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NUMERICAL APPROXIMATION FOR A DEGENERATE
PARABOLIC-ELLIPTIC SYSTEM MODELING FLOWS IN

POROUS MEDIA

RABAH-HACENE BELLOUT

Abstract. We present a numerical scheme for the approximation of the sys-

tem of partial differential equations of the Peaceman model for the miscible

displacement of one fluid by another in a two dimensional porous medium. In
this scheme, the velocity-pressure equations are treated by a mixed finite ele-

ment discretization using the Raviart-Thomas element, and the concentration
equation is approximated by a finite volume discretization using the Upstream

scheme, knowing that the Raviart-Thomas element gives good approximations

for fluids velocities and that the Upstream scheme is well suited for convection
dominated equations. We prove a maximum principle for our approximate

concentration more precisely 0 ≤ ch(x, t) ≤ 1 a.e. in ΩT as long as some grid

conditions are satisfied - at the difference of Chainais and Droniou [6]who have
only observed that their approximate concentration remains in [0; 1] (and such

is the case for other proposed numerical methods; e.g., [22, 21]). Moreover our

grid conditions are satisfied even with very large time steps and spatial steps.
Finally we prove the consistency of the proposed scheme and thus are assured

of convergence. A numerical test is reported.

1. Statement of the problem

This article is concerned with the numerical approximation of the system of
partial differential equations modeling the miscible displacement of one fluid by
another in a two dimensional porous medium, when the molecular diffusion effects
are neglected.

Let Ω be a convex polygonal bounded domain in R2, representing the porous
reservoir, (0, T ) a time interval and ΩT = Ω × (0, T ). Under appropriate physical
assumptions, the equations describing the displacement of one incompressible fluid
by another, completely miscible with the first, are given by:

div u = q+ − q−, (1.1)

u = − 1
µ(c)

grad p, (1.2)

∂tc+ u · grad c− div(D(u) grad c) + cq− = ĉq+ in ΩT . (1.3)
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We refer to Bear [3], Chavent and Jaffré [7], and Scheidegger [20] for a detailed
description of the model. Here, the gravitational terms are omitted for simplicity
of exposition, p denotes the pressure in the fluid mixture, u is the Darcy velocity,
c is the concentration of one of the two components of the fluid mixture, and µ is
the concentration-dependent viscosity. By definition

0 ≤ c(x, t) ≤ 1, (x, t) ∈ ΩT .

We assume that the function µ is such that µ and 1/µ are strictly convex, and

µ ∈ C2([0, 1]), 0 < µ− ≤ µ(c) ≤ µ+ ∀c ∈ (0, 1), (1.4)

where µ− and µ+ are two fixed real numbers. The following form is widely used,
see Koval [16],

µ(c) = µ(0)
(
1 + (M1/4 − 1)c

)−4
, (1.5)

where M = µ(0)/µ(1) > 1 is the mobility ratio, this function satisfies (1.4). The
stability of the flow is characterized by the mobility ratio. At relatively high flow
velocities, corresponding to Péclet numbers Pe � 1, the effects of mechanical
dispersion are much greater than those of molecular diffusion, the contribution of
molecular diffusion often is negligible, see Bear [3], Pearson and Tardy [18]. In this
case, the tensor D(u) has the form:

D(u) =
(
dl

uu>

|u|
+ dt

(
|u|I− uu>

|u|

))
, (1.6)

where I is the identity matrix, and dl ≥ dt > 0 are the longitudinal and transverse
dispersion coefficients, respectively.

The functions q+ and q− are the injection and production source terms, respec-
tively, and ĉ is specified at the sources and is equal to the resident concentration at
the sinks. System (1.1)– (1.3), which is a partial differential system is of degenerate
elliptic-parabolic type, is completed by the boundary conditions

u · ν = 0 on ΓT , (1.7)

D(u) grad c · ν = 0 on ΓT , (1.8)

and by the initial condition

c(x, 0) = c0(x) for x ∈ Ω. (1.9)

Here ΓT = Γ × (0, T ), Γ denoting the boundary of Ω, and ν is the unit normal
pointing outward Ω.

Since the pressure is only determined up to a constant we additionally require
that the pressure is normalized; i.e.,∫

Ω

p(x, t)dx = 0, t ∈ (0, T ). (1.10)

Equation (1.1) (with (1.2)) is the pressure equation derived from the conservation of
the total mass and (1.3) is the concentration equation derived from the conservation
of mass for one of the two components of the mixture. The pressure equation is of
elliptic nature while the concentration equation is an advection-diffusion equation,
advection being the dominant phenomenon. Notice that, because the molecular
diffusion effects are neglected, Equation (1.3) is of degenerate parabolic type; the
tensor D(u) is semi-positive, satisfying

D(u)ξ · ξ ≥ dt|u| |ξ|2, |D(u)ξ| ≤ dl|u||ξ| for ξ ∈ R2.
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The diffusion operator may be zero pointwise, it can be small or zero in regions of
the solution space, and fairly large for other values of the solution. Consequently,
solutions of the concentration equation will, in general, possess minimal smoothness.
We do not know a priori the regions where u has zero, small or large values. Taking
into account the molecular diffusion effects makes the tensor D(u) more regular and
our next analysis will be still valid. We did not also include the permeability in our
model since we were mainly concerned by the degenerate type of the concentration
equation (1.3). We assume that q+ and q− are non-negative functions satisfying
q+, q− ∈ L∞(0, T ;L2(Ω)) with∫

Ω

(q+ − q−)(x, t)dx = 0 a.e. for t ∈ (0, T ) (1.11)

while c0 and ĉ satisfy

ĉ, c0 ∈ L∞(Ω), 0 ≤ ĉ(x) ≤ 1, 0 ≤ c0(x) ≤ 1 a.e. in Ω. (1.12)

System (1.1)–(1.3), (1.7)– (1.9) is referred in the following as Problem P. This
problem is a nonlinear system coupling an elliptic equation and a degenerate par-
abolic equation. A weak solution of Problem P is defined by the following sense.

Definition 1.1. A pair (p, c) is said to be a weak solution of Problem P if:
(i) p ∈ L∞(0, T ;H1(Ω)) and p is a solution of the elliptic problem (1.1), (1.2),

(1.7), (1.10);
(ii) c ∈ L∞(ΩT ) with 0 ≤ c(x, t) ≤ 1 for a. e. (x, t) ∈ ΩT , |u|1/2 grad c ∈

(L2(ΩT ))2, and c satisfies (1.3), (1.8), (1.9) in the sense∫
ΩT

{c∂tϕ+ cu · gradϕ−D(u) grad c · gradϕ− cq−ϕ} dx dt

= −
∫

ΩT

ĉq+ϕdx dt−
∫

Ω

c0(x)ϕ(x, 0)dx,
(1.13)

for any ϕ in C2(ΩT ) with compact support in Ω× [0, T [.

