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EXISTENCE AND UPPER SEMI-CONTINUITY OF UNIFORM
ATTRACTORS FOR NON-AUTONOMOUS REACTION

DIFFUSION EQUATIONS ON RN

TANG QUOC BAO

Abstract. We prove the existence of uniform attractors for the non-auto-
nomous reaction diffusion equation

ut −∆u + f(x, u) + λu = g(t, x)

on RN , where the external force g is translation bounded and the nonlinearity
f satisfies a polynomial growth condition. Also, we prove the upper semi-
continuity of uniform attractors with respect to the nonlinearity.

1. Introduction

In this article, we study the following non-autonomous reaction diffusion equa-
tion

ut −∆u+ f(x, u) + λu = g(t, x), x ∈ RN ,

u|t=τ = uτ ,
(1.1)

where λ > 0, the nonlinearity f and the external force g satisfy some specified
conditions later.

Non-autonomous equation are of great importance and interest as they appear in
many applications in natural sciences. One way to treat non-autonomous equations
is that considering its uniform attractors, which are extended from global attractors
for autonomous case. In the recent years, the existence of uniform attractors for
non-autonomous reaction diffusion equations or its generalized forms is studied
extensively by many authors (see e.g. [1, 2, 5, 7] for the case of bounded domains,
and [10] for the case of unbounded domains). However, uniform attractors for
(1.1) in the case of unbounded domains is not well understood. In this paper, we
prove the existence and the upper semicontinuity of uniform attractors for (1.1) in
unbounded domains with a large class of external force g.

To study problem (1.1), we assume the following hypotheses:
(H1) The nonlinearity f satisfies: there exists p ≥ 2 such that

f(x, u)u ≥ α1|u|p − φ1(x), (1.2)

|f(x, u)| ≤ α2|u|p−1 + φ2(x), (1.3)
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f ′u(x, u) ≥ −`, (1.4)

where φ1 ∈ L1(RN ) ∩ Lp/2(RN ) ∩ L∞(RN ), φ2 ∈ Lq(RN ) ∩ L2(RN ) with
1
p + 1

q = 1 and α1, α2, ` are positive constant. For the primitive F (x, u) =∫ u

0
f(x, ξ)dξ, we assume that there are positive constants α3, α4 and φ3, φ4 ∈

L1(RN ) satisfy

α3|u|p − φ3(x) ≤ F (x, u) ≤ α4|u|p + φ4(x). (1.5)

(H2) The external force g ∈ L2
loc

(
R;L2(RN )

)
satisfies

sup
t∈R

∫ t+1

t

(
‖g(s)‖2L2(RN ) + ‖∂tg(s)‖2L2(RN )

)
ds < +∞. (1.6)

We borrow from [10, Lemma 3.4] the following result:

lim sup
k→+∞

(
sup

t∈RN

∫ t+1

t

∫
|x|≥k

|g(s, x)|2 dx ds
)

= 0. (1.7)

Since RN is unbounded, the embeddingH1(RN ) ⊂ L2(RN ) is no longer compact,
that causes the main difficulty. By using “tail estimate” technique (see, e.g., [8, 9]),
we overcome this difficulty and thus prove the existence of a uniform attractor
L2(RN ). For attractors in Lp(RN ), we use some a priori estimates (see, e.g.,
[7, 10]) to prove the uniform asymptotic compactness of the family of processes.
Finally, the existence of a uniform attractor in H1(RN ) is obtained by combining
”tail estimate” method and useful estimates of nonlinearity. The first main theorem
is as follows.

Theorem 1.1. Suppose that f and g satisfy hypothesis (H1)–(H2). Moreover, we
assume that g is normal (see Definition 3.7) and f satisfies

|∂f
∂x

(x, s)| ≤ ψ5(x), ∀x ∈ RN ,∀s ∈ R, (1.8)

where ψ5 ∈ L2(RN ). Then, the family of processes {Uσ(t, τ)}σ∈Hw(g) has a unique
uniform attractor in H1(RN ) ∩ Lp(RN ).

Remark 1.2. To prove the existence of a uniform attractor in L2(RN ) we only
need f and g to satisfy (H1)-(H2). The addition conditions: g is normal is needed
to obtain the uniform attractor in Lp(RN ); and (1.8) of f is to prove the asymptotic
compactness of family of processes in H1(RN ).

Remark 1.3. In the case external force g is bounded uniformly in t ∈ R; that is,

‖g(t, ·)‖L2(RN ) ≤M, ∀t ∈ R,

where M is independent of t, we can use arguments similar to [1, 2] to obtain
the existence of a uniform attractor in H1(RN ) easily. In this paper, since g only
belongs to L2

b(R;L2(RN )) (see Definition 2.6), the required computations are more
complicated and involved.

Remark 1.4. The positivity of λ is used for the dissipativity of the solution; that
is, the solution of the equation should be bounded uniformly in all time t > 0 (See
Proposition 3.3).
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If we replace Rn by a domain Ω (bounded or unbounded) that satisfies Poincare’s
inequality ∫

Ω

|∇u|2dx ≥ C

∫
Ω

|u|2dx,

then we can let λ = 0 (or even λ > −C), and Proposition 3.3 still follows the same
way.

If λ < 0 in general, solutions of (1.1) can be unbounded when t→ +∞ even in
bounded domains. For example, consider the one dimensional equation

ut − uxx + u− (2π2 + 1)u = 0, x ∈ (0, 1), t > 0,

u(t, 0) = u(t, 1) = 0, t > 0,

u(0, x) = sin(πx), x ∈ (0, 1).

(1.9)

Here we have f(u) ≡ u, g(t, x) ≡ 0 and λ = −(2π2 +1) < 0. It is easy to check that
u(t, x) = eπ2t sin(πx) is a solution to (1.9) and

‖u(t, ·)‖2L2(0,1) =
∫ 1

0

e2π2t| sin(πx)|2dx→ +∞ as t→ +∞.

Another interesting feature of this paper is that we prove the upper semi-
continuity of uniform attractors with respect to the nonlinearity. Uniform attractors
are not invariant under the family of processes, this brings some difficulties in prov-
ing upper semi-continuous property. In this work, in order to prove this kind of
continuity, we use the structure of uniform attractors, which says that each uniform
attractor is a union of kernels (see Definition 2.4 and Theorem 2.5).

We consider a family of functions fγ , γ ∈ Γ, such that for each γ ∈ Γ, fγ satisfies
(1.2)-(1.5) and (1.8) where the constants are independent of γ. The topology T in
Γ can be defined as follows:

If γm → γ in T then fγm
(x, s) → fγ(x, s) for all x ∈ RN and s ∈ R.

