishing at zero and
moreover their inverses Φ−1 and ν respectively are increasing and such that

Φ−1(w1w2) ≤ ν(w1)Φ−1(w2), (2.2)

for all w1, w2 ≥ 0 and ν is called the supporting function of Φ−1.

In this article we assume that Φ is a sup-multiplicative-like function with its
supporting function ω, the inverse function Φ−1 has its supporting function ν.

Definition 2.9. We call K : (0, 1] × R2 → R an impulsive Caratheodory function
if it satisfies the following:

(i) t → K
(
t, (t− tk)α−1x, (t− tk)β−1y

)
is continuous on (tk, tk+1] for k =

0, 1, . . . , p, and there exist the following limits:

lim
t→t+k

K
(
t, (t− tk)α−1x, (t− tk)β−1y

)
(k = 0, 1, . . . , p) for any (x, y) ∈ R2,
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(ii) (x, y) → K
(
t, (t− tk)α−1x, (t− tk)β−1y

)
is continuous on R2 for all t ∈

(tk, tk+1] (k = 0, 1, . . . , p).

We use the Banach spaces

X =
{
x : (0, 1] → R : x|(tk,tk+1] ∈ C

0(tk, tk+1], k = 0, 1, . . . , p,

there exist the limits lim
t→t+k

(t− tk)1−αx(t), k = 0, 1, . . . , p
}

with the norm

‖x‖ = ‖x‖∞ = max
{

sup
t∈(tk,tk+1]

(t− tk)1−α|x(t)|, k = 0, 1, . . . , p
}
.

Y =
{
y : (0, 1] → R : y|(tk,tk+1] ∈ C

0(tk, tk+1], k = 0, 1, . . . , p,

there exist the limits lim
t→t+k

(t− tk)1−βy(t), k = 0, 1, . . . , p
}

with the norm

‖y‖ = ‖y‖∞ = max
{

sup
t∈(tk,tk+1]

(t− tk)1−α|y(t)|, k = 0, 1, . . . , p
}
.

L1[0, 1] with the norm

‖u‖1 =
∫ 1

0

|u(s)|ds.

Choose E = X × Y with the norm ‖(x, y)‖ = max{‖x‖∞, ‖y‖∞}, and choose
Z = L1(0, 1)× L1(0, 1)×R2p+2 with the norm

∥∥∥


u
v
a
b

ck (k = 1, 2, . . . , p)
dk (k = 1, 2, . . . , p)



T

∥∥∥ = ‖(u, v, a, b, c1, . . . , cp, d1, . . . , dp)‖

= max{‖u‖1, ‖v‖1, |a|, |b|, |c1|, . . . , |dp|, |d1|, . . . , |cp|}.

Define L to be the linear operator from D(L) ∩ E to Z with

D(L) = {(x, y) ∈ E : Dα
t+k
x,Dβ

t+k
y ∈ L1(0, 1)}

and

L(x, y)(t) =



Dα
t+k
x(t)

Dβ

t+k
y(t)

limt→1 t
1−αx(t) + limt→0 t

1−αx(t)
limt→1 t

1−βy(t) + limt→0 t
1−βy(t)

limt→t+k
(t− tk)1−αx(t)− x(tk), k = 1, . . . , p

limt→t+k
(t− tk)1−βy(t)− y(tk), k = 1, . . . , p



T
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for (x, y) ∈ E ∩D(L). Define N : E → Z by

N(x, y)(t) =



m(t)f(t, x(t), y(t))
n(t)g(t, x(t), y(t))∫ 1

0
φ(t)F (t, x(t), y(t)) dt∫ 1

0
ψ(t)G (t, x(t), y(t)) dt

Ik (tk, x(tk), y(tk)) , k = 1, . . . , p
Jk (tk, x(tk), y(tk)) , k = 1, . . . , p



T

for (x, y) ∈ E. Then (1.2) can be written as

L(x, y) = N(x, y), (x, y) ∈ E.

Lemma 2.10. Suppose that f, g, F,G, Ik, Jk (k = 1, 2, . . . , p) are impulsive Cara-
theodory functions. Then L is a Fredholm operator of index zero and N : X → Y
is L-compact.

Proof. To prove that L is a Fredholm operator of index zero, we should do the
following six steps.

Step (i) Prove that kerL = {(0, 0) ∈ E}. We know that (x, y) ∈ kerL if and
only if

Dα
t+k
x(t) = 0, Dβ

t+k
y(t) = 0,

lim
t→1

t1−αx(t) + lim
t→0

t1−αx(t) = 0,

lim
t→1

t1−βy(t) + lim
t→0

t1−βy(t) = 0,

lim
t→t+k

(t− tk)1−αx(t)− x(tk) = 0, k = 1, . . . , p,

lim
t→t+k

(t− tk)1−βy(t)− y(tk)) = 0, k = 1, . . . , p.

Hence (x, y) ∈ kerL if and only if x(t) = 0 and y(t) = 0. Thus kerL = {(0, 0) ∈ E}.
Step (ii) Prove that ImL = Z. First, we have ImL ⊆ Z. Second, we know that

(u, v, a, b, c1, . . . , cp, d1, . . . , dp) ∈ ImL if and only if there exist (x, y) ∈ D(L) ∩ E
such that

Dα
t+k
x(t) = u(t), Dβ

t+k
y(t) = v(t),

lim
t→1

t1−αx(t) + lim
t→0

t1−αx(t) = a,

lim
t→1

t1−βy(t) + lim
t→0

t1−βy(t) = b,

lim
t→t+k

(t− tk)1−αx(t)− x(tk) = ck, k = 1, . . . , p,

lim
t→t+k

(t− tk)1−βy(t)− y(tk)) = dk, k = 1, . . . , p.

(2.3)

If (x, y) satisfies (2.3), then there exist two numbers Mk (k = 0, 1, . . . , p) such that

x(t) =
1

Γ(α)

∫ t

tk

(t− s)α−1u(s)ds+Mk(t− tk)α−1, (2.4)
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for t ∈ (tk, tk+1], k = 0, 1, . . . , p. By the boundary condition limt→1 t
1−αx(t) +

limt→0 t
1−αx(t) = a, we obtain∫ 1

tp

(1− s)α−1

Γ(α)
u(s)ds+Mp(1− tp)α−1 +M0 = a. (2.5)

By the impulse conditions limt→t+k
(t− tk)1−αx(t)− x(tk) = ck, we obtain

Mk −
( ∫ tk

tk−1

(tk − s)α−1

Γ(α)
u(s)ds+Mk−1(tk − tk−1)α−1

)
= ck, (2.6)

for k = 1, . . . , p. It follows from (2.6) that

Mp−
p∏

k=1

(tk−tk−1)α−1M0 =
p∑

k=1

(
ck+

∫ tk

tk−1

(tk − s)α−1

γ(α)
u(s)ds

) p∏
s=k+1

(ts−ts−1)α−1.