The existence of a weak solution of Problem P is proved by Amirat and Ziani
in [2]. In this paper we are concerned with the numerical approximation of a weak
solution of Problem P. Several numerical procedures for hyperbolic or advection-
diffusion equations arising from flow problems in porous media have been proposed
and analyzed. We refer to Douglas and Hornung [9], Wheeler [23] and references
therein.

The following works are closely related to our subject. Jaffré and Roberts [15]
considered the non degenerate elliptic-parabolic system modeling a miscible flow,
including molecular diffusion effects. They derived error estimates for a semi-
discretized problem. Eymard and Gallouët [12] considered a system of an ellip-
tic equation and a hyperbolic equation arising in a flow problem in porous media.
They proved the convergence of a finite element - weighted finite volume scheme.
Chainais and Droniou [6] proved the convergence of a finite volume scheme for an
elliptic-parabolic system. Ameziane and El Ossmani [1] proposed a mixed finite
element - finite volume method based on a better Control Volume than we did but
using many more assumptions, among them their assumption (A10) which they say
is determined by the geometry of the grid and by the ”character” of the anisotropy
for the diffusion-dispersion tensor D. We also mention the papers dealing with finite
volume schemes for flow in porous media by Eymard et al [14], Sun and Yuan [21],
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Marpeau and Saad [17]. In this last reference, a particular emphasis is made on
the control of CPU time and we are instead mainly concerned with the degenerate
nature of the concentration equation. More recently, Choquet and Zimmermann
[8], proved a maximum principle for the concentration after a lengthy proof based
on projection theorems at the difference of our simple direct proof.

Here, we present a numerical scheme in which the velocity-pressure equation
is treated by a space mixed finite element discretization and the concentration
equation is approximated by a space finite volume discretization with a time semi-
implicit Euler scheme. Our main contribution concern the proof of uniform esti-
mates of our approximate concentration, more precisely 0 ≤ ch(x, t) ≤ 1 a.e. in ΩT
under suitable CFL conditions (2.16) and (2.17).

The outline of the paper is as follows. In Sect. 2 we present the discrete equa-
tions and state the main theorem concerning uniform estimates of the approximate
solutions and the convergence of the proposed scheme. Sect. 3 is devoted to the
proof of the theorem. In Sect. 4 we report some numerical results we obtained in
the case of a benchmark incompressible flow within a horizontal reservoir over a
period of ten years with injection and production wells at the corners studied by
R.E. Ewing and al [22].

2. The discrete problem

2.1. Notation and Definitions. Let h > 0 be a small parameter and let Th be an
admissible mesh of Ω, in the sense of [13, Definition 3.5], by triangles with diameter
bounded by h. Let Sh be the set of triangles of Th. For each triangle Tj ∈ Sh, mj

denotes the area of Tj and xj stands for the orthocenter of Tj . For two adjacent
triangles Tj and Tk, we denote σjk = Tj∩Tk, τjk = mjk/djk where mjk = m(σjk) is
the length of σjk and djk is the distance between xj and xk, and νjk is the outward
unit normal on σjk in the direction Tk.

We denote by E +
h the set of all edges of the triangles of Th, E 0

h the set of the edges
σ located on the boundary Γ, and Eh = E +

h \E 0
h . Any edge σ in Eh will be denoted

σjk, with the convention j < k, since it is a common edge to two triangles Tj and
Tk. For convenience we denote by j (j ∈ Sh) the triangle Tj of Th. For j ∈ Sh, Nj
is the set of triangles Tk of Th that share an edge σjk, ∂Tj ∩ ∂Tk 6= ∅. We will use
the following property concerning the triangulation:

∑
(j,k)∈Eh

mjk ≤ Ch−1, where
C is a number which depends only on the diameter of Ω and on the regularity of
the triangulation.

Let the spaces V and W be defined as

W = L2(Ω), V = {v ∈ L2(Ω)2; div v ∈ L2(Ω), v · ν |Γ= 0},

The space V being equipped with the norm ‖v‖2V = ‖v‖2L2(Ω) + ‖div v‖2L2(Ω). We
introduce two discrete subspaces of V and W due to Raviart and Thomas [19]:

Vh = {vh; vh ∈ V, vh |Tj
= aj + cjx for any j ∈ Sh},

Wh = {wh ∈W ; wh |Tj is constant for any j ∈ Sh},

where aj = (aj1, aj2) ∈ R2, cj ∈ R, and x = (x1, x2) is the space variable. We also
define the spaces W 0 = W/R , and W 0

h = Wh/R.
The space Wh is generated by the basis functions (ψj)j∈Sh

that are piecewise
constant, ψj(x) = 1 for x ∈ Tj and zero elsewhere. For the flux function vh in
Vh, we have vh =

∑
σ∈Eh

vσφσ, vσ ∈ R. Note that σ ∈ Eh stands for an edge
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σjk of triangles Tj and Tk associated with the normal unit vector νjk. The basis
function φσ is non zero only on Tj ∪ Tk, the restriction of φσ on Tj or Tk writes
(a1 + cx1, a2 + cx2), and φσ · νσ′ = δσ,σ′ , where δσ,σ′ is the Kronecker delta symbol.
These basis functions can be found in Raviart and Thomas [19] or in Ern and
Guermond [11, p.41-42].

Let N be a positive integer. We set as time step ∆t = T/N and tn = n∆t for n =
0, N . The discrete unknowns are the values of the pressure and the concentration
(pnj , c

n
j ), and that of the flux unσ, for 1 ≤ n ≤ N , j ∈ Sh, σ ∈ Eh, given by

the numerical procedure described below, see Subsect. 2.2. We use the following
approximation for the initial data c0:

c0j =
1
mj

∫
Tj

c0(x)dx for any j ∈ Sh.

For 0 ≤ n ≤ N , we define pnh and cnh in Wh and unh ∈ Vh by

pnh =
∑
j∈Sh

pnj ψj , cnh =
∑
j∈Sh

cnj ψj , unh =
∑
σ∈Eh

unσφσ.

We also define, for x ∈ Tj , j ∈ Sh, tn ≤ t < tn+1, and 0 ≤ n ≤ N − 1,

ph(x, t) = pnh(x) +
t− tn

∆t
(pn+1
h (x)− pnh(x)), uh(x, t) = unh(x), (2.1)

ch(x, t) = cnh(x) +
t− tn

∆t
(cn+1
h (x)− cnh(x)). (2.2)

For f = q+, q−, or ĉ, we denote

fn,j =
1

mj∆t

∫ tn+1

tn

∫
Tj

f(x, s)dx ds, fn,h(x) = fn,j , fh(x, t) = fn,h(x),

for x ∈ Tj , j ∈ Sh, tn ≤ t < tn+1, and 0 ≤ n ≤ N − 1.