Let {Uγ
σ (t, τ)}σ∈Hw(g) be the family of processes corresponding to the problem

ut −∆u+ fγ(x, u) + λu = g(t, x), x ∈ RN , t > τ,

u(τ) = uτ , x ∈ RN .
(1.10)

By Theorem 1.1, for each γ ∈ Γ, {Uγ
σ (t, τ)}σ∈Hw(g) has a compact uniform attractor

Aγ in H1(RN ) ∩ Lp(RN ). We have the second main result.

Theorem 1.5. The family of uniform attractors {Aγ}γ∈Γ is upper semi-continuous
in L2(RN ) with respect to the nonlinearity, that is,

lim
γn→γ

distL2(RN )(Aγn
,Aγ) = 0,

whenever γn → γ in T .

The rest of this article is organized as follows: In section 2, for convenience to
readers, we recall some basic concepts related to uniform attractors and translation
bounded functions. The proof of Theorems 1.1 and 1.5 is showed in Sections 3 and
4, respectively.

Throughout this article, we will denote by ‖ · ‖ and (·, ·) the norm and the inner
product in L2(RN ), respectively. For a Banach space X, ‖ · ‖X stands for its norm.
The letter C denotes an arbitrary constant, which can be different from line to line
and even in a same line.
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2. Preliminaries

2.1. Uniform attractors. Let Σ be a parameter set, X,Y be two Banach spaces.
{Uσ(t, τ), t ≥ τ, τ ∈ R}, σ ∈ Σ, is said to be a family of processes in X, if for
each σ ∈ Σ, {Uσ(t, τ)} is a process; that is, the two-parameter family of mappings
{Uσ(t, τ)} from X to X satisfies

Uσ(t, s)Uσ(s, τ) = Uσ(t, τ), ∀t ≥ s ≥ τ, τ ∈ R,
Uσ(τ, τ) = Id, τ ∈ R,

where Id is the identity operator, σ ∈ Σ is the symbol, and Σ is called the symbol
space. Denote by B(X),B(Y ) the set of all bounded subsets ofX and Y respectively.

Definition 2.1. A set B0 ∈ B(Y ) is said to be a uniform absorbing set in Y for
{Uσ(t, τ)}σ∈Σ, if for any τ ∈ R and any B ∈ B(X), there exists T0 ≥ τ such that
∪σ∈ΣUσ(t, τ)B ⊂ B0 for all t ≥ T0.

Definition 2.2. A family of processes {Uσ(t, τ)}σ∈Σ is called uniform asymptoti-
cally compact in Y if for any τ ∈ R and any B ∈ B(X), we have {Uσn(tn, τ)xn} is
relatively compact in Y , where {xn} ⊂ B, {tn} ⊂ [τ,+∞), tn → +∞ and {σn} ⊂ Σ
are arbitrary.

Definition 2.3. A subset AΣ ⊂ Y is said to be the uniform attractor in Y of the
family of processes {Uσ(t, τ)}σ∈Σ if

(i) AΣ is compact in Y ;
(ii) for an arbitrary fixed τ ∈ R and B ∈ B(X) we have

lim
t→∞

(sup
σ∈Σ

(dist Y (Uσ(t, τ)B,AΣ)) = 0,

where distY (A,B) = supx∈A infy∈B ‖x− y‖Y for A,B ⊂ Y ; and
(iii) if A′Σ is a closed subset of Y satisfying (i), then AΣ ⊂ A′Σ.

Definition 2.4. The kernel K of a process {U(t, τ)} acting on X consists of all
bounded complete trajectories of the process {U(t, τ)}:

K = {u(·)|U(t, τ)u(τ) = u(t),dist(u(t), u(0)) ≤ Cu,∀t ≥ τ, τ ∈ R}.
The set K(s) = {u(s)|u(·) ∈ K} is said to be kernel section at time t = s, s ∈ R.

We have the following result about the existence and structure of uniform at-
tractors.

Theorem 2.5 ([2]). Assume that the family of processes {Uσ(t, τ)}σ∈Σ satisfies
the following conditions:

(i) Σ is weakly compact, and {Uσ(t, τ)}σ∈Σ is (X × Σ, Y )-weakly continuous,
that is, for any fixed t ≥ τ , the mapping (u, σ) 7→ Uσ(t, τ)u is weakly con-
tinuous in Y . Moreover, there is a weakly continuous semigroup {T (h)}h≥0

acting on Σ satisfying

T (h)Σ = Σ, Uσ(t+ h, τ + h) = UT (h)σ(t, τ), ∀σ ∈ Σ, t ≥ τ, h ≥ 0;

(ii) {Uσ(t, τ)}σ∈Σ has a uniform absorbing set B0 in Y ;
(iii) {Uσ(t, τ)}σ∈Σ is uniform asymptotically compact in Y .

Then it possesses a uniform attractor AΣ in Y , and

AΣ = ∪σ∈ΣKσ(s), ∀s ∈ R,
where Kσ(s) is the section at time s of the process {Uσ(t, τ)}.
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2.2. The translation bounded functions.

Definition 2.6. Let E be a reflexive Banach space. A function ϕ ∈ L2
loc(R; E) is

said to be translation bounded if

‖ϕ‖2L2
b

= ‖ϕ‖2L2
b(R;E) = sup

t∈R

∫ t+1

t

‖ϕ‖2Eds <∞.

Let g ∈ L2
b

(
R, L2(RN )

)
, we denote by Hw(g) be the closure of the set {g(·+h) :

h ∈ R} in L2
b(R;L2(RN )) with the weak topology. The following results are proved

in [3].

Lemma 2.7 ([3, Proposition 4.2]). (1) For all σ ∈ Hw(g), ‖σ‖2
L2

b
≤ ‖g‖2

L2
b
;

(2) The translation group {T (h)} is weakly continuous on Hw(g);
(3) T (h)Hw(g) = Hw(g) for h ≥ 0;
(4) Hw(g) is weakly compact.

3. Existence of uniform attractors

In this section, we prove the existence of uniform attractors for the family of
processes corresponding to problem (1.1). First, we state without proofs the results
about the existence of a unique weak solution of (1.1) and then prove there exists a
uniform absorbing set for {Uσ(t, τ)uτ}σ∈Hw(g). Next, by a technique so called ”tail
estimate” we obtain a uniform attractor in L2(RN ). Then, using abstract result in
[10], we prove the existence of a uniform attractor in Lp(RN ). Finally, the existence
of the uniform attractor in H1(RN ) is obtained by combining ”tail estimate” and
arguments in [5].