By this equality and (2.5), we obtain

M0

=
a−

∫ 1

tp

(1−s)α−1

Γ(α) u(s)ds

1 +
∏p+1

k=1(tk − tk−1)α−1

+

∏p
k=1(tk − tk−1)α−1

∑p
k=1

(
ck +

∫ tk

tk−1

(tk−s)α−1

Γ(α) u(s)ds
) ∏p

s=k+1(ts − ts−1)α−1

1 +
∏p+1

k=1(tk − tk−1)α−1
,

Mp =

∑p
k=1

(
ck +

∫ tk

tk−1

(tk−s)α−1

Γ(α) u(s)ds
) ∏p

s=k+1(ts − ts−1)α−1

1 +
∏p+1

k=1(tk − tk−1)α−1

+

∏p
k=1(tk − tk−1)α−1

(
a−

∫ 1

tp

(1−s)α−1

Γ(α) u(s)ds
)

1 +
∏p+1

k=1(tk − tk−1)α−1
.

(2.7)

Then (2.6) implies that

Mk = ck +
∫ tk

tk−1

(tk − s)α−1

Γ(α)
u(s)ds+Mk−1(tk−tk−1)α−1, k = 1, . . . , p−1. (2.8)

Hence (2.4) is proved and Mk (k = 0, 1, 2, . . . , p) are given by (2.7) and (2.8).
Similarly we obtain

y(t) =
1

Γ(β)

∫ t

tk

(t− s)β−1v(s)ds+Nk(t− tk)β−1, (2.9)

for t ∈ (tk, tk+1], k = 0, 1, . . . , p, where Nk (k = 0, 1, . . . , p) are given by

N0

=
b−

∫ 1

tp

(1−s)β−1

Γ(β) v(s)ds

1 +
∏p+1

k=1(tk − tk−1)β−1

+

∏p
k=1(tk − tk−1)β−1

∑p
k=1

(
dk +

∫ tk

tk−1

(tk−s)β−1

Γ(β) v(s)ds
) ∏p

s=k+1(ts − ts−1)β−1

1 +
∏p+1

k=1(tk − tk−1)β−1
,
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Np =

∑p
k=1

(
dk +

∫ tk

tk−1

(tk−s)β−1

Γ(β) v(s)ds
) ∏p

s=k+1(ts − ts−1)β−1

1 +
∏p+1

k=1(tk − tk−1)β−1

+

∏p
k=1(tk − tk−1)β−1

(
b−

∫ 1

tp

(1−s)β−1

Γ(β) v(s)ds
)

1 +
∏p+1

k=1(tk − tk−1)β−1
,

(2.10)

and

Nk = dk+
∫ tk

tk−1

(tk − s)β−1

Γ(β)
v(s)ds+Nk−1(tk−tk−1)β−1, k = 1, . . . , p−1. (2.11)

It is easy to show that (x, y) ∈ D(L) ∩ E. Hence (u, v, a, b, c1, . . . , cp, d1, . . . , dp) ∈
ImL. Then ImL = Z.

On the other hand, we can prove that (x, y) is a solution of (2.3) if x ∈ E satisfies
(2.4) and y ∈ Y satisfies (2.9).

Step (iii) Prove that ImL is closed in X and dim kerL = codim ImL < +∞.
From Step (ii) ImL = Z is closed in Z. It follows from kerL = {(0, 0) ∈ E} that
dim kerL = 0. Define the projector P : E → E by

P (x, y)(t) = (0, 0) for (x, y) ∈ E. (2.12)

It is easy to prove that

ImP = kerL, X = kerL⊕ kerP. (2.13)

Define the projector Q : Z → Z by

Q(u, v, a, b, c1, . . . , cp, d1, . . . , dp)(t) = (0, 0, 0, 0, 0, . . . , 0, 0, . . . , 0) (2.14)

for (u, v, a, b, c1, . . . , cp, d1, . . . , dp) ∈ Z. It is easy to show that

ImL = kerQ, Y = ImQ⊕ ImL. (2.15)

From above discussion, we see that dim kerL = codim ImL = 0 < +∞. So L is a
Fredholm operator of index zero.

Now, we prove that N is L-compact. This is divided into three steps (Steps
(iv)-(vi)).

Step (iv) We prove that N is continuous. Let (xn, yn) ∈ E with (xn, yn) →
(x0, y0) as n → ∞. We will show that N(xn, yn) → N(x0, y0) as n → ∞. In fact,
we have

‖(xn, yn)‖

= sup
n=0,1,2,...

{
sup

t∈(tk,tk+1]

(t− tk)1−α|xn(t)|,

sup
t∈(tk,tk+1]

(t− tk)1−β |yn(t)| : k = 0, 1, . . . , p
}

= r < +∞

and

max
{

sup
t∈(tk,tk+1]

(t− tk)1−α|xn(t)− x0(t)|, k = 0, 1, . . . , p
}
→ 0, n→∞,

max
{

sup
t∈(tk,tk+1]

(t− tk)1−β |yn(t)− y0(t)|, k = 0, 1, . . . , p
}
→ 0, n→∞.

(2.16)
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By

N(xn, yn)(t) =



m(t)f(t, xn(t), yn(t))
n(t)g(t, xn(t), yn(t))∫ 1

0
φ(t)F (t, xn(t), yn(t)) dt∫ 1

0
ψ(t)G (t, xn(t), yn(t)) dt

Ik (tk, xn(tk), yn(tk)) (k = 1, 2, . . . , p)
Jk (tk, xn(tk), yn(tk)) (k = 1, 2, . . . , p)



T

for (x, y) ∈ E, for any ε > 0, since f, F, Ik (k = 1, . . . , p) are impulsive Caratheodory
functions, we know that f

(
t, (t− tk)α−1u, (t− tk)β−1v

)
is continuous on [tk, tk+1]×

[−r, r]2 (k = 0, 1 . . . , p) respectively, so f
(
t, (t− tk)α−1u, (t− tk)β−1v

)
is uniformly

continuous on [tk, tk+1] × [−r, r]2 respectively. Similarly, F, Ik (k = 1, . . . , p) are
uniformly continuous on [tk, tk+1] × [−r, r]2 respectively. Then there exists δ > 0
such that∣∣f (

t, (t− tk)α−1u1, (t− tk)β−1v1
)
− f

(
t, (t− tk)α−1u2, (t− tk)β−1v2

)∣∣ < ε,

t ∈ (tk, tk+1],∣∣F (
t, (t− tk)α−1u1, (t− tk)β−1v1

)
− F

(
t, (t− tk)α−1u2, (t− tk)β−1v2

)∣∣ < ε,

t ∈ (tk, tk+1],∣∣Ik (
tk, (tk − tk−1)α−1u1, (tk − tk−1)β−1v1

)
− Ik

(
tk, (tk − tk−1)α−1u2, (tk − tk−1)β−1v2

) ∣∣ < ε

for all k = 0, 1, . . . , p, |u1 − u2| < δ and |v1 − v2| < δ with u1, u2, v1, v2 ∈ [−, r, r].
From (2.16), there exists N such that

(t− tk)1−α|xn(t)− x0(t)| < δ, t ∈ (tk, tk+1], k = 0, 1, . . . , p, n > N,

(t− tk)1−β |yn(t)− y0(t)| < δ, t ∈ (tk, tk+1], k = 0, 1, . . . , p, n > N.
(2.17)

Hence using (2.17), we obtain∫ 1

0

|m(t)f (t, xn(t), yn(t))−m(t)f (t, x0(t), y0(t))| dt

=
p∑

k=0

∫ tk+1

tk

|m(t)f
(
t, (t− tk)α−1(t− tk)1−αxn(t), (t− tk)β−1(t− tk)1−βyn(t)

)
−m(t)f

(
t, (t− tk)α−1(t− tk)1−αx0(t), (t− tk)β−1(t− tk)1−βy0(t)

) ∣∣dt
<

p∑
k=0

∫ tk+1

tk

εm(t)dt = ε

∫ 1

0

m(t)dt, n > N.