2.2. The discrete equations. To discretize the pressure equation, we use a mixed
finite element scheme for the spatial discretization. Suppose that the approximate
solution (pnh,u

n
h, c

n
h) of (p,u, c) at time tn is given, (p, c) denoting a weak solution

of Problem (P ). Then (pn+1
h ,un+1

h ) is determined by

pn+1
h ∈W 0

h , un+1
h ∈ Vh, (2.3)∫

Ω

div un+1
h (x)ψh(x) dx =

∫
Ω

(q+
n,h − q

−
n,h)(x)ψh(x) dx ∀ψh ∈Wh (2.4)∫

Ω

µ(cnh(x))un+1
h (x)vh(x)dx−

∫
Ω

pn+1
h (x) div(vh(x))dx = 0 ∀vh ∈ Vh (2.5)

The existence and uniqueness of a solution of Problem (2.4), (2.5) is well-known,
see Raviart and Thomas [19], and Brezzi and Fortin [5], since the space (Wh, Vh)
satisfy the inf-sup condition; there is γ > 0 such that

inf
ψ∈Wh

sup
v∈Vh

(div v, ψ)
‖v‖H(div)‖ψ‖L2

≥ γ.

The pair (pn+1
h ,un+1

h ) ∈W 0
h × Vh is then uniquely defined. Denoting

un+1
j,k =

1
mjk

∫
σjk

un+1
h (x) · νjk dγ(x), j ∈ Sh, k ∈ Nj ,
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System (2.4), (2.5) can be written in the form:∑
k∈Nj

mjku
n+1
j,k = mj(q+

n,j − q
−
n,j) (2.6)

∑
σ′∈Eh

un+1
σ′

∫
Ω

µ(cnh(x))φσ′(x)φσ(x)dx−
∑
k∈Sh

pn+1
k

∑
i∈Nk

∫
σki

φσ(x)νkidγ = 0 (2.7)

for any j ∈ Sh and σ ∈ Eh, with the constraint∑
k∈Sh

mkp
n+1
k = 0 (2.8)

We now turn to the the discretization of the concentration equation (1.3). First,
we write (1.3) in the conservative form

∂tc+ div(cu−D(u) grad c) + cq− = ĉq+ for (x, t) ∈ ΩT . (2.9)

We use a semi-implicit Euler scheme in time and an upwind finite volume scheme
in space. We write formally, for each j ∈ Sh,∫

Tj

(c(x, tn+1)− c(x, tn)) dx+ ∆t
∫
Tj

div(c(x, tn)un+1
h (x))dx

−∆t
∫
Tj

div(D(un+1
h (x)) grad c(x, tn+1))) dx+ ∆t

∫
Tj

q−n,h(x)c(x, tn)dx

= ∆t
∫
Tj

ĉn,h(x)q+
n,h(x) dx.

We approximate the convective term by∫
Tj

div(c(x, tn)un+1
h (x))dx =

∫
∂Tj

c(x, tn)un+1
h (x) · νj dγ(x)

≡
∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k ).

Here Qjk is the numerical flux constructed with the upwind method:

Qjk(un+1
h , cnj , c

n
k ) = mjk(un+1

j,k )+cnj +mjk(un+1
j,k )−cnk , (2.10)

where

(un+1
j,k )+ =

{
un+1
j,k if un+1

j,k > 0,
0 otherwise,

(un+1
j,k )− =

{
un+1
j,k if un+1

j,k < 0,
0 otherwise.

For the dispersive term, we write∫
Tj

div(D(un+1
h (x)) grad c(x, tn+1)) dx =

∫
∂Tj

D(un+1
h (x)) grad c(x, tn+1) · νj dγ(x)

Taking into account the form (1.6) of the tensor D(u), we have to handle with two
types of terms (which give the weighted flux through the edges σjk)

un+1
h (x) · grad c(x, tn+1) and |un+1

h (x)| grad c(x, tn+1) · νj .

We have for the first one,∫
∂Tj

un+1
h (x)(un+1

h (x))>

|un+1
h (x)|

grad c(x, tn+1) · νj dγ(x)
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=
∫
∂Tj

un+1
h (x)
|un+1
h (x)|

· grad c(x, tn+1) un+1
h (x) · νj dγ(x)

≡
∑
k∈Nj

(cn+1
k − cn+1

j )
djk

∫
σjk

|un+1
h (x) · νjk|2

|un+1
h (x)|

dγ(x).

We have neglected the tangential component of the vector grad c(x, tn+1) since we
are integrating over the control volume Tj and approximating c(x, tn+1) by cn+1

h in
Wh. The integration over a better control volume will be more precise certainly but
once more we are mainly concerned by the degenerate type of the concentration
equation (1.3). The second term is given by∫

∂Tj

|un+1
h (x)| grad c(x, tn+1) · νjdγ(x)

≡
∑
k∈Nj

(cn+1
k − cn+1

j )
djk

∫
σjk

|un+1
h (x)| dγ(x).

Then ∫
Tj

div(D(un+1
h (x)) grad c(x, tn+1)) dx ≡

∑
k∈Nj

Djk(un+1
h , cn+1

j , cn+1
k ),

where Djk is given by

Djk(un+1
h , cn+1

j , cn+1
k ) = fn+1

jk

(cn+1
k − cn+1

j )
djk

(2.11)

with

fn+1
jk = (dl − dt)

∫
σjk

|un+1
h (x) · νjk|2

|un+1
h (x)|

dγ(x) + dt

∫
σjk

|un+1
h (x)| dγ(x).

=
∫
σjk

D(un+1
h (x))νjk · νjk dγ(x)

Then we define the approximate solution cn+1
h , corresponding to the discretization

of (2.9), by the scheme:

mj(cn+1
j − cnj ) + ∆t

∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k )

−∆t
∑
k∈Nj

Djk(un+1
h , cn+1

j , cn+1
k ) + ∆tmjq

−
n,jc

n
j = ∆tmj ĉn,jq

+
n,j

(2.12)

The semi-implicit scheme (2.12) writes also:(
1 +

∆t
mj

Bn+1
j

)
cn+1
j = cnj

(
1− ∆t

mj
Anj

)
− ∆t
mj

∑
k∈Nj

mjk(un+1
j,k )−cnk

+
∆t
mj

∑
k∈Nj

1
djk

fn+1
jk cn+1

k + ∆tĉn,jq+
n,j ,

(2.13)

where
Anj =

∑
k∈Nj

mjk(un+1
j,k )+ +mjq

−
n,j , Bn+1

j =
∑
k∈Nj

1
djk

fn+1
jk , (2.14)

for j ∈ Sh, 0 ≤ n ≤ N − 1. Note that fn+1
jk ≥ 0, so that Anj ≥ 0 and Bn+1

j ≥ 0.