3.1. Existence of uniform absorbing set.

Definition 3.1. A function u(t, x) is called a weak solution of (1.1) on (τ, T ),
T > τ , if

u ∈ C
(
[τ, T ];L2(RN )

)
∩ Lp

(
τ, T ;Lp(RN )

)
∩ L2(τ, T ;H1(RN )),

ut ∈ L2(τ, T ;L2(RN )),

u(τ, x) = uτ (x)a.e. on RN ,

and for any v ∈ C∞([τ, T ]× RN ),∫ T

τ

∫
RN

(utv +∇u∇v + f(x, u)v + λuv) =
∫ T

τ

∫
RN

gv.

By the standard Galerkin-Feado approximation, we can find the existence of
unique weak solution for problem (1.1) in the case of bounded domains. To over-
come the difficulties of unboundedness of the domains, following [6], one may take
the domain to be a sequence of balls with radius approaching ∞ to deduce the
existence of a weak solution to (1.1) in RN . Here we state results only, for the
details of the proof, readers are referred to [6].

Theorem 3.2. Assume that f and g satisfy (H1)–(H2). For any uτ ∈ L2(RN ) and
any T > τ , there exists a unique weak solution u for problem (1.1), and

u ∈ C
(
[τ, T ];L2(RN )

)
; ut ∈ L2

(
τ, T ;L2(RN )

)
.
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From Theorem 3.2, we can define a family of processes {Uσ(t, τ)}σ∈Hw(g) associ-
ated with (1.1) acting on L2(RN ), where Uσ(t, τ)uτ is the solution of (1.1) at time
t subject to initial condition u(τ) = uτ at time τ and with σ in place of g.

Proposition 3.3. There exists a uniform absorbing set B in H1(RN ) ∩ Lp(RN )
for the family of processes {Uσ(t, τ)}σ∈Hw(g) corresponding to (1.1).

Proof. Consider the equation

ut −∆u+ f(x, u) + λu = σ(t, x). (3.1)

Taking the inner product of (3.1) with 2u in L2(RN ), we have
d

dt
‖u‖2 + 2‖∇u‖2 + 2(f(x, u), u) + 2λ‖u‖2 = 2(σ(t), u). (3.2)

Using (1.2), applying the Cauchy and Young’s inequalities,
d

dt
‖u‖2 +

3λ
2
‖u‖2 + 2‖∇u‖2 + 2α1‖u‖p

Lp(RN )
≤ 2
λ
‖σ(t)‖2 + 2‖φ1‖L1(RN ). (3.3)

By Gronwall’s lemma, we find

‖u(t)‖2 ≤ e−λ(t−τ)‖uτ‖2 +
2‖φ1‖L1(RN )

λ
+

2
λ

∫ t

τ

e−λ(t−s)‖σ(s)‖2ds. (3.4)

For the last term of the right hand side,∫ t

τ

e−λ(t−s)‖σ(s)‖2ds ≤
( ∫ t

t−1

+
∫ t−1

t−2

+
∫ t−2

t−3

+ . . .
)
e−λ(t−s)‖σ(s)‖2ds

≤
∫ t

t−1

‖σ(s)‖2ds+ e−λ

∫ t−1

t−2

‖σ(s)‖2 + . . .

≤
(
1 + e−λ + e−2λ + . . .

)
‖σ‖2L2

b

≤ 1
1− e−λ

‖g‖2L2
b
.

(3.5)

Combining (3.4)-(3.5), and noting that uτ belongs to a bounded set B, there exists
a T0 > 0 satisfies

‖u(t)‖2 ≤ ρ0 = 1 +
2‖φ1‖L1(RN )

λ
+

2eλ

λ(eλ − 1)
‖g‖2L2

b
, (3.6)

for all t > T0, all uτ ∈ B and all σ ∈ Hw(g). By integrating (3.3), we find that∫ t+1

t

(λ
2
‖u(s)‖2 + 2‖∇u(s)‖2 + 2α1‖u(s)‖p

Lp(RN )

)
ds

≤ ‖u(t)‖2 +
2
λ

∫ t+1

t

‖σ(s)‖2ds+
2‖φ1‖L1(RN )

λ

≤ ρ0 +
2
λ
‖g‖2L2

b
+

2‖φ1‖L1(RN )

λ
,

(3.7)

for all t ≥ T0. From (1.5),

‖u‖p
Lp(RN )

≥ 1
α4

( ∫
RN

F (x, u)dx− ‖φ4‖L1(RN )

)
,

and (3.7), it leads to∫ t+1

t

(
λ‖u(s)‖2 + ‖∇u(s)‖2 + 2

∫
RN

F (x, u)dx
)
ds ≤ C, for all t ≥ T0. (3.8)
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On the other hand, by multiplying (3.1) by 2ut then integrating over RN , after
using Cauchy’s inequality,

‖ut‖2 +
d

dt

(
λ‖u‖2 + ‖∇u‖2 + 2

∫
RN

F (x, u)dx
)
≤ ‖σ(t)‖2. (3.9)

From (3.8)-(3.9) and the uniform Gronwall inequality, we obtain

λ‖u‖2 + ‖∇u‖2 + 2
∫

RN

F (x, u)dx ≤ C, for all t ≥ T0. (3.10)

Using (1.5) again, there exists ρ1 > 0 such that, for all t ≥ T0,

‖u(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖p
Lp(RN )

≤ ρ1, ∀uτ ∈ B,∀σ ∈ Hw(g). (3.11)

This completes the proof. �

Lemma 3.4. The family of processes associated with problem (1.1) is (L2(RN ) ×
Hw(g),H1(RN )∩Lp(RN )) weakly continuous, that is, for any xn ⇀ x0 in L2(RN )
and σn ⇀ σ in Hw(g), we have

Uσn
(t, τ)xn ⇀ Uσ(t, τ)x in H1(RN ) ∩ Lp(RN ), (3.12)

for all t > τ .

Proof. Denote by un(t) = Uσn(t, τ)xn, then un solves

∂tun −∆un + f(x, un) + λun = σn(t), (3.13)

with initial condition un(τ) = xn. Using arguments in Proposition 3.3, we can
deduce that there exists a function w(t) such that

un ⇀ w weak-star in L∞(τ, t;L2(RN )), (3.14)

un ⇀ w in Lp(τ, t;Lp(RN )), (3.15)

and the sequence

{un(s)}, τ ≤ s ≤ t, is bounded in H1(RN ) ∩ Lp(RN ). (3.16)

By (1.3) and (3.15),

{f(x, un)} is bounded Lq(τ, t;Lq(RN )),

thus, by equation (3.13),

{∂tun} is bounded in Lq(τ, t;Lq(RN )) ∩ L2(τ, t;H−1(RN )).