It follows that∣∣∣∣∫ 1

0

m(t)f (t, xn(t), yn(t)) dt−
∫ 1

0

f (t, x0(t), y0(t)) dt
∣∣∣∣ < ε

∫ 1

0

m(t)dt, (2.18)

for n > N . Similarly,∣∣∣∣∫ 1

0

φ(t)F (t, xn(t), yn(t)) dt−
∫ 1

0

F (t, x0(t), y0(t)) dt
∣∣∣∣ < ε

∫ 1

0

φ(t)dt, (2.19)

for n > N , and

|Ik (tk, xn(tk), yn(tk))− Ik (tk, x0(tk), y0(tk))| < ε, n > N, k = 1, . . . , p (2.20)
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We can also show that∣∣ ∫ 1

0

n(t)g (t, xn(t), yn(t)) dt−
∫ 1

0

n(t)g (t, x0(t), y0(t)) dt
∣∣ < ε

∫ 1

0

n(t)dt, (2.21)

for n > N . Similarly,∣∣∣∣∫ 1

0

ψ(t)G (t, xn(t), yn(t)) dt−
∫ 1

0

G (t, x0(t), y0(t)) dt
∣∣∣∣ < ε

∫ 1

0

ψ(t)dt, (2.22)

for n > N , and

|Jk (tk, xn(tk), yn(tk))− Jk (tk, x0(tk), y0(tk))| < ε, n > N, k = 1, . . . , p (2.23)

Then (2.18)–(2.23) imply that

‖N(xn, yn)−N(x0, y0)‖ → 0, n→∞.

It follows that N is continuous.
Let P : X → X and Q : Y → Y be defined by (2.12) and (2.14). For

(u, v, a, b, c1, . . . , cp, d1, . . . , dp) ∈ ImL = Z, let

KP (u, v, a, b, c1, . . . , cp, d1, . . . , dp)(t) = (x1(t), y1(t)) , (2.24)

where

x1(t) =
∫ t

tk

(t− s)α−1

Γ(α)
u(s)ds+Mkt

α−1, t ∈ (tk, tk+1], k = 0, 1, . . . , p;

y1(t) =
∫ t

tk

(t− s)β−1

Γ(β)
v(s)ds+Nkt

α−1, t ∈ (tk, tk+1], k = 0, 1, . . . , p.

Here Mk, Nk (k = 0, 1, . . . , p) are given by (2.7), (2.8), (2.9) and (2.11).
One sees that KP (u, v, a, b, c1, . . . , cp, d1, . . . , dp) ∈ D(L) ∩ E and KP : ImL →

D(L) ∩ kerP is the inverse of L : D(L) ∩ kerP → ImL. The isomorphism ∧ :
kerL→ Y/ ImL is given by

∧(0, 0) = (0, 0, 0, 0, 0, . . . , 0, 0 . . . , 0).

Furthermore, one has

QN(x, y)(t) = (0, 0, 0, 0, 0, . . . , 0, 0 . . . , 0), (2.25)

and

Kp(I −Q)N(x, y)(t) = KpN(x, y)(t) = (x2(t), y2(t)) ,

where

x2(t) =
∫ t

tk

(t− s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds+Mkt

α−1, t ∈ (tk, tk+1], (2.26)

for k = 0, 1, . . . , p, and

y2(t) =
∫ t

tk

(t− s)β−1

Γ(β)
n(s)g(s, x(s), y(s))ds+Nkt

α−1, t ∈ (tk, tk+1], (2.27)
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for k = 0, 1, . . . , p. Here Mk, Nk (k = 0, 1, . . . , p) are given by

M0 =
1
λ

( ∫ 1

0

φ(s)F (s, x(s), y(s))ds−
∫ tp+1

tp

(tp+1 − s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

p∏
s=k+1

(ts − ts−1)α−1

×
(
Ik(tk, x(tk), y(tk)) +

∫ tk

tk−1

(tk − s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds

))
,

M1 = I1(t1, x(t1), y(t1))

+
∫ t1

t0

(t1 − s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds+ (t1 − t0)α−1M0,

. . .

Mp−1 = Ip−1(tp−1, x(tp−1), y(tp−1)) +
∫ tp−1

tp−2

(tp−1 − s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds

+ (tp−1 − tp−2)α−1Mp−2,

Mp =
1
λ

[ p∏
k=1

(tk − tk−1)α−1
( ∫ 1

0

φ(s)F (s, x(s), y(s))ds

−
∫ tp+1

tp

(tp+1 − s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds

)
+

p∑
k=1

(
Ik(tk, x(tk), y(tk))

+
∫ tk

tk−1

(tk − s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds

) p∏
s=k+1

(ts − ts−1)α−1
]
,

and

N0 =
1
λ

( ∫ 1

0

ψ(s)G(s, x(s), y(s))ds−
∫ tp+1

tp

(tp+1 − s)β−1

Γ(β)
n(s)g(s, x(s), y(s))ds

+
p∏

k=1

(tk − tk−1)β−1

p∑
k=1

p∏
s=k+1

(ts − ts−1)β−1×

(
Jk(tk, x(tk), y(tk)) +

∫ tk

tk−1

(tk − s)β−1

Γ(β)
n(s)g(s, x(s), y(s))ds

))
,

N1 = J1(t1, x(t1), y(t1)) +
∫ t1

t0

(t1 − s)β−1

Γ(β)
n(s)g(s, x(s), y(s))ds+ (t1 − t0)α−1N0,

. . .

Np−1 = Jp−1(tp−1, x(tp−1), y(tp−1)) +
∫ tp−1

tp−2

(tp−1 − s)β−1

Γ(β
n(s)g(s, x(s), y(s))ds

+ (tp−1 − tp−2)β−1Np−2,
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Np =
1
λ

( p∏
k=1

(tk − tk−1)β−1
( ∫ 1

0

ψ(s)G(s, x(s), y(s))ds

−
∫ tp+1

tp

(tp+1 − s)β−1

Γ(β)
n(s)g(s, x(s), y(s))ds

)
+

p∑
k=1

(Jk(tk, x(tk), y(tk))

+
∫ tk

tk−1

(tk − s)β−1

Γ(β)
n(s)g(s, x(s), y(s))ds

) p∏
s=k+1

(ts − ts−1)β−1
)
.

Let Ω be a bounded open subset of E satisfying D(L) ∩ Ω 6= 30∅. We have

‖(x, y)‖ = max
{

sup
t∈(tk,tk+1]

(t− tk)1−α|x(t)|,

sup
t∈(tk,tk+1]

(t− tk)1−β |y(t)| : k = 0, 1, . . . , p
}

= r < +∞, (x, y) ∈ Ω.