8 R.-H. BELLOUT EJDE-2012/204

We make the following assumptions on the time step ∆t. Let

θnj,k = 1− 2
∆t
mk

mjk(un+1
j,k )+, (2.15)

for j ∈ Sh, k ∈ Nj , 0 ≤ n ≤ N − 1. Let θ0 be a fixed number, 0 < θ0 ≤ 1. We
assume:

∆t
mj

Anj ≤ 1 for j ∈ Sh, 0 ≤ n ≤ N − 1, (2.16)

θnj,k ≥ θ0 for j ∈ Sh, k ∈ Nj , 0 ≤ n ≤ N − 1. (2.17)

Condition (2.16) is imposed to ensure 0 ≤ ch(x, t) ≤ 1 a.e. in ΩT , and (2.17) allows
to show an estimate on the total variation of the function ch. By uniform estimates
on ph and uh that will be established in the next section, we will see that (2.16)
and (2.17) are available if the time step restriction

∆t ≤ Ch2, where C is an arbitrary positive constant, (2.18)

is imposed (h2 is due to the fact that the velocity field u is not in L∞). However
this restriction is only used for the proof of the stability and is easily satisfied in
practise - see the numerical experiments in Sect. 4.

3. Stability and consistency of the approximation

Let (ph), (uh) and (ch) be defined by (2.1)–(2.5), (2.12). We prove uniform
estimates of (ph) and (uh) in L2(ΩT ) and (L2(ΩT ))2, respectively. Using (2.16) we
show that 0 ≤ ch(x, t) ≤ 1 a.e. in ΩT . Using (2.17) we establish a uniform estimate
on the total variation of ch. Finally we prove that the numerical scheme (2.6), (2.7),
(2.12) is consistent with the concentration equation (2.9). In the following, we will
use often C to represent a generic positive constant depending only on fixed data.

3.1. Estimates of the pressure and the flux. We have the following result.

Proposition 3.1. The sequence (ph) is bounded in L∞(0, T ;L2(Ω)) and (uh) is
bounded in L∞(0, T ;V ). Moreover, the discrete H1-norm of (ph) is uniformly
bounded; i.e.,

max
1≤n≤N

∑
(j,k)∈Eh

mjk

djk
|pnj − pnk |2 ≤ C.

Proof. From (2.7) we have∫
Tj∪Tk

µ(cnh(x))un+1
h (x) · φσjk

(x)dx = mjk(pn+1
j − pn+1

k ).

Since ∣∣ ∫
Tj∪Tk

µ(cnh(x))un+1
h (x) · φσjk

(x)dx
∣∣2 ≤ Ch2

∫
Tj∪Tk

|un+1
h (x)|2 dx

and mjk djk ≥ Ch2, we have

mjk

djk
|pn+1
j − pn+1

k |2 ≤ C
∫
Tj∪Tk

|un+1
h (x)|2 dx,
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then

max
1≤n≤N

∑
(j,k)∈Eh

mjk

djk
|pnj − pnk |2 ≤ C max

1≤n≤N

∑
j∈Sh

∑
k∈Nj

∫
Tj∪Tk

|unh(x)|2 dx

≤ C‖uh‖L∞(0,T ;L2(Ω)) .

(3.1)

Taking vh = un+1
h in (2.5) and ψh = pn+1

h in (2.4) yields∫
Ω

µ(cnh)un+1
h (x) · un+1

h (x)dx =
∫

Ω

(q+
n,h − q

−
n,h)(x)pn+1

h (x)dx.

Using (1.4), the Cauchy-Schwarz inequality and the discrete Poincaré inequality for
the function pn+1

h ∈W 0
h , we obtain

‖un+1
h ‖2(L2(Ω))2 ≤ C‖q

+
n,h − q

−
n,h‖L2(Ω)

( ∑
(j,k)∈Eh

mjk

djk
|pn+1
j − pn+1

k |2
)1/2

≤ C
( ∑

(j,k)∈Eh

mjk

djk
|pn+1
j − pn+1

k |2
)1/2

.

(3.2)

We deduce from (3.1) and (3.2) that

max
1≤n≤N

∑
(j,k)∈Eh

mjk

djk
|pnj − pnk |2 ≤ C, ‖uh‖L∞(0,T ;L2(Ω)) ≤ C. (3.3)

Taking ψh = div un+1
h in (2.4) yields∫

Ω

|div un+1
h (x)|2 dx =

∫
Ω

(q+
n,h − q

−
n,h)(x) div un+1

h (x)dx,

which implies, by the Cauchy-Schwarz inequality,

‖ div un+1
h ‖L2(Ω) ≤ ‖q+

n,h − q
−
n,h‖L2(Ω).

We conclude that (div uh) is bounded in L∞(0, T ;L2(Ω)) and then (uh) is bounded
in L2(0, T ;V ). �

Since the scheme (2.12) involves numerical fluxes, we need the following esti-
mates.

Lemma 3.2. There exists a positive number C such that∑
k∈Nj

∫
σjk

|un+1
h (x) · νjk|2 dγ(x) ≤ Ch−1‖un+1

h ‖2L2(Tj), (3.4)

and

max
1≤n≤N

( ∑
(j,k)∈Eh

∫
σjk

|unh(x) · νjk| dγ(x)
)
≤ Ch−1. (3.5)

uniformly with respect to h, ∆t and j ∈ Sh.

Proof. We use the property of uh, that is the restriction of uh to any triangle Tj
in Sh belongs to L∞(0, T ;H1(Tj)). We will make use of the following well-known
result(a proof of which is attached as an appendix at the end for the convenience
of the reader.), there is a constant C such that, for ϕ ∈ H1(Tj), the local inverse
estimate holds:

‖ϕ‖2L2(∂Tj) ≤ C‖ϕ‖L2(Tj)

(
‖ gradϕ‖L2(Tj) + h−1‖ϕ‖L2(Tj)

)
.



10 R.-H. BELLOUT EJDE-2012/204

We have ∑
k∈Nj

∫
σjk

|un+1
h (x) · νjk|2 dγ(x)

≤ C‖un+1
h ‖L2(Tj)

(
|un+1
h |1,Tj

+ h−1‖un+1
h ‖L2(Tj)

)
,

where |un+1
h |1,Tj

is the semi-norm involving the L2-norms of the spatial derivatives
of order 1 of un+1

h . Recall that

un+1
h

∣∣
Tj

=
∑
k∈Nj

un+1
j,k φσjk

.