Therefore, one can pass to the limit (in the weak sense) of equation (3.13) to have

wt −∆w + f(x,w) + λw = σ(t), (3.17)

with w(τ) = x. In fact, there are some difficulties to overcome when one wants
to show f(x, un) ⇀ f(x,w), but it can be solved by taking the domain to be a
sequence of balls with radius approaching ∞ as mentioned before Theorem 3.2. By
the uniqueness of the weak solution, we obtain Uσ(t, τ)x = w(t) and thus complete
the proof. �
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3.2. Existence of a uniform attractor in L2(RN ).

Lemma 3.5. For any ε > 0, any τ ∈ R and any B ⊂ L2(RN ) is bounded, there
exist Tε > τ and Kε > 0 such that∫

|x|≥K

|Uσ(t, τ)uτ |2dx ≤ ε, (3.18)

for all K ≥ Kε, t ≥ Tε, all uτ ∈ B and all σ ∈ Hw(g).

Proof. Let φ : [0,+∞) → [0, 1] be a smooth function such that φ(s) = 0 for all
0 ≤ s ≤ 1 and φ(s) = 1 for all s ≥ 2. It is easy to see that φ′(s) ≤ C, for all s, and
φ′(s) = 0 for all s ≥ 2. Denote u(t) = Uσ(t, τ)uτ and multiply (3.1) by 2φ

( |x|2
k2

)
u,

where k > 0, we obtain

d

dt

∫
RN

φ
( |x|2
k2

)
|u|2dx+ 2

∫
RN

φ
( |x|2
k2

)
|∇u|2dx+ 2

∫
RN

φ′
( |x|2
k2

)
u

2x
k2

· ∇u dx

+ 2
∫

RN

φ
( |x|2
k2

)
f(x, u)u dx+ 2λ

∫
RN

φ
( |x|2
k2

)
|u|2dx

= 2
∫

RN

φ
( |x|2
k2

)
uσ(t, x)dx.

(3.19)
Now, we estimate terms in (3.19). First, using condition (1.2) of f , we find∫

RN

φ
( |x|2
k2

)
f(x, u)u dx ≥ −

∫
RN

φ
( |x|2
k2

)
φ1(x)dx ≥ −

∫
|x|≥k

|φ1(x)|dx. (3.20)

Next, ∣∣ ∫
RN

φ′
( |x|2
k2

)
u

2x
k2

· ∇u dx
∣∣ ≤ ∫

|x|≤k
√

2

C|x|
k2

|u||∇u|dx

≤ C

k

∫
RN

|u||∇u|dx

≤ C

k

(
‖u‖2 + ‖∇u‖2

)
≤ C

k
,

(3.21)

for all t ≥ T0, since (3.11). Finally, for the right hand side of (3.19),

2
∣∣ ∫

RN

φ
( |x|2
k2

)
σ(t, x)u dx

∣∣ ≤ 1
λ

∫
RN

φ
( |x|2
k2

)
|σ(t, x)|2dx+ λ

∫
RN

φ
( |x|2
k2

)
|u|2dx.

(3.22)
Combining (3.19)-(3.22), we obtain

d

dt

∫
RN

φ
( |x|2
k2

)
|u|2dx+ λ

∫
RN

φ
( |x|2
k2

)
|u|2dx+ 2

∫
RN

φ
( |x|2
k2

)
|∇u|2dx

≤ C

k
+ 2

∫
|x|≥k

|φ1(x)|dx+
1
λ

∫
|x|≥k

|σ(t, x)|2dx.
(3.23)
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By Gronwall’s lemma, proceed as (3.5), we conclude that∫
RN

φ
( |x|2
k2

)
|u(t)|2dx+ 2

∫ t

τ

e−λ(t−τ)

∫
RN

φ
( |x|2
k2

)
|∇u|2 dx ds

≤ e−λ(t−τ)

∫
RN

φ
( |x|2
k2

)
|uτ |2dx+

C

λk

+
2
λ

∫
|x|≥k

|φ1(x)|dx+
1
λ

∫ t

τ

e−λ(t−s)

∫
|x|≥k

|σ(s, x)|2 dx ds

≤ e−λ(t−τ)‖uτ‖2 + C
(1
k

+
∫
|x|≥k

|φ1(x)|dx
)

+
1

λ(1− e−λ)
sup
t∈R

∫ t+1

t

∫
|x|≥k

|g(s, x)|2 dx ds.

(3.24)

Using (1.7) and the fact that φ1 ∈ L1(RN ), it can be followed from (3.24) that

lim sup
t→+∞

lim sup
k→+∞

∫
|x|≥k

√
2

|u(t)|2dx = 0, (3.25)

which completes the proof of (3.18). �

Theorem 3.6. Assume that assumptions (H1)–(H2) hold. Then the family of
processes {Uσ(t, τ)}σ∈Hw(g) possesses a uniform attractor A2 in L2(RN ). Moreover,
we have

A2 = ∪σ∈Hw(g)Kσ(s) for all s ∈ R. (3.26)

Proof. By Proposition 3.3, the family {Uσ(t, τ)}σ∈Hw(g) has a uniform absorbing
set in L2(RN ). Thus, it is sufficient to prove the uniform asymptotic compactness of
{Uσ(t, τ)}σ∈Hw(g). Let {xn} be a bounded set in L2(RN ), {tn} be a sequence such
that tn → +∞ as n→∞, and {σn} be an arbitrary sequence in Hw(g). We have to
show that {Uσn(tn, τ)xn} is precompact in L2(RN ). Let ε > 0 arbitrary. ForK > 0,
we denote BK = {x ∈ RN : |x| ≤ K}. From Lemma 3.5 and limn→∞ tn = +∞,
there exist K > 0 and N0 ∈ N satisfy

‖Uσn(tn, τ)xn‖L2(Bc
K) ≤

ε

3
, ∀n ≥ N0, (3.27)

where Bc
K = RN\BK . On the other hand, from Proposition 3.3, {Uσn(tn, τ)xn}

is bounded in H1(RN ), and then {Uσn
(tn, τ)xn} restrict on BK is bounded in

H1(BK). Since, H1(BK) ↪→ L2(BK) compactly, {Uσn(tn, τ)xn} is precompact in
L2(BK), thus there exist a subsequence {n′} ⊂ {n} and N1 such that