(2.28)

Since f, g, F,G, Ik, Jk are impulsive Caratheodory functions, together with (2.28),
there exists M > 0 such that

|f (t, x(t), y(t))| =
∣∣f (

t, (t− tk)α−1(t− tk)1−αx(t), (t− tk)β−1(t− tk)1−βy(t)
)∣∣

≤M

holds for t ∈ (tk, tk+1] (k = 0, 1, . . . , p). Hence

|f (t, x(t), y(t))| ≤M, t ∈ (0, 1].

Similarly,

|g (t, x(t), y(t))| ≤M,

|F (t, x(t), y(t))| ≤M for all t ∈ (0, 1],

|G (t, x(t), y(t))| ≤M for all t ∈ (0, 1],

|Ik (tk, x(tk), y(tk))| ≤M, k = 1, 2, . . . , p

|Jk (tk, x(tk), y(tk))| ≤M, k = 1, 2, . . . , p.

Step (v) Prove that QN(Ω) is bounded. It is easy to see from (2.25) that
QN(Ω) is bounded.

Step (vi) Prove that KP (I −Q)N : Ω → E is compact; i.e., prove that KP (I −
Q)N(Ω) is relatively compact. We must prove that KP (I − Q)N(Ω) is uniformly
bounded and equi-continuous on each subinterval [e, f ] ⊆ (tk, tk+1] (k = 0, 1, . . . , p),
respectively and equi-convergent at t = tk (k = 0, 1, . . . , p), respectively.

Substep (vi1) Prove that KP (I −Q)N(Ω) is uniformly bounded. We have

(t− tk)1−αx2(t) = (t− tk)1−α

∫ t

tk

(t− s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds+Mk, (2.29)

for t ∈ (tk, tk+1]. By the definition of Mk, we have

|M0|

≤ 1
λ

( ∫ 1

0

|φ(s)F (s, x(s), y(s))|ds+
∫ tp+1

tp

(tp+1 − s)α−1

Γ(α)
|m(s)f(s, x(s), y(s))|ds
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+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

p∏
s=k+1

(ts − ts−1)α−1

×
(
|Ik(tk, x(tk), y(tk))|+

∫ tk

tk−1

(tk − s)α−1

Γ(α)
|m(s)f(s, x(s), y(s))|ds

))
≤ M

λ

(
‖φ‖1 + l1t

α+k1
p+1

∫ 1

tp
tp+1

(1− w)α−1

Γ(α)
wk1dw

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

p∏
s=k+1

(ts − ts−1)α−1

×
(
1 + l1t

α+k1
k

∫ 1

tk−1
tk

(1− w)α−1

Γ(α)
wk1dw

))
< +∞.

Similarly,

|M1| ≤M +Ml1t
α+k1
1

∫ 1

t0
t1

(1− w)α−1

Γ(α)
wk1dw + (t1 − t0)α−1|M0| < +∞,

. . .

|Mp−1| ≤M +Ml1t
α+k1
p−1

∫ 1

tp−2
tp−1

(1− w)α−1

Γ(α)
wk1dw + (tp−1 − tp−2)α−1|Mp−2|

< +∞,

|Mp| ≤
M

λ

( p∏
k=1

(tk − tk−1)α−1
(
‖φ‖1 + l1t

α+k1
p+1

∫ 1

tp
tp+1

(1− w)α−1

Γ(α)
wk1dw

)
+

p∑
k=1

(
1 + l1t

α+k1
k

∫ 1

tk−1
tk

(1− w)α−1

Γ(α)
wk1dw

) p∏
s=k+1

(ts − ts−1)α−1
)

< +∞.

First, use (2.29), for t ∈ (t0, t1] we have

(t− t0)1−α|x2(t)| ≤ (t− t0)1−α

∫ t

t0

(t− s)α−1

Γ(α)
|m(s)f(s, x(s), y(s))|ds+ |M0|

≤Ml1(t1 − t0)1−αtα+k1
1

∫ 1

t0
t

(1− w)α−1

Γ(α)
wk1dw + |M0| < +∞.

Second, for t ∈ (tk, tk+1] (k = 1, . . . , p− 1), we have

(t− t0)1−α|x2(t)|

≤ (t− tk)1−α

∫ t

tk

(t− s)α−1

Γ(α)
|m(s)f(s, x(s), y(s))|ds+ |Mk|

≤Ml1(tk+1 − tk)1−αtα+k1
k

∫ 1

tk−1
tk

(1− w)α−1

Γ(α)
wk1dw + |Mk| < +∞.

Finally, for t ∈ (tp, tp+1], we have

(t− tp)1−α|x2(t)|
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≤ (t− tp)1−α

∫ t

tp

(t− s)α−1

Γ(α)
|m(s)f(s, x(s), y(s))|ds+ |Mp|

≤Ml1(tp+1 − tp)1−αtα+k1
p+1

∫ 1

tp
tp+1

(1− w)α−1

Γ(α)
wk1dw + |Mp| < +∞.

From above discussion, there exists M1 > 0 such that

‖x2‖∞ = max
{

sup
t∈(tk,tk+1]

(t− tk)1−α|x2(t)| : k = 0, 1, . . . , p
}
≤M1 < +∞.

Similarly, we can show that there exist M2 > 0 such that

‖y2‖∞ = max
{

sup
t∈(tk,tk+1]

(t− tk)1−α|y2(t)| : k = 0, 1, . . . , p
}
≤M2 < +∞.

Hence KP (I −Q)N(Ω) is uniformly bounded.
Substep (vi2) Prove thatKP (I−Q)N(Ω) is equi-continuous on each subinterval

[e, f ] ⊆ (tk, tk+1] (k = 0, 1, . . . , p), respectively. For each [e, f ] ⊆ (tk, tk+1], and
s1, s2 ∈ [e, f ] with s2 ≥ s1, use (2.26), we have

|(s1 − tk)1−αx2(s1)− (s2 − tk)1−αx2(s2)|

≤ l1M

Γ(α)

∣∣(s1 − tk)1−α − (s2 − tk)1−α
∣∣ sα+k1

1 B(α, k1 + 1)

+
l1M

Γ(α)
(tk+1 − tk)1−αsα+k1

2

∫ 1

s1/s2

(1− w)α−1wk1dw

+
l1M

Γ(α)
(tk+1 − tk)1−α

(
sα+k1
2

∫ 1

0

(1− w)α−1wk1dw

− sα+k1
1

∫ s2/s1

0

|(1− w)α−1wk1dw
)
→ 0

uniformly as s1 → s2. It follows that

|(s1 − tk)1−αx2(s1)− (s2 − tk)1−αx2(s2)| → 0 (2.30)

uniformly as s1 → s2, s1, s2 ∈ [e, f ] ⊆ (tk, tk+1] (k = 0, 1, . . . , p).
Similarly, we can prove that

|(s1 − tk)1−βy2(s1)− (s2 − tk)1−βy2(s2)| → 0 (2.31)

uniformly as s1 → s2, s1, s2 ∈ [e, f ] ⊆ (tk, tk+1] (k = 0, 1, . . . , p).
Substep (vi3) Prove that KP (I − Q)N(Ω) is equi-convergent at t = tk (k =

0, 1, . . . , p), respectively. Since∣∣(t− tk)1−αx2(t)−Mk

∣∣
≤ l1M(tk+1 − tk)1−αtα+k1

k+1

∫ 1

tk
t

(1− w)α−1wk1dw → 0

uniformly as t→ tk. Similarly we can show that∣∣(t− tk)1−βy2(t)−Nk

∣∣ → 0 uniformly as t→ tk (k = 0, 1, . . . , p. (2.32)

From (2.31)–(2.32), we see that KP (I −Q)N(Ω) is relatively compact. Then N is
L-compact. The proof is complete. �
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3. Main Result

Now, we prove the main theorem in this article, using the following assumptions:

(A) Φ is a sup-multiplicative-like function with its supporting function w, the
inverse function of Φ is Φ−1 with supporting function ν.