Using properties of the basis functions φσjk
, we have

|un+1
h |21,Tj

≤ C
∑
k∈Nj

|un+1
j,k |

2.

Since
|un+1
j,k |

2 ≤ Ch−1

∫
σjk

|un+1
h (x) · νjk|2 dγ(x),

we obtain

|un+1
h |1,Tj

≤ C
(
h−1

∑
k∈Nj

∫
σjk

|un+1
h (x) · νjk|2 dγ(x)

)1/2

.

Thus ∑
k∈Nj

∫
σjk

|un+1
h (x) · νjk|2 dγ(x)

≤ C‖un+1
h ‖L2(Tj)

((
h−1

∑
k∈Nj

∫
σjk

|un+1
h (x) · νjk|2 dγ(x)

)1/2

+ h−1‖un+1
h ‖L2(Tj)

)
,

and using the inequality 2ab ≤ a2 + b2, we get the first estimate (3.4). Summing
(3.4) over all triangles Tj , we obtain∑

j∈Sh

∑
k∈Nj

∫
σjk

|un+1
h (x) · νjk|2 dγ(x) ≤ Ch−1‖un+1

h ‖2L2(Ω).

Using the inequality( ∑
(j,k)∈Eh

∫
σjk

|un+1
h (x) · νjk| dγ(x)

)2

≤
( ∑

(j,k)∈Eh

mjk

)( ∑
(j,k)∈Eh

∫
σjk

|un+1
h (x) · νjk|2 dγ(x)

)
,

and
∑

(j,k)∈Eh
mjk ≤ Ch−1, it follows that

max
1≤n≤N

( ∑
(j,k)∈Eh

∫
σjk

|unh(x) · νjk| dγ(x)
)
≤ Ch−1 max

1≤n≤N
‖unh‖L2(Ω),

from which, according to the boundedness of (uh) in (L∞(0, T ;L2(Ω)))2, we deduce
the estimate on the flux (3.5). The proof of Lemma 3.2 is complete. �
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3.2. Estimates for the concentration. Clearly, Anj defined in (2.14) is bounded
by a constant Ch which may depend on h but does not depend on j ∈ Sh and on
0 ≤ n ≤ N − 1. By the Cauchy-Schwarz inequality we have∑

k∈Nj

mjk(un+1
j,k )+ ≤

∑
k∈Nj

∫
σjk

|un+1
h (x) · νjk| dγ(x)

≤ Ch1/2
( ∑
k∈Nj

∫
σjk

|un+1
h (x) · νjk|2 dγ(x)

)1/2

.

Using (3.4) we deduce that∑
k∈Nj

mjk(un+1
j,k )+ ≤ C‖un+1

h ‖L2(Tj)

for all j ∈ Sh and n, 0 ≤ n ≤ N − 1. Since (uh) is bounded in (L∞(0, T ;L2(Ω)))2,
‖un+1

h ‖L2(Tj) tends to 0 as h and ∆t tend to 0. We also have, for any j ∈ Sh and
0 ≤ n ≤ N − 1,

mjq
−
n,j ≤ C

h

∆t1/2

(∫ tn+1

tn

∫
Tj

|q−n,h(x)|2 dx dt
)1/2

,

and
∫ tn+1

tn

∫
Tj
|q−n,h(x)|2 dx dt tends to 0 as h and ∆t tend to 0. For the coefficient

Bn+1
j involving the term

∑
k∈Nj

1
djk
fn+1
jk , we note as in the proof of Lemma 3.2

that ∑
k∈Nj

1
djk

fn+1
jk ≤ Ch−1‖un+1

h ‖L2(Tj),

thus

max
1≤n≤N

∑
j∈Sh

∑
k∈Nj

1
djk
|fnjk| ≤ Ch−1 max

1≤n≤N
‖unh‖L2(Ω).

Consequently, if we suppose

∆t ≤ Ch2, where C is an a positive constant,

then relations (2.16) and (2.17) hold.
We remark that if q+ and q− belong to L∞(ΩT ), then (2.16) and (2.17) are

fulfilled under the condition ∆t ≤ Ch for a suitable positive constant C. The
following proposition provides the stability of the scheme (2.12) in the L∞(ΩT )
norm.

Proposition 3.3. The sequence (ch) constructed by the numerical scheme (2.12)
satisfies

0 ≤ ch(x, t) ≤ 1 a.e. in ΩT ,

provided the stability condition (2.16) is valid.

Proof. Starting from (cnj ) with 0 ≤ cnj ≤ 1, and according to (1.11), (1.12) and
(2.16), we deduce from the semi-implicit scheme (2.13) that cn+1

j ≥ 0 for all j ∈ Sh.
Using (2.6), we transform (2.13) to obtain(

1 +
∆t
mj

Bn+1
j

)
(1− cn+1

j ) = (1− cnj )
(

1− ∆t
mj

Anj

)
− ∆t
mj

∑
k∈Nj

mjk(un+1
j,k )−(1− cnk )
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+
∆t
mj

∑
k∈Nj

1
djk

fn+1
jk (1− cn+1

k ) + ∆t(1− ĉn,j)q+
n,j ,

then as above we infer that 1− cn+1
j ≥ 0 for all j ∈ Sh. We conclude that

0 ≤ cnj ≤ 1 for all j ∈ Sh and 0 ≤ n ≤ N − 1.

This completes the proof. �

At time level tn, for any edge in Eh, the flux unj,k associated with the edge σjk is
either greater than 0 or less than or equal to 0. We then select the edges such that

A n = {(j, k), j ∈ Sh, k ∈ Nj ; unj,k > 0}. (3.6)

We introduce the total variation of the function ch by

TV(ch) =
N−1∑
n=0

∆t
∑

(j,k)∈A n+1

mjku
n+1
j,k |c

n
k − cnj |.

We have the following estimate.

Lemma 3.4. There is a number C, independent of h and ∆t,such that

TV(ch) ≤ Ch−1/2. (3.7)

Proof. Let us write (2.12) in the form

cn+1
j − rnj =

∆t
mj

∑
k∈Nj

Djk(un+1
h , cn+1

j , cn+1
k ) (3.8)

with
rnj = cnj −

∆t
mj

∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k )−∆tq−n,jc

n
j + ∆tq+

n,j ĉn,j . (3.9)

Using (2.6), we transform (3.9) into

rnj = cnj −
∆t
mj

∑
k∈Nj

(
Qjk(un+1

h , cnj , c
n
k )−mjku

n+1
j,k cnj

)
+ ∆tgn,j (3.10)

where gn,j = q+
n,j(ĉn,j − cnj ). Multiplying (3.8) by cn+1

j and using the identity

(cn+1
j − rnj )cn+1

j =
1
2

(cn+1
j − rnj )2 +

1
2

(cn+1
j )2 − 1

2
(rnj )2,

we obtain

(cn+1
j )2 + (cn+1

j − rnj )2 − (rnj )2 = 2
∆t
mj

∑
k∈Nj

Djk(un+1
h , cn+1

j , cn+1
k )cn+1

j .