‖Uσm′ (tm′ , τ)xm′ − Uσn′ (tn′ , τ)xn′‖L2(BK) ≤
ε

3
, for all m′, n′ ≥ N1. (3.28)

Taking N = max{N0, N1}, then for all m′, n′ ≥ N ,

‖Uσm′ (tm′ , τ)xm′ − Uσn′ (tn′ , τ)xn′‖L2(RN )

≤ ‖Uσm′ (tm′ , τ)xm′ − Uσn′ (tn′ , τ)xn′‖L2(BK)

+ ‖Uσm′ (tm′ , τ)xm′‖L2(Bc
K) + ‖Uσn′ (tn′ , τ)xn′‖L2(Bc

K) ≤ ε,

(3.29)

by (3.27) and (3.28). This prove that {Uσn(tn, τ)xn} is precompact in L2(RN ).
Relation (3.26) follows directly from Theorem 2.5 and Lemma 3.4. The proof is
complete. �
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3.3. Existence of a uniform attractor in Lp(RN ). To obtain the existence of
a uniform attractor in Lp(RN ), we assume that the external force g belongs to L2

n,
the space of normal functions, which is defined as follows.

Definition 3.7. A function ϕ ∈ L2
loc(R;L2(RN )) is said to be normal if for any

ε > 0 there exists η > 0 such that

sup
t∈RN

∫ t+η

t

‖ϕ(s)‖2L2(RN )ds ≤ ε.

Lemma 3.8 ([4]). If g ∈ L2
n(R;L2(RN )) then g ∈ L2

b(R;L2(RN )) and for any
τ ∈ RN ,

lim
γ→∞

sup
t≥τ

∫ t

τ

e−γ(t−s)‖σ(s)‖2L2(RN )ds = 0,

uniformly with respect to σ ∈ Hw(g).

We also need an additional result whose proof can be found in [10].

Lemma 3.9 ([10]). Assume {Uσ(t, τ)}σ∈Hw(g) is a family of processes in L2(RN )
and Lp(RN ), p ≥ 2. If

(i) {Uσ(t, τ)}σ∈Hw(g) possesses a uniform attractor in L2(RN );
(ii) {Uσ(t, τ)}σ∈Hw(g) has a bounded uniform absorbing set in Lp(RN );
(iii) for any ε > 0 and any bounded set B ⊂ L2(RN ), there exist T = T (ε,B)

and M = M(ε,B) such that∫
Ω(|Uσ(t,τ)uτ |≥M)

|Uσ(t, τ)uτ |pdx ≤ ε, for all σ ∈ Hw(g), t ≥ T, uτ ∈ B, (3.30)

where Ω(|Uσ(t, τ)uτ | ≥M) = {x ∈ RN : Uσ(t, τ)uτ (x) ≥M};
then {Uσ(t, τ)}σ∈Hw(g) has a uniform attractor in Lp(RN ).

Theorem 3.10. Assume that f and g satisfy (H1)–(H2). We also assume that g is
a normal function. Then the family of processes {Uσ(t, τ)}σ∈Hw(g) has a uniform
attractor Ap in Lp(RN ), moreover Ap coincides with A2.

Proof. By Proposition 3.3, Theorem 3.6 and Lemma 3.9, we only have to prove that
{Uσ(t, τ)}σ∈Hw(g) satisfies condition (iii) in Lemma 3.9. Let B be a bounded subset
of L2(RN ) and ε > 0 arbitrary. For u(t) = Uσ(t, τ)uτ , we denote by (u−M)+ the
positive part of u−M ; that is,

(u−M)+ =

{
u−M if u ≥M

0 otherwise,
(3.31)

Multiplying (1.1) by p(u−M)p−1
+ , we obtain

d

dt
‖(u−M)+‖p

Lp(RN )
+ p(p− 1)

∫
RN

|∇u|2|(u−M)+|p−2dx

+ p

∫
RN

f(u)(u−M)p−1
+ dx

=
∫

RN

σ(t, x)(u−M)p−1
+ dx.

(3.32)
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By (1.2), we can take M large enough to get f(x, u) ≥ C|u|p−1 when u ≥ M , and
thus,∫

RN

f(u)(u−M)p−1
+ dx ≥ C

∫
RN

|u|p−1(u−M)p
+dx

≥ C

∫
RN

(u−M)2p−2
+ dx+ CMp−2‖(u−M)+‖p

Lp(RN )
.

For the external force,∫
RN

σ(t, x)(u−M)p−1
+ dx ≤ C‖σ(t)‖2 + C

∫
RN

(u−M)2p−2
+ dx. (3.33)

Combining (3.32)-(3.33), we obtain

d

dt
‖(u−M)+‖p

Lp(RN )
+ CMp−2‖(u−M)+‖p

Lp(RN )
≤ C‖σ(t)‖2. (3.34)

By Gronwall’s lemma,

‖(u(t)−M)+‖p
Lp(RN )

≤ e−CMp−2(t−T1)‖(u(T1)−M)+‖p
Lp(RN )

+ C

∫ t

T1

e−CMp−2(t−s)‖σ(s)‖2ds,
(3.35)

where T1 is in (3.11). Applying (3.11) and Lemma 3.8, we obtain∫
Ω1

|(u(t)−M)+|pdx ≤ ε, uniformly in uτ ∈ B, σ ∈ Hw(g), (3.36)

when t and M are large enough. Repeat steps above, just replace (u −M)+ by
(u+M)−, where

(u+M)− =

{
u+M if u ≤ −M
0 otherwise,

(3.37)

we can find t and M large enough such that∫
Ω(u≤−M)

|(u+M)−|pdx ≤ ε, ∀uτ ∈ B,∀σ ∈ Hw(g). (3.38)

From (3.36) and (3.38), we obtain (3.30) and hence complete the proof. �

3.4. Existence of a uniform attractor in H1(RN ) ∩ Lp(RN ). In this section,
we prove the uniform attractor in H1(RN ) ∩ Lp(RN ). For this purpose, we first
assume an addition condition of the nonlinearity∣∣∂f

∂x
(x, u)

∣∣ ≤ φ5(x), (3.39)

where φ5 ∈ L2(RN ). Next, we show that solutions of (1.1) is uniformly small when
time and spatial variables are large enough. Finally, combining this and arguments
similar to the ones used in [5], we can prove the uniform asymptotic compactness
of {Uσ(t, τ)}σ∈Hw(g) in H1(RN ).