(B) f, g, F,G, Ik, Jk (k = 1, 2, . . . , p) are impulsive Caratheodory functions and
satisfy that there exist nonnegative constants ci, bi, ai (i = 1, 2), Ci, Bi, Ai

and Ci,k, Bi,k, Ai,k (i = 1, 2, k = 1, 2, . . . , p) such that

|f(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ c1 + b1|x|+ a1Φ−1(|y|),
t ∈ (tk, tk+1], k = 0, 1, . . . , p,

|g(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ c2 + b2Φ(|x|) + a2|y|,
t ∈ (tk, tk+1], k = 0, 1, . . . , p,

|F (t, (t− tk)α−1x, (t− tk)β−1y)| ≤ C1 +B1|x|+A1Φ−1(|y|),
t ∈ (tk, tk+1], k = 0, 1, . . . , p,

|G(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ C2 +B2Φ(|x|) +A2|y|,
t ∈ (tk, tk+1], k = 0, 1, . . . , p,

|Ik(t, (tk+1 − tk)α−1x, (tk+1 − tk)β−1y)| ≤ C1,k +B1,k|x|+A1,kΦ−1(|y|),
k = 1, 2, . . . , p,

|Jk(t, (tk+1 − tk)α−1x, (tk+1 − tk)β−1y)| ≤ C2,k +B2,kΦ(|x|) +A2,k|y|,
k = 1, 2, . . . , p.

Also we introduce the following notation.

λ = 1 +
p+1∏
k=1

(tk − tk−1)α−1,

M0,1 =
1
λ

[
C1‖φ‖1 + l1c1B(α, k1 + 1)tα+k1

p+1

+ l1c1B(α, k1 + 1)
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

tα+k1
k

p∏
s=k+1

(ts − ts−1)α−1

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

C1,k

p∏
s=k+1

(ts − ts−1)α−1 + l1c1B(α, k1 + 1)
]
,

M0,2 =
1
λ

[
B1‖φ‖1 + l1b1B(α, k1 + 1)tα+k1

p+1

+ l1b1B(α, k1 + 1)
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

tα+k1
k

p∏
s=k+1

(ts − ts−1)α−1

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

B1,k

p∏
s=k+1

(ts − ts−1)α−1 + l1b1B(α, k1 + 1)
]
,
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M0,3 =
1
λ

[A1‖φ‖1 + l1a1B(α, k1 + 1)tα+k1
p+1

+ l1a1B(α, k1 + 1)
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

tα+k1
k

p∏
s=k+1

(ts − ts−1)α−1

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

A1,k

p∏
s=k+1

(ts − ts−1)α−1 + l1a1B(α, k1 + 1)
]
,

M1,1 = C1,1 + l1c1t
α+k1
1 B(α, k1 + 1) + (t1 − t0)α−1M0,1,

M1,2 = B1,1 + l1b1t
α+k1
1 B(α, k1 + 1) + (t1 − t0)α−1M0,2,

M1,3 = A1,1 + l1a1t
α+k1
1 B(α, k1 + 1) + (t1 − t0)α−1M0,3,

. . .

Mp−1,1 = C1,p−1 + l1c1t
α+k1
p−1 B(α, k1 + 1) + (tp−1 − tp−2)α−1Mp−2,1,

Mp−1,2 = B1,p−1 + l1b1t
α+k1
p−1 B(α, k1 + 1) + (tp−1 − tp−2)α−1Mp−2,2,

Mp−1,3 = A1,p−1 + l1a1t
α+k1
p−1 B(α, k1 + 1) + (tp−1 − tp−2)α−1Mp−2,3,

Mp,1 =
1
λ

( p∏
k=1

(tk − tk−1)α−1‖φ‖1 + l1c1B(α, k1 + 1)tα+k1
p+1

p∏
k=1

(tk − tk−1)α−1

+
p∑

k=1

C1,k

p∏
s=k+1

(ts − ts−1)α−1

+ l1c1B(α, k1 + 1)
p∑

k=1

tα+k1
k

p∏
s=k+1

(ts − ts−1)α−1
)
,

Mp,2 =
1
λ

( p∏
k=1

(tk − tk−1)α−1‖φ‖1 + l1b1B(α, k1 + 1)tα+k1
p+1

p∏
k=1

(tk − tk−1)α−1

+
p∑

k=1

B1,k

p∏
s=k+1

(ts − ts−1)α−1

+ l1b1B(α, k1 + 1)
p∑

k=1

tα+k1
k

p∏
s=k+1

(ts − ts−1)α−1
)
,

Mp,3 =
1
λ

( p∏
k=1

(tk − tk−1)α−1‖φ‖1 + l1a1B(α, k1 + 1)tα+k1
p+1

p∏
k=1

(tk − tk−1)α−1

+
p∑

k=1

A1,k

p∏
s=k+1

(ts − ts−1)α−1

+ l1a1B(α, k1 + 1)
p∑

k=1

tα+k1
k

p∏
s=k+1

(ts − ts−1)α−1
)
,

and

σk,1 = l1c1(tk+1 − tk)1−αtα+k1
k+1 B(α, k1 + 1) +Mk,1, k = 0, 1, . . . , p,

σk,2 = l1b1(tk+1 − tk)1−αtα+k1
k+1 B(α, k1 + 1) +Mk,2, k = 0, 1, . . . , p,

σk,3 = l1a1(tk+1 − tk)1−αtα+k1
k+1 B(α, k1 + 1) +Mk,3, k = 0, 1, . . . , p,
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σ1 = max {σk,1 : k = 0, 1, . . . , p} ,
σ2 = max {σk,2 : k = 0, 1, . . . , p} ,
σ3 = max {σk,3 : k = 0, 1, . . . , p} .