We observe that

2
∑
j∈Sh

∑
k∈Nj

Djk(un+1
h , cn+1

j , cn+1
k )cn+1

j = −
∑
j∈Sh

∑
k∈Nj

fn+1
jk

djk
(cn+1
k − cn+1

j )2.

According to (3.10), we have

(rnj )2 = (cnj )2 +
(∆t
mj

∑
k∈Nj

(
Qjk(un+1

h , cnj , c
n
k )−mjku

n+1
j,k cnj

))2

+ ∆t2(gn,j)2

− 2
∆t
mj

∑
k∈Nj

(
Qjk(un+1

h , cnj , c
n
k )−mjku

n+1
j,k cnj

)
cnj
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+ 2∆tcnj gn,j − 2∆tgn,j
∆t
mj

∑
k∈Nj

(
Qjk(un+1

h , cnj , c
n
k )−mjku

n+1
j,k cnj

)
.

Simple computations give the inequality

(rnj )2 ≤ (cnj )2 + 2
(∆t
mj

∑
k∈Nj

(
Qjk(un+1

h , cnj , c
n
k )−mjku

n+1
j,k cnj

))2

+ 2∆t2(gn,j)2

− 2
∆t
mj

∑
k∈Nj

(
Qjk(un+1

h , cnj , c
n
k )−mjku

n+1
j,k cnj

)
cnj + 2∆t|gn,j |.

By definition of Qjk we have∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k )cnj =

∑
k∈Nj

mjk(un+1
j,k )+(cnj )2 +

∑
k∈Nj

mjk(un+1
j,k )−cnkc

n
j (3.11)

According to the identity

cnj c
n
k =

1
2

(cnj )2 +
1
2

(cnk )2 − 1
2

(cnj − cnk )2,

we write (3.11) in the form∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k )cnj

= −1
2

∑
k∈Nj

mjk(un+1
j,k )−(cnj − cnk )2 +

1
2

∑
k∈Nj

mjk(un+1
j,k )−(cnk )2

+
1
2

∑
k∈Nj

mjk(un+1
j,k )−(cnj )2 +

∑
k∈Nj

mjk(un+1
j,k )+(cnj )2.

(3.12)

Since ∑
j∈Sh

∑
k∈Nj

mjk(un+1
j,k )−(cnk )2 = −

∑
(j,k)∈A n+1

mjku
n+1
j,k (cnj )2.

From (3.12) we deduce that∑
j∈Sh

∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k )cnj

= −1
2

∑
j∈Sh

∑
k∈Nj

mjk(un+1
j,k )−(cnj − cnk )2 +

1
2

∑
j∈Sh

∑
k∈Nj

mjku
n+1
j,k (cnj )2.

Using (2.6) and the identity∑
j∈Sh

∑
k∈Nj

mjk(un+1
j,k )−(cnj − cnk )2 = −

∑
(j,k)∈A n+1

mjku
n+1
j,k (cnj − cnk )2,

we obtain∑
j∈Sh

∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k )cnj

=
1
2

∑
(j,k)∈A n+1

mjku
n+1
j,k (cnj − cnk )2 +

1
2

∑
j∈Sh

mj(q+
n,j − q

−
n,j)(c

n
j )2.

Thus

2
∑
j∈Sh

∑
k∈Nj

(
Qjk(un+1

h , cnj , c
n
k )−mjku

n+1
j,k cnj

)
cnj =

∑
(j,k)∈A n+1

mjku
n+1
j,k (cnj − cnk )2.
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We also have the relations∑
k∈Nj

(
Qjk(un+1

h , cnj , c
n
k )−mjku

n+1
j,k cnj

)
=
∑
k∈Nj

mjk(un+1
j,k )−(cnk − cnj ),

and∑
j∈Sh

1
mj

( ∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k )−mjku

n+1
j,k cnj

)2

=
∑
j∈Sh

1
mj

( ∑
k∈Nj

mjk(un+1
j,k )−(cnk − cnj )

)2

=
∑

(j,k)∈A n+1

1
mk

(mjk(cnk − cnj )un+1
j,k )2.

Now, multiplying (3.10) by mj , summing over j ∈ Sh, and using the above results
we obtain∑

j∈Sh

mj(cn+1
j )2 +

∑
j∈Sh

mj(cn+1
j − rnj )2 + ∆t

∑
j∈Sh

∑
k∈Nj

fn+1
jk

djk
(cn+1
k − cn+1

j )2

+ ∆t
∑

(j,k)∈A n+1

(
1− 2

∆t
mk

mjku
n+1
j,k

)
mjku

n+1
j,k (cnk − cnj )2

≤
∑
j∈Sh

mj(cnj )2 + 2(∆t)2
∑
j∈Sh

mj(gn,j)2 + ∆t
∑
j∈Sh

mj |gn,j |.

Summing from n = 0 to N − 1, we obtain

∑
j∈Sh

mj(cNj )2 +
N−1∑
n=0

∑
j∈Sh

mj(cn+1
j − rnj )2 +

N−1∑
n=0

∆t
∑
j∈Sh

∑
k∈Nj

fn+1
jk

djk
(cn+1
k − cn+1

j )2

+
N−1∑
n=0

∆t
∑

(j,k)∈A n+1

(
1− 2

∆t
mk

mjku
n+1
j,k

)
mjku

n+1
j,k (cnk − cnj )2

≤
∑
j∈Sh

mj(c0j )
2 + 2∆t

N−1∑
n=0

∆t
∑
j∈Sh

mj(gn,j)2 +
N−1∑
n=0

∆t
∑
j∈Sh

mj |gn,j |

(3.13)

The right-hand side of (3.13) is bounded by a constant K which depends only on
the data. Bearing in mind the definition (2.15) of θnj,k which is greater than some
θ0 > 0 we derive the following estimates

N−1∑
n=0

∆t
∑

(j,k)∈A n+1

mjku
n+1
j,k (cnk − cnj )2 ≤ K

θ0
, (3.14)

N−1∑
n=0

∆t
∑

(j,k)∈Eh

fn+1
jk

(cn+1
k − cn+1

j )2

djk
≤ K. (3.15)

Note that the latter estimate corresponds to the discrete approximation of the func-
tion D1/2(uh) grad ch in the space (L2(ΩT ))2. By the Cauchy-Schwarz inequality,
we infer that

TV(ch)
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≤
(N−1∑
n=0

∆t
∑

(j,k)∈A n+1

mjku
n+1
j,k (cnk − cnj )2

)1/2(N−1∑
n=0

∆t
∑

(j,k)∈A n+1

mjku
n+1
j,k

)1/2

≤ K

θ0

(N−1∑
n=0

∆t
∑

(j,k)∈A n+1

mjku
n+1
j,k

)1/2

.