Lemma 3.11. For any τ ∈ R and any bounded set B ⊂ H1(RN ) ∩ Lp(RN ), there
exist ρ2 > 0 and T1 ≥ τ such that

‖ut(t)‖2 ≤ ρ1,∀t ≥ T1, ∀uτ ∈ B, ∀σ ∈ Hw(g). (3.40)
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Proof. Integrating (3.9) from t to t + 1, where t ≥ T0, using (1.5) and (3.11), we
have ∫ t+1

t

‖ut(s)‖2ds+ 2‖φ3‖L1(RN )

≤ λ‖u(t)‖2 + ‖∇u(t)‖2 + 2
∫

RN

F (x, u)dx+
∫ t+1

t

‖σ(s)‖2ds

≤ (λ+ 1 + 2α4)ρ1 + 2‖φ4‖L1(RN ) + ‖g‖2L2
b
,

(3.41)

thus ∫ t+1

t

‖ut(s)‖2ds ≤ C, for all t ≥ T0. (3.42)

Now, differentiate (3.1) with respect to time, denote v = ut, then multiply by 2v
in L2(RN ), we see that

d

dt
‖v‖2 + 2‖∇v‖2 + (f ′(x, u)v, 2v) + 2λ‖v‖2 = (σ′(t), 2v). (3.43)

By (1.4) and Cauchy’s inequality,
d

dt
‖v‖2 ≤ 2`‖v‖2 +

1
2λ
‖σ′(t)‖2. (3.44)

Combining (3.42) and (3.44), then using the uniform Gronwall lemma, we obtain
(3.40). �

Lemma 3.12. For any τ ∈ R, and any bounded set B ⊂ L2(RN ),∫
R
|f(x,Uσ(t, τ)uτ )|2dx ≤ C(1 + ‖σ(t)‖2L2(RN )), (3.45)

for all t ≥ T1, all uτ ∈ B and all σ ∈ Hw(g).

Proof. Multiply (1.1) by |u|p−2u in L2(RN ), we obtain

(ut, |u|p−2u) + (p− 1)
∫

RN

|∇u|2|u|p−2dx

+
∫

RN

f(x, u)u|u|p−2dx+ λ‖u‖p
Lp(RN )

= (σ(t, x), |u|p−2u).
(3.46)

By the Cauchy and Young’s inequalities,

(ut, |u|p−2u) ≤ C‖ut‖2 +
α1

4

∫
RN

|u|2p−2dx, (3.47)

(σ(t, x), |u|p−2u) ≤ C‖σ(t)‖2 +
α1

4

∫
RN

|u|2p−2dx. (3.48)

Using (1.2), we obtain∫
RN

f(x, u)u|u|p−2dx ≥ α1

∫
RN

|u|2p−2dx−
∫

RN

φ1(x)|u|p−2dx

≥ α1

∫
RN

|u|2p−2dx− C‖φ1‖p/2

Lp/2(RN )
− C‖u‖p

Lp(RN )
.

(3.49)

From (3.46)–(3.49), we obtain∫
RN

|u(t)|2p−2dx ≤ C(1 + ‖ut(t)‖2 + ‖u(t)‖2Lp(RN ) + ‖σ(t)‖2)

≤ C(1 + ‖σ(t)‖2),
(3.50)
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for all t ≥ max{T0, T1}, since (3.11) and (3.40). On the other hand, by (1.3),

∫
RN

|f(x, u)|2dx ≤ 2α2
2

∫
RN

|u|2p−2dx+ 2‖φ2‖2. (3.51)

This, combining with (3.50), completes the proof. �

Lemma 3.13. For any ε > 0, any τ ∈ R and any B ⊂ L2(RN ) is bounded, there
exist Tε > τ and Kε > 0 such that

∫
|x|≥K

|∇Uσ(t, τ)uτ |2dx ≤ ε, (3.52)

for all K ≥ Kε, t ≥ Tε, all uτ ∈ B and all σ ∈ Hw(g).

Proof. By multiplying (1.1) by −2φ(|x|2/k2)∆u, where φ is in Lemma 3.5, we
obtain

d

dt

∫
RN

φ
( |x|2
k2

)
|∇u|2dx+ 2

∫
RN

φ′
( |x|2
k2

)
ut

2x
k2

· ∇u dx

+ 2
∫

RN

φ
( |x|2
k2

)
|∆u|2dx+ 2

∫
RN

φ
( |x|2
k2

)
f ′u(x, u)|∇u|2dx

+ 2
∫

RN

φ′
( |x|2
k2

)
f(u)

2x
k2

· ∇u dx+ 2
∫

RN

φ
( |x|2
k2

)
f ′x(x, u)∇u

+ 2λ
∫

RN

φ
( |x|2
k2

)
|∇u|2 + 2λ

∫
RN

φ′
( |x|2
k2

)
u

2x
k2

· ∇u dx

= −
∫

RN

σ(t, x)φ
( |x|2
k2

)
∆u dx.

(3.53)

Using arguments similar to Lemma 3.5, taking into account (1.8), we find that

d

dt

∫
RN

φ
( |x|2
k2

)
|∇u|2dx+ λ

∫
RN

φ
( |x|2
k2

)
|∇u|2dx

≤ C

∫
RN

φ
( |x|2
k2

)
|∇u|2dx+

C

k

(
‖ut‖2 + ‖u‖2 + ‖∇u‖2 +

∫
RN

|f(x, u)|2dx
)

+
∫

RN

φ
( |x|2
k2

)
|φ5(x)|2dx+ C

∫
|x|≥k

|σ(t, x)|2dx.

(3.54)
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By Gronwall’s lemma, Lemma 3.5 and Lemma 3.12,∫
RN

φ
( |x|2
k2

)
|∇u(t)|2dx

≤ e−λ(t−T )‖∇u(T )‖2 + C

∫ t

T

e−λ(t−s)

∫
RN

φ
( |x|2
k2

)
|∇u(s)|2 dx ds

+
C

k

∫ t

T

e−λ(t−s)(1 + ‖ut(s)‖2 + ‖∇u(s)‖2 + ‖σ(s)‖2)ds

+ C

∫
|x|≥k

|φ5(x)|2dx+ C

∫ t

T

e−λ(t−s)

∫
|x|≥k

|σ(t, x)|2 dx ds

≤ e−λ(t−T )‖∇u(T )‖2 + C

∫ t

T

e−λ(t−s)

∫
RN

φ
( |x|2
k2

)
|∇u(s)|2 dx ds

+
C

k

∫ t

T

e−λ(t−s)(1 + ρ0 + ρ1 + ‖σ(s)‖2)ds

+ C

∫
|x|≥k

|φ5(x)|2dx+ C sup
t∈RN

∫ t+1

t

∫
|x|≥k

|g(t, x)|2 dx ds.