Denote

N0,1 =
1
λ

[
C2‖ψ‖1 + l2c2B(β, k2 + 1)tβ+k2

p+1

+ l2c2B(β, k2 + 1)
p∏

k=1

(tk − tk−1)β−1

p∑
k=1

tβ+k2
k

p∏
s=k+1

(ts − ts−1)β−1

+
p∏

k=1

(tk − tk−1)β−1

p∑
k=1

C2,k

p∏
s=k+1

(ts − ts−1)β−1 + l2c2B(β, k2 + 1)
]
,

N0,2 =
1
λ

[
B2‖ψ‖1 + l2b2B(β, k2 + 1)tβ+k2

p+1

+ l2b2B(β, k2 + 1)
p∏

k=1

(tk − tk−1)β−1

p∑
k=1

tβ+k2
k

p∏
s=k+1

(ts − ts−1)β−1

+
p∏

k=1

(tk − tk−1)β−1

p∑
k=1

B2,k

p∏
s=k+1

(ts − ts−1)β−1 + l2b2B(β, k2 + 1)
]
,

N0,3 =
1
λ

[
A2‖ψ‖1 + l2a2B(β, k2 + 1)tβ+k2

p+1

+ l2a2B(β, k2 + 1)
p∏

k=1

(tk − tk−1)β−1

p∑
k=1

tβ+k2
k

p∏
s=k+1

(ts − ts−1)β−1

+
p∏

k=1

(tk − tk−1)β−1

p∑
k=1

A2,k

p∏
s=k+1

(ts − ts−1)β−1 + l2a2B(β, k2 + 1)
]
,

N1,1 = C2,1 + l2c2t
β+k2
1 B(β, k2 + 1) + (t1 − t0)β−1N0,1,

N1,2 = B2,1 + l2b2t
β+k2
1 B(β, k2 + 1) + (t1 − t0)β−1N0,2,

N1,3 = A2,1 + l2a2t
β+k2
1 B(β, k2 + 1) + (t1 − t0)β−1N0,3,

. . .

Np−1,1 = C2,p−1 + l2c2t
β+k2
p−1 B(β, k2 + 1) + (tp−1 − tp−2)β−1Np−2,1,

Np−1,2 = B2,p−1 + l2b2t
β+k2
p−1 B(β, k2 + 1) + (tp−1 − tp−2)β−1Np−2,2,

Np−1,3 = A2,p−1 + l2a2t
β+k2
p−1 B(β, k2 + 1) + (tp−1 − tp−2)β−1Np−2,3,

Np,1 =
1
λ

( p∏
k=1

(tk − tk−1)β−1‖ψ‖1 + l2c2B(β, k2 + 1)tβ+k2
p+1

p∏
k=1

(tk − tk−1)β−1

+
p∑

k=1

C2,k

p∏
s=k+1

(ts − ts−1)β−1

+ l2c2B(β, k2 + 1)
p∑

k=1

tβ+k2
k

p∏
s=k+1

(ts − ts−1)β−1
)
,
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Np,2 =
1
λ

( p∏
k=1

(tk − tk−1)β−1‖ψ‖1 + l2b2B(β, k2 + 1)tβ+k2
p+1

p∏
k=1

(tk − tk−1)β−1

+
p∑

k=1

B2,k

p∏
s=k+1

(ts − ts−1)β−1

+ l2b2B(β, k2 + 1)
p∑

k=1

tβ+k2
k

p∏
s=k+1

(ts − ts−1)β−1
)
,

Np,3 =
1
λ

( p∏
k=1

(tk − tk−1)β−1‖ψ‖1 + l2a2B(β, k2 + 1)tβ+k2
p+1

p∏
k=1

(tk − tk−1)β−1

+
p∑

k=1

A2,k

p∏
s=k+1

(ts − ts−1)β−1

+ l2a2B(β, k2 + 1)
p∑

k=1

tβ+k2
k

p∏
s=k+1

(ts − ts−1)β−1
)
,

and

µk,1 = l2c2(tk+1 − tk)1−βtα+k1
k+1 B(β, k2 + 1) +Nk,1, k = 0, 1, . . . , p,

µk,2 = l2b2(tk+1 − tk)1−βtα+k1
k+1 B(β, k2 + 1) +Nk,2, k = 0, 1, . . . , p,

µk,3 = l2a2(tk+1 − tk)1−βtα+k1
k+1 B(β, k2 + 1) +Nk,3, k = 0, 1, . . . , p,

µ1 = max {µk,1 : k = 0, 1, . . . , p} ,
µ2 = max {µk,2 : k = 0, 1, . . . , p} ,
µ3 = max {µk,3 : k = 0, 1, . . . , p} .

Theorem 3.1. Suppose that both (A) and (B) hold. Let µ2, µ3 and σ2, σ3 be defined
above. Then (1.2) has at least one solution if

σ2 < 1, µ2
1

w((1− σ2)/(2σ3))
+ µ3 < 1. (3.1)

Proof. To apply Lemma 2.1, we should define an open bounded subset Ω of E
centered at zero such that all assumptions in Lemma 2.1 hold. To obtain Ω.

Let Ω1 = {(x, y) ∈ E ∩ D(L) \ kerL, L(x, y) = θN(x, y) for some θ ∈ (0, 1)}.
We will prove that Ω1 is bounded.

For (x, y) ∈ Ω1, we obtain L(x, y) = θN(x, y) and N(x, y) ∈ ImL. Then

Dα
t+k
x(t) = θm(t)f(t, x(t), y(t)),

Dβ

t+k
y(t) = θn(t)g(t, x(t), y(t)),

lim
t→1

t1−αx(t) + lim
t→0

t1−αx(t) = θ

∫ 1

0

φ(t)F (t, x(t), y(t)) dt,

lim
t→1

t1−βy(t) + lim
t→0

t1−βy(t) = θ

∫ 1

0

ψ(t)G (t, x(t), y(t)) dt,

lim
t→t+k

(t− tk)1−αu(t)− u(tk) = θIk(tk, u(tk), v(tk)), k = 1, 2, . . . , p,

lim
t→t+k

(t− tk)1−βv(t)− v(tk) = θJk(tk, u(tk), v(tk)), k = 1, 2, . . . , p.

(3.2)
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So

x(t) = θ

∫ t

tk

(t− s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds+ θ(t− tk)α−1Mk, t ∈ (tk, tk+1],

(3.3)

y(t) = θ

∫ t

tk

(t− s)β−1

Γ(β)
n(s)g(s, x(s), y(s))ds+ θ(t− tk)α−1Nk, t ∈ (tk, tk+1], (3.4)

for k = 0, 1, . . . , p. Here Mk, Nk (k = 0, 1, . . . , p) are given in Step (iv) in the proof
of Lemma 2.2.

By the definition of Mk, we have

|M0|

≤ 1
λ

( ∫ 1

0

|φ(s)F (s, x(s), y(s))|ds+
∫ tp+1

tp

(tp+1 − s)α−1

Γ(α)
|m(s)f(s, x(s), y(s))|ds

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

p∏
s=k+1

(ts − ts−1)α−1

×
(
|Ik(tk, x(tk), y(tk))|+

∫ tk

tk−1

(tk − s)α−1

Γ(α)
|m(s)f(s, x(s), y(s))|ds

)
≤ 1
λ

[
C1‖φ‖1 + l1c1t

α+k1
p+1 B(α, k1 + 1)

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

C1,k

p∏
s=k+1

(ts − ts−1)α−1 + l1c1t
α+k1
k B(α, k1 + 1)

]
+

1
λ

[
B1‖φ‖1 + l1b1B(α, k1 + 1)

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

B1,k

p∏
s=k+1

(ts − ts−1)α−1 + l1b1B(α, k1 + 1)
]
‖x‖

+
1
λ

[
B1‖φ‖1 + l1b1B(α, k1 + 1)

+
p∏

k=1

(tk − tk−1)α−1

p∑
k=1

B1,k

p∏
s=k+1

(ts − ts−1)α−1 + l1b1B(α, k1 + 1)
]
Φ−1(‖y‖)

= M0,1 +M0,2‖x‖+M0,3Φ−1(‖y‖).