To estimate the right-hand side of the latter inequality we note that

max
1≤n≤N

∑
(j,k)∈A n

mjku
n
j,k ≤ C max

1≤n≤N

∑
(j,k)∈Eh

∫
σjk

|unh(x) · νjk| dγ(x).

Using the estimate on the flux (3.5) we obtain the desired estimate. The proof of
Lemma 3.4 is complete. �

3.3. Consistency of the numerical scheme (2.6), (2.7), (2.12) with the con-
centration equation (2.9). Let ch(x, t) be the approximate concentration ob-
tained by the numerical scheme (2.6),(2.7), (2.12); we define the consistency error
ε(h) to be:

∂tch + div(chuh −D(uh) grad ch) + chq
−
h − ĉhq

+
h = ε(h), (3.16)

and we will show that limh→0 ε(h) = 0. The exact concentration c(x, t) satisfy
the equation (2.9) whose right hand side is equal to zero. Equation (3.16) will be
understood in distributional sense since c(x, t) satisfy also the equation (1.13). For
this let ϕ ∈ C2(ΩT ) with compact support contained in Ω× [0, T [ and let

ϕ̃n(x) =
1

∆t

∫ tn+1

tn

ϕ(x, t) dt, ϕn,j =
1
mj

∫
Tj

ϕ̃n(x) dx.

We multiply the discretized equation (2.12) by ϕ̃n(x)/mj , integrate on Tj and take
the sum over j ∈ Sh and over n, from 0 to N − 1. This yields

Eh ≡ Eh1 + Eh2 + Eh3 + Eh4 = 0, (3.17)

with

Eh1 =
N−1∑
n=0

∑
j∈Sh

mj(cn+1
j − cnj )ϕn,j ;

Eh2 =
N−1∑
n=0

∆t
∑
j∈Sh

∑
k∈Nj

Qjk(un+1
h , cnj , c

n
k )ϕn,j ;

Eh3 = −
N−1∑
n=0

∆t
∑
j∈Sh

∑
k∈Nj

Djk(un+1
h , cn+1

j , cn+1
k )ϕn,j ;

Eh4 =
N−1∑
n=0

∆t
∑
j∈Sh

mjq
−
n,jc

n
j ϕn,j −

N−1∑
n=0

∆t
∑
j∈Sh

mj ĉn,jq
+
n,jϕn,j .

Let us first consider Eh1 . We have

N−1∑
n=0

∑
j∈Sh

mj(cn+1
j − cnj )ϕn,j = −

N−1∑
n=1

∑
j∈Sh

mj(ϕn,j − ϕn−1,j)cnj −
∑
j∈Sh

mjϕ0,jc
0
j ,
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then

Eh1 = −
N−1∑
n=1

∫
Ω

cnh(x, t)(ϕn,h(x)− ϕn−1,h(x)) dx−
∫

Ω

c0h(x)ϕ(x, 0)dx.

Clearly,

Eh4 =
N−1∑
n=0

∆t
∫

Ω

cn,h(x, t)q−n,h(x, t)ϕ̃n(x) dx−
N−1∑
n=0

∆t
∫

Ω

ĉhq
+
n,h(x, t)ϕ̃n(x) dx.

(3.18)
Consider now Eh2 . Multiplying (2.6) by cnj and using the identity

un+1
j,k = (un+1

j,k )+ + (un+1
j,k )−,

we have

∆t
∑
k∈Nj

mjkc
n
j (un+1

j,k )+ = −∆t
∑
k∈Nj

mjkc
n
j (un+1

j,k )− + ∆tmjc
n
j (q+

n,j − q
−
n,j).

Using (2.10), one can write Eh2 in the form Eh2 = Eh21 + Eh22 with

Eh21 =
N−1∑
n=0

∆t
∑
j∈Sh

∑
k∈Nj

mjk(cnk − cnj )(un+1
j,k )−ϕn,j

= −
N−1∑
n=0

∆t
∑

(j,k)∈A n+1

mjk(cnj − cnk )un+1
j,k ϕn,k,

and

Eh22 =
N−1∑
n=0

∆t
∑
j∈Sh

cnj

∫
Tj

ϕ̃n(x) div un+1
h (x) dx.

Let us define

Fh2 = −
N−1∑
n=0

∆t
∫

Ω

cnh(x)un+1
h (x) · grad ϕ̃n(x) dx.

One can write Fh2 = Fh21 + Fh22 with

Fh21 = −
N−1∑
n=0

∆t
∑
j∈Sh

cnj
∑
k∈Nj

∫
σjk

ϕ̃n(x)un+1
h · νjk dγ(x)

= −
N−1∑
n=0

∆t
∑

(j,k)∈A n+1

(cnj − cnk )un+1
j,k

∫
σjk

ϕ̃n(x)dγ(x),

and

Fh22 =
N−1∑
n=0

∆t
∑
j∈Sh

cnj

∫
Tj

ϕ̃n(x) div un+1
h (x) dx.

To compare Eh2 and Fh2 , we introduce Rh2 ≡ Eh2 − Fh2 ; i.e.,

Rh2 =
N−1∑
n=0

∆t
∑

(j,k)∈A n+1

mjk(cnj − cnk )un+1
j,k

( 1
mjk

∫
σjk

ϕ̃n(x)dγ(x)− ϕn,k
)
.



EJDE-2012/204 APPROXIMATION FOR FLUID FLOWS 17

According to the regularity assumption on ϕ, we have∣∣ϕn,k − 1
mjk

∫
σjk

ϕ̃n(x)dγ(x)
∣∣ ≤ Ch;

therefore,
|Rh2 | ≤ ChTV(ch). (3.19)

Now we discuss the term Eh3 , proceeding as previously. We introduce

Fh3 = −
N−1∑
n=0

∆t
∫

Ω

cn+1
h div(D(un+1

h ) grad ϕ̃n(x))dx. (3.20)

Note that Fh3 , which has a meaning, represents formally the quantity
N−1∑
n=0

∆t
∫

Ω

D(un+1
h ) grad cn+1

h · grad ϕ̃n(x)dx. (3.21)

The term Fh3 reads

Fh3 = −
N−1∑
n=0

∆t
∑
j∈Sh

cn+1
j

∫
Tj

div(D(un+1
h ) grad ϕ̃n(x))dx

= −
N−1∑
n=0

∆t
∑
j∈Sh

cn+1
j

∑
k∈Nj

∫
σjk

D(un+1
h ) grad ϕ̃n(x) · νjk dγ(x)

= −
N−1∑
n=0

∆t
∑

(j,k)∈Eh

(cn+1
j − cn+1

k )
∫
σjk

D(un+1
h ) grad ϕ̃n(x) · νjk dγ(x).