(3.55)

From (3.11), (3.24) and the fact that φ5 ∈ L2(RN ), after detailed computations,
we obtain from (3.55) the desired result. �

Now, we define a smooth function ψ = 1 − φ, and for a given positive number
k, define vk(t, x) = ψ(|x|2/k2)u(t, x). Then, vk is a unique solution to the initial
Cauchy problem

vk
t −∆vk + ψ

( |x|2
k2

)
f(x, u) + λvk

= u∆ψ +
4
k2
ψ′

( |x|2
k2

)
x · ∇u+ ψ

( |x|2
k2

)
g(t),

vk|∂B2k
= 0

vk(τ) = ψ
( |x|2
k2

)
uτ .

(3.56)

Consider the eigenvalue problem

−∆w = λw in B2k, with w|∂B2k
= 0.

Then the problem has a family of eigenfunctions {ej}j≥1 with corresponding eigen-
values {λj}j≥1 such that {ej}j≥1 form an orthogonal basis of H1

0 (B2k) and 0 <
λ1 ≤ λ2 ≤ . . . ≤ λn →∞. For given integer m, any u ∈ H1

0 (B2k) has a unique de-
composition u = u1 +u2 = Pmu+(Id−Pm)u, where Pm is the canonical projector
from H1

0 (B2k) onto the subspace span{e1, e2, . . . , em}.
We have the following lemma about the precompactness of vk.

Lemma 3.14. Let k > 0 is fixed. Then, for any τ ∈ R and any ε > 0, there exist
T > τ , m0 ∈ N such that

‖(Id− Pm)vk(t)‖2H1
0 (B2k) ≤ ε, ∀t ≥ T,m ≥ m0 and ∀σ ∈ Hw(g). (3.57)
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Proof. Let vk = Pmv
k + (Id−Pm)vk = v1 + v2, and then multiply (3.56) by −∆v2

in L2(B2k), we find that

1
2
d

dt
‖v2‖2H1

0 (B2k) + ‖∆v2‖2L2(B2k)

−
∫

B2k

ψ
( |x|2
k2

)
∆v2f(x, u)dx+ λ‖v2‖2H1

0 (B2k)

≤ −
∫

B2k

u∆v2∆ψdx−
4
k2

∫
B2k

ψ′
( |x|2
k2

)
∆v2x · ∇u dx

−
∫

B2k

ψ
( |x|2
k2

)
g(t)∆v2dx.

(3.58)

From definition of ψ, we obtain∣∣ ∫
B2k

ψ
( |x|2
k2

)
∆v2f(x, u)dx

∣∣ ≤ 1
8
‖∆v2‖2L2(B2k) + C

∫
RN

|f(x, u)|2dx, (3.59)∫
B2k

u∆v2∆ψdx ≤
1
8
‖∆v2‖2L2(B2k) + C‖u‖2, (3.60)∫

B2k

ψ′
( |x|2
k2

)
∆v2x · ∇u dx ≤

1
8
‖∆v2‖2L2(B2k) + C‖∇u‖2, (3.61)∫

B2k

ψ
( |x|2
k2

)
g(t)∆v2dx ≤

1
8
‖∆v2‖2L2(B2k) + C‖g(t)‖2. (3.62)

From (3.58)-(3.62) and noting that ‖∆v2‖2L2(B2k) ≥ λm‖v2‖2H1
0 (B2k)

, we obtain

d

dt
‖v2‖2H1

0 (B2k) + λm‖v2‖2H1
0 (B2k)

≤ C
(
‖u‖2 + ‖∇u‖2 +

∫
RN

|f(x, u)|2dx+ ‖σ(t)‖2
)
.

(3.63)

Take T large enough such that (3.11) and (3.45) hold for all t ≥ T . Integrating
(3.63) from T to t ≥ T , and using (3.11) and (3.45), we find that

‖v2(t)‖2H1
0 (B2k)

≤ e−λm(t−T )‖v2(T )‖2H1
0 (B2k)

+ C

∫ t

T

e−λm(t−s)
(
‖u(s)‖2 + ‖∇u(s)‖2 +

∫
R
|f(x, u(s))|2dx+ ‖σ(s)‖2

)
ds

≤ e−λm(t−T )‖v2(T )‖2H1
0 (B2k) + C

∫ t

T

e−λm(t−s)
(
1 + ρ1 + ‖σ(s)‖2

)
ds.

(3.64)

Noting that

‖v2(T )‖2H1
0 (B2k) ≤ ‖v(T )‖2H1

0 (B2k) ≤ ‖u(T )‖2H1(RN ) ≤ ρ1

and taking into account Lemma 3.8, we obtain (3.57) by letting t and m tend to
infinity. �

Proof of Theorem 1.1. From Proposition 3.3, there is a bounded absorbing set in
H1(RN )∩Lp(RN ) for {Uσ(t, τ)}σ∈Hw(g). Thus, by Theorem 3.10, it is sufficient to
prove the uniform asymptotic compactness of {Uσ(t, τ)}σ∈Hw(g) in H1(RN ).
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For τ ∈ R, let {xn} be a bounded sequence in L2(RN ), {tn} such that tn → +∞
and {σn} ⊂ Hw(g), we have to prove that {Uσn(tn, τ)xn}n≥1 is precompact in
H1(RN ). Given ε > 0, from Lemmas 3.5 and 3.13, there exist k1 > 0 and N1 such
that ∫

|x|≥2k

(
|Uσn

(tn, τ)xn|2 + |∇Uσn(tn, τ)xn|2
)
dx ≤ ε, (3.65)

as n ≥ N1 and k ≥ k1. Denote

vk(tn) = ψ
( |x|2
k2

)
Uσn

(tn, τ)xn. (3.66)

From Lemma 3.14, we obtain N2 and m ∈ N satisfying

‖ (Id− Pm) vk(tn)‖2H1
0 (B2k) ≤ ε, (3.67)

whenever n ≥ N2. By Proposition 3.3, we find that {Pm(vk(tn))}n≥1 is bounded
in a finite dimensional space, which along with (3.67) shows that {vk(tn)}n≥1 is
precompact in H1

0 (B2k). Thus, we obtain by (3.66) that {Uσn(tn, τ)xn} is precom-
pact in H1(B2k) since ψ(|x|2/k2) = 1 as |x| ≤ k. Combining this with inequality
(3.65) implies the uniform asymptotic compactness of {Uσn(tn, τ)xn} in H1(RN ).
This completes the proof. �

4. Continuous dependence of the attractor on the nonlinearity

Recall that in this section, we consider a family of function fγ , γ ∈ Γ, such that
for each γ ∈ Γ, fγ satisfies (1.2)-(1.5) and (1.8) where the constants are independent
of γ. The topology T in Γ can be defined as follows:

If γm → γ in T then fγm
(x, s) → fγ(x, s) for all x ∈ RN and s ∈ R.