Similarly,

|M1| ≤M1,1 +M1,2‖x‖+M1,3Φ−1(‖y‖),
. . .

|Mp−1| ≤Mp−1,1 +Mp−1,2‖x‖+Mp−1,3Φ−1(‖y‖),
|Mp| ≤Mp,1 +Mp,2‖x‖+Mp,3Φ−1(‖y‖).

Similarly, we can prove that

|N0| ≤ N0,1 +N0,2Φ(‖x‖) +N0,3‖y‖,
|N1| ≤ N1,1 +N1,2Φ(‖x‖) +N1,3‖y‖,

. . .
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|Np−1| ≤ Np−1,1 +Np−1,2Φ(‖x‖) +Np−1,3‖y‖,
|Np| ≤ Np,1 +Np,2Φ(‖x‖) +Np,3‖y‖.

First, using (3.3) for t ∈ (t0, t1], we have

(t− t0)1−α|x(t)| ≤
∣∣(t− t0)1−α

∫ t

t0

(t− s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds+M0

∣∣
≤ l1(t1 − t0)1−αtα+k1

1 B(α, k1 + 1)(c1 + b1‖x‖+ a1Φ−1(‖y‖)),

M0,1 +M0,2‖x‖+M0,3Φ−1(‖y‖) ≤ σ0,1 + σ0,2‖x‖+ σ0,3Φ−1(‖y‖).
For k = 1, 2, . . . , p− 1, we have

(t− tk)1−α|x(t)|

≤
∣∣(t− tk)1−α

∫ t

tk

(t− s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds+Mk

∣∣
≤ l1(t− tk)1−α

∫ t

tk

(t− s)α−1

Γ(α)
sk1ds(c1 + b1‖x‖+ a1Φ−1(‖y‖)) + |Mk|

≤ σk,1 + σk,2‖x‖+ σk,3Φ−1(‖y‖).

For t ∈ (tp, tp+1], we have

(t− tp)1−α|x(t)|

≤
∣∣(t− tp)1−α

∫ t

tp

(t− s)α−1

Γ(α)
m(s)f(s, x(s), y(s))ds+Mp

∣∣
≤ l1(t− tp)1−α

∫ t

tp

(t− s)α−1

Γ(α)
sk1ds(c1 + b1‖x‖+ a1Φ−1(‖y‖)) + |Mp|

≤ σp,1 + σp,2‖x‖+ σp,3Φ−1(‖y‖).

It follows that
‖x‖ ≤ σ1 + σ2‖x‖+ σ3Φ−1(‖y‖). (3.5)

Similarly, we can show that

‖y‖ ≤ µ1 + µ2Φ(‖x‖) + µ3‖y‖. (3.6)

From (3.5) and (3.6), we obtain

‖y‖ ≤ µ1 + µ2Φ
( σ1

1− σ2
+
σ3Φ−1(‖y‖)

1− σ2

)
+ µ3‖y‖.

Without loss of generality, assume that ‖y‖ > Φ(σ1
σ3

). Then (2.1) implies that

‖y‖ ≤ µ1 + µ2Φ
(2σ3Φ−1(‖y‖)

1− σ2

)
+ µ3‖y‖

≤ µ1 + µ2

Φ
(
Φ−1(‖y‖)

)
w((1− σ2)/(2σ3))

+ µ3‖y‖

= µ1 +
(
µ2

1
w((1− σ2)/(2σ3))

+ µ3

)
‖y‖.

It follows that
‖y‖ ≤ µ1

1−
(
µ2

1
w((1−σ2)/(2σ3))

+ µ3

) .
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Then

‖x‖ ≤ σ1 + σ2‖x‖+ σ3Φ−1
( µ1

1−
(
µ2

1
w((1−σ2)/(2σ3))

+ µ3

))
.

It follows that Ω1 is bounded.
Now we show that all assumptions of Lemma 2.1 are satisfied. Set Ω be a open

bounded subset of X centered at zero such that Ω ⊃ Ω1. By Lemma 2.2, L is a
Fredholm operator of index zero, kerL = {0 ∈ E} and N is L-compact on Ω. By
the definition of Ω, we have Lx 6= θNx for x ∈ (D(L)∩ ∂Ω and θ ∈ (0, 1). Thus by
Lemma 2.1, L(x, y) = N(x, y) has at least one solution in D(L) ∩ Ω. Then x is a
solution of (1.2). The proof is complete. �

As an application of Theorem 3.1, we give the following theorem, under the
assumption

(B’) f, g, F,G, Ik, Jk (k = 1, 2, . . . , p) are impulsive Caratheodory functions and
satisfy that there exist nonnegative constants ci, bi, ai(i = 1, 2), Ci, Bi, Ai

(i = 1, 2) and Ci,k, Bi,k, Ai,k (i = 1, 2, k = 1, 2, . . . , p) such that

|f(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ c1 + b1|x|+ a1|y|,
t ∈ (tk, tk+1], k = 0, 1, . . . , p,

|g(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ c2 + b2|x|+ a2|y|,
t ∈ (tk, tk+1], k = 0, 1, . . . , p,

|F (t, (t− tk)α−1x, (t− tk)β−1y)| ≤ C1 +B1|x|+A1|y|,
t ∈ (tk, tk+1], k = 0, 1, . . . , p,

|G(t, (t− tk)α−1x, (t− tk)β−1y)| ≤ C2 +B2|x|+A2|y|,
t ∈ (tk, tk+1], k = 0, 1, . . . , p,

|Ik(t, (tk+1 − tk)α−1x, (tk+1 − tk)β−1y)| ≤ C1,k +B1,k|x|+A1,k|y|,
k = 1, 2, . . . , p,

|Jk(t, (tk+1 − tk)α−1x, (tk+1 − tk)β−1y)| ≤ C2,k +B2,k|x|+A2,k|y|,
k = 1, 2, . . . , p.

Theorem 3.2. Assume that (B’) holds. Let µ2, µ3 and σ2, σ3 be defined at the
beginning of this section. Then (1.2) has at least one solution if

σ2 < 1, µ2
2σ3

1− σ2
+ µ3 < 1.

For the proof of the above theorem, choose Φ(x) = x and then we obtain
Φ−1(x) = x. The proof follows from Theorem 3.1 and is omitted.