Let {Uγ
σ (t, τ)}σ∈Hw(g) be the family of processes corresponding to the problem

ut −∆u+ fγ(x, u) + λu = g(t, x), x ∈ RN , t > τ,

u(τ) = uτ , x ∈ RN .
(4.1)

From the previous section, for each γ ∈ Γ, the family of processes {Uγ
σ (t, τ)}σ∈Hw(g)

has a compact uniform attractor Aγ in H1(RN ). Our aim in this section is proving
the upper semicontinuity of a family uniform attractors {Aγ}γ∈Γ; that is, if γm → γ
in T as m→∞, then Aγm tends to Aγ in the sense that

lim
m→∞

distL2(RN )(Aγm
,Aγ) = 0. (4.2)

The following lemma is the key.

Lemma 4.1. Let {xn} ⊂ L2(RN ), {σn} ∈ Hw(g) and {γn} ⊂ Γ such that

xn ⇀ x0 weakly in L2(RN ), (4.3)

σn ⇀ σ weakly in Hw(g), (4.4)

γn → γ in Γ (4.5)

as n→∞. Then, for any t ≥ τ , there exists a subsequence {j} of {n} such that

Uγj
σj

(t, τ)xj → Uγ
σ (t, τ)x0 strongly in L2(RN ). (4.6)
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Proof. Denote by un(t) = Uγn
σn

(t, τ)xn, we find that un solves the problem

∂tun −∆un + fγn(x, un) + λun = σn(t),

un(τ) = xn.
(4.7)

Using Proposition 3.3 and noting that all constants are independent of n, we obtain

{un(t)} is bounded in H1(RN ) uniformly in n. (4.8)

Thus, there exists a function v0 ∈ L2(RN ) such that un(t) ⇀ v0 weakly in L2(RN )
(up to a subsequence). For each m > 0, take any ψ ∈ L2(Bm), we set ψ̄(x) = ψ(x)
for all x ∈ Bm and ψ̄(x) = 0 for all x > m. It is obviously that ψ̄ ∈ L2(RN ) and

(un(t), ψ)L2(Bm) = (un(t), ψ̄)L2(RN ) → (v0, ψ̄)L2(RN ) = (v0, ψ)L2(Bm). (4.9)

It implies that un(t) ⇀ v0 in L2(Bm) for all m > 0. On the other hand, by (4.8), for
m > 0, {un(t)} is bounded in H1(Bm), then we find that {un(t)} is precompact in
L2(Bm) since H1(Bm) ↪→ L2(Bm) compactly. By a diagonalization process, we can
choose a subsequence {j} of {n} and vm ∈ L2(Bm) such that uj(t) → vm strongly
in L2(Bm) for all m > 0. Taking into account that un(t) ⇀ v0 weakly in L2(Bm)
for all m > 0, we obtain, by the uniqueness of weak limit,

uj(t) → v0 strongly in L2(Bm) for all m > 0. (4.10)

We will prove that uj(t) → v0 in L2(RN ). Indeed, we have∫
RN

|uj(t)− v0|2 ≤
∫

Bm

|uj(t)− v0|2 + 2
∫

Bc
m

|uj(t)|2 + 2
∫

Bc
m

|v0|2. (4.11)

We now control terms of the right hand side of (4.11). First, by (4.10) we obtain∫
Bm

|uj(t)− v0|2 → 0 as n→ +∞. (4.12)

Next, using arguments in Lemma 3.5, we easily deduce that∫
Bc

m

|uj(t)|2dx ≤ e−λ(t−τ)

∫
Bc

m

|xj |2dx+ C sup
t∈R

∫ t+1

t

∫
|x|≥m

|g(s, x)|2 dx ds

+ C

∫
Bc

m

|φ1(x)|dx+
C

m

∫ t

τ

(
‖uj(s)‖2 + ‖∇uj(s)‖2

)
ds.

(4.13)

Applying (1.7), (4.3), φ1 ∈ L1(RN ) and Proposition 3.3 in (4.13) gives us∫
Bc

m

|uj(t)|2dx→ 0 as j,m→ +∞. (4.14)

Because v0 ∈ L2(RN ), ∫
Bc

m

|v0|2dx→ 0 as m→ +∞. (4.15)

Combining (4.11)-(4.15), we claim that

uj(t) → v0 in L2(RN ) as n→ +∞. (4.16)

On the other hand, doing similarly to Lemma 3.4, we have

Uγj
σj

(t, τ)xj ⇀ Uγ
σ (t, τ)x0 in L2(RN ). (4.17)

From (4.16) and (4.17) we obtain the desired result. �
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Proof of Theorem 1.5. Assume that distL2(RN )(Aγn
,Aγ) 6→ 0. Hence, by the com-

pactness of Aγ , we can choose a positive constant δ > 0, a subsequence {m} of {n}
and ψm ∈ Aγm satisfying

distL2(RN )(ψm,Aγ) ≥ δ for all m ≥ 1. (4.18)

Since {Uγm
σ (t, τ)}σ∈Hw(g) has a uniform absorbing set, which is independent of m,

we see that the set A = ∪m≥1Aγm is bounded in L2(RN ), and then by the uniform
attracting property of Aγ , we can choose t large enough such that

distL2(RN ) (Uγ
σ (t, 0)A,Aγ) ≤ δ

2
, for all σ ∈ Hw(g). (4.19)

On the other hand,
Aγm

= ∪σ∈Hw(g)Kγm
σ (t), (4.20)

thus there exists a σm ∈ Hw(g) such that ψm ∈ Kγm
σm

(t). By definition of Kγm
σm

,
we obtain an xm ∈ Kγm

σm
(0) that satisfies ψm = Uγm

σm
(t, 0)xm. Since {xn} ⊂

∪m≥1Kγm
σm

(0) is bounded in L2(RN ), Hw(g) is weakly compact, we can assume
without loss of generality that

xm ⇀ x0 in L2(RN ), (4.21)

σm ⇀ σ0 in Hw(g). (4.22)

Now, applying Lemma 4.1, we deduce that

ψm = Uγm
σm

(t, 0)xm → Uγ
σ0

(t, 0)x0 ∈ Uγ
σ0

(t, 0)A, (4.23)

which contradicts with (4.18) and (4.19). This completes the proof. �
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