4. An example

Now, we present an example that illustrates Theorem 3.1, and can not be covered
by known results. Consider the boundary-value problem for the impulsive fractional
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differential equation

D
2
3

t+k
u(t) = t−1/4f(t, u(t), v(t)), t ∈ (tk, tk+1], k = 0, 1,

D
1/2

t+k
v(t) = t−1/4g(t, u(t), v(t)), t ∈ (tk, tk+1], k = 0, 1,

lim
t→1

u(t) + lim
t→0

t1/3u(t) = 0,

lim
t→1

v(t) + lim
t→0

t1/2v(t) = 0,

lim
t→ 1

2
+
(t− 1

2
)1/3u(t)− u(1/2) = 0,

lim
t→ 1

2
+
(t− 1

2
)1/2v(t)− v(1/2) = 0,

(4.1)

where

f(t, x, y) =

{
c1 + b1t

− 1
3x+ a1t

−3/2y3, t ∈ (0, 1/2],
c1 + b1(t− 1/2)−

1
3x+ a1(t− 1/2)−3/2y3, t ∈ (1/2, 1],

g(t, x, y) =

{
c2 + b2t

− 1
3x1/3 + a2t

−3/2y, t ∈ (0, 1/2],
c2 + b2(t− 1/2)−

1
9x1/3 + a2(t− 1/2)−1/2y, t ∈ (1/2, 1]

with ci, bi, ai ≥ 0(i = 1, 2) and 0 = t0 < t1 = 1
2 < t2 = 1. Then (4.1) has at least

one solution if

21/3B(2/3, 3/4)b1 +
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)b1 < 1,(

23/4B(1/4, 3/4)b2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)b2

)
×

( 27/3B(2/3, 3/4)a1 + 2
1+ 3√4

[21/3 + 2−5/12]B(2/3, 3/4)a1

1− 21/3B(2/3, 3/4)b1 + 1
1+ 3√4

[21/3 + 2−5/12]B(2/3, 3/4)b1

)1/3

+ 23/4B(1/4, 3/4)a2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)a2 < 1.

(4.2)

Proof. Corresponding to (1.2), α = 2/3, β = 1/2, p = 1, t1 = 1/2,

m(t) = t−1/4, n(t) = t−1/4,

f
(
t, (t− tk)1/3x, (t− tk)1/2y

)
= c1 + b1x+ a1y

3, k = 0, 1,

g
(
t, (t− tk)1/3x, (t− tk)1/2y

)
= c2 + b2x

1/3 + a2y, k = 0, 1,

F
(
t, (t− tk)1/3x, (t− tk)1/2y

)
= φ(t) = 0, k = 0, 1,

G(t, (t− tk)1/3x, (t− tk)1/2y) = ψ(t) = 0, k = 0, 1,

I1(t1, (t2 − t1)1/3x, (t2 − t1)1/2y) = 0,

J1(t1, (t2 − t1)1/3x, (t2 − t1)1/2y) = 0.

For Φ(x) = x1/3 with Φ−1(x) = x3, the supporting function of Φ is ω(x) = x1/3

and the supporting function of Φ−1 is ν(x) = x3. It is easy to see that m(t) ≤ l1t
k1
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with l1 = 1 and k1 = −1/4, n(t) ≤ l2t
k2 with l2 = 1 and k2 = −1/4, C1 = B1 =

A1 = C2 = B2 = A2 = 0, C1,1 = B1,1 = A1,1 = C2,1 = B2,1 = A2,1 = 0.
By direct computations, we show that

λ = 1 +
p+1∏
k=1

(tk − tk−1)α−1 = 1 + 3
√

4,

M0,1 =
1

1 + 3
√

4
[(1 + 2−1/12)B(2/3, 3/4) + 1]c1,

M0,2 =
1

1 + 3
√

4
[(1 + 2−1/12)B(2/3, 3/4) + 1]b1,

M0,3 =
1

1 + 3
√

4
[(1 + 2−1/12)B(2/3, 3/4) + 1]a1,

M1,1 =
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)c1,

M1,2 =
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)b1,

M1,3 =
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)a1

and

σ0,1 = 2−1/12B(2/3, 3/4)c1 +
1

1 + 3
√

4
[(1 + 2−1/12)B(2/3, 3/4) + 1]c1,

σ0,2 = 2−1/12B(2/3, 3/4)b1 +
1

1 + 3
√

4
[(1 + 2−1/12)B(2/3, 3/4) + 1]b1,

σ0,3 = 2−1/12B(2/3, 3/4)a1 +
1

1 + 3
√

4
[(1 + 2−1/12)B(2/3, 3/4) + 1]a1,

σ1,1 = 21/3B(2/3, 3/4)c1 +
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)c1,

σ1,2 = 21/3B(2/3, 3/4)b1 +
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)b1,

σ1,3 = 21/3B(2/3, 3/4)a1 +
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)a1,

σ1 = max{σk,1 : k = 0, 1}

= 21/3B(2/3, 3/4)c1 +
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)c1,

σ2 = max{σk,2 : k = 0, 1}

= 21/3B(2/3, 3/4)b1 +
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)b1,

σ3 = max{σk,3 : k = 0, 1}

= 21/3B(2/3, 3/4)a1 +
1

1 + 3
√

4
[21/3 + 2−5/12]B(2/3, 3/4)a1.

Denote

N0,1 =
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)c2,
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N0,2 =
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)b2,

N0,3 =
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)a2,

N1,1 =
1

1 + 3
√

4
[21/2 + 21/4]B(1/2, 3/4)c2,

N1,2 =
1

1 + 3
√

4
[21/2 + 21/4]B(1/2, 3/4)b2,

N1,3 =
1

1 + 3
√

4
[21/2 + 21/4]B(1/2, 3/4)a2

and

µ0,1 = 23/4B(1/4, 3/4)c2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)c2,

µ0,2 = 23/4B(1/4, 3/4)b2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)b2,

µ0,3 = 23/4B(1/4, 3/4)a2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)a2,

µ1,1 = 21/4B(1/4, 3/4)c2 +
1

1 + 3
√

4
[21/2 + 21/4]B(1/2, 3/4)c2,

µ1,2 = 21/4B(1/4, 3/4)b2 +
1

1 + 3
√

4
[21/2 + 21/4]B(1/2, 3/4)b2,

µ1,3 = 21/4B(1/4, 3/4)a2 +
1

1 + 3
√

4
[21/2 + 21/4]B(1/2, 3/4)a2,

µ1 = max{µk,1 : k = 0, 1} = 23/4B(1/4, 3/4)c2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)c2,

µ2 = max{µk,2 : k = 0, 1} = 23/4B(1/4, 3/4)b2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)b2,

µ3 = max{µk,3 : k = 0, 1} = 23/4B(1/4, 3/4)a2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)a2.

Then Theorem 3.1 implies that (4.1) has at least one solution if (4.2) holds. The
proof is complete. �

Remark 4.1. Since

lim
b1→0

[
21/3B(2/3, 3/4)b1 +

1
1 + 3

√
4
[21/3 + 2−5/12]B(2/3, 3/4)b1

]
= 0,

and

lim
a1,b1,a2,b2→0

[(
23/4B(1/4, 3/4)b2 +

1
1 + 3

√
4
[2 + 23/4]B(1/2, 3/4)b2

)
×

( 2
7
3 B(2/3, 3/4)a1 + 2

1+ 3√4
[21/3 + 2−5/12]B(2/3, 3/4)a1

1− 21/3B(2/3, 3/4)b1 + 1
1+ 3√4

[21/3 + 2−5/12]B(2/3, 3/4)b1

)1/3

+ 23/4B(1/4, 3/4)a2 +
1

1 + 3
√

4
[2 + 23/4]B(1/2, 3/4)a2

]
= 0,
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we can see that (4.2) holds for sufficiently small b1, a1, b2, a2. Then (4.1) has at
least one solution for sufficiently small b1, a1, b2, a2.
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