Following (2.11), we put the term Eh3 in the form

Eh3 = −
N−1∑
n=0

∆t
∑
j∈Sh

ϕn,j
∑
k∈Nj

fn+1
jk

(cn+1
k − cn+1

j )
djk

= −
N−1∑
n=0

∆t
∑

(j,k)∈Eh

fn+1
jk

(cn+1
k − cn+1

j )
djk

(ϕn,j − ϕn,k).

We introduce Rh3 ≡ Eh3 − Fh3 ; i.e.,

Rh3 =
N−1∑
n=0

∆t
∑

(j,k)∈Eh

rn+1
jk (cn+1

j − cn+1
k )

with

rn+1
jk =

fn+1
jk

djk
(ϕn,j − ϕn,k)−

∫
σjk

D(un+1
h ) grad ϕ̃n(x) · νjk dγ(x)

=
ϕn,j − ϕn,k

djk

∫
σjk

D(un+1
h )νjk · νjk dγ(x)

−
∫
σjk

D(un+1
h ) grad ϕ̃n(x) · νjk dγ(x)

=
∫
σjk

D(un+1
h )

(ϕn,j − ϕn,k
djk

νjk − grad ϕ̃n(x)
)
· νjk dγ(x).
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Due to the regularity of ϕ, ϕ ∈ C2(ΩT ), and since ϕn,j−ϕn,k

djk
is an approximation

of grad ϕ̃n(x).νjk, and since we are integrating along νjk, we have

|rn+1
jk | ≤ Ch

∫
σjk

|D(un+1
h )νjk| dγ(x).

We also have∫
σjk

|D(un+1
h )νjk| dγ(x)

=
∫
σjk

|D(un+1
h )νjk|

(D(un+1
h )νjk · νjk)1/2

(D(un+1
h )νjk · νjk)1/2 dγ(x)

≤
(∫

σjk

D(un+1
h )νjk · νjk dγ(x)

)1/2(∫
σjk

|D(un+1
h )νjk|2

D(un+1
h )νjk · νjk

dγ(x)
)1/2

≤
(∫

σjk

D(un+1
h )νjk · νjk dγ(x)

)1/2(dl
dt

∫
σjk

|un+1
h | dγ(x)

)1/2

.

These implies the estimate

|rn+1
jk (cn+1

k − cn+1
j )| ≤ Ch

|cn+1
k − cn+1

j |

d
1/2
jk

(∫
σjk

D(un+1
h )νjk · νjk dγ(x)

)1/2

× d1/2
jk

(∫
σjk

|un+1
h | dγ(x)

)1/2

.

By the Cauchy-Schwarz inequality, we obtain∑
(j,k)∈Eh

|rn+1
jk (cn+1

k − cn+1
j )|

≤ Ch
( ∑

(j,k)∈Eh

fn+1
jk

|cn+1
k − cn+1

j |2

djk

)1/2( ∑
(j,k)∈Eh

djk

∫
σjk

|un+1
h | dγ(x)

)1/2

.

Similarly to (3.5), we have

max
0≤n≤N−1

∑
(j,k)∈Eh

∫
σjk

|un+1
h | dγ(x) ≤ Ch−1

so that

|Rh3 | ≤ Ch

N−1∑
n=0

∆t
( ∑

(j,k)∈Eh

fn+1
jk

|cn+1
k − cn+1

j |2

djk

)1/2

.

According to (3.15), we obtain
|Rh3 | ≤ Ch.

From (3.7), (3.17)–(3.18), (3.19), and (3.3) we deduce that

Eh = −
∫

ΩT

ch(x, t)∂tϕ(x, t) dx dt−
∫

ΩT

ch(x, t)uh(x, t) · gradϕ(x, t) dx dt

+
∫

ΩT

ch(x, t)q−h (x, t)ϕ(x, t) dx dt−
∫

ΩT

ĉh(x)q+
h (x, t)ϕ(x, t) dx dt

+
∫

ΩT

D(uh(x, t)) grad ch(x, t) · gradϕ(x, t) dx dt−
∫

Ω

c0h(x)ϕ(x, 0)dx+ ε(h)
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with limh→0 ε(h) = 0. This order of approximation is superior or equal to one since
all the previous estimations have been done with at least a constant times h. We
summarize the result in the following statement.

Lemma 3.5. The scheme (2.6), (2.7), (2.12) is consistent with the concentration
equation (2.9).

From the stability proved in proposition 3.3 and this lemma, we conclude that the
numerical scheme (2.6), (2.7), (2.12) converge to the solution of the concentration
equation (2.9) and the convergence is at least of order 1.

4. Numerical experiments

We have applied the numerical scheme presented in Sect. 2 for the simulation
of a miscible flow within a horizontal reservoir of one unit thickness over ten years
period with injection and production wells at the corners reported by Ewing et al
[22]. In our tests we have taken for spatial domain Ω = [0; 400] × [0; 400]ft2 and
T = 3600 days. The injection well is located at the upper-right of the domain with
a volumetric injection rate of Q = 30 ft2/day. The production well is located at the
lower-left corner with a production rate of Q = −30 ft2/day.The mass flow rate q in
equations (1.1)-(1.3) is equal to the product of the mass density % and the quantity
Q per unit volume; i.e., q = Q/mj = 0.024/day for the uniform coarse spatial
grid of ∆x = ∆y = 50ft and where mj = ∆x × ∆y/2 = 1250ft2 is the uniform
element Tj area. The viscosity µ = µ(c) is taken according to (1.5) with a large
adverse mobility ratio M = µ(0)/µ(1) = 41 and a viscosity of the residential fluid
µ(0) = 1.0cp. The longitudinal and transverse dispersion coefficients, are taken
respectively, as dl = 5ft, dt = 0.5ft. The initial concentration is c0(x, y) = 0.0 and
the injection concentration is ĉ = 1.0.

The discrete equations (2.6)-(2.7) with the constrain (2.8) corresponding to the
mixed finite element method approximation of the velocity-pressure equation (1.1)-
(1.2),(1.10) were solved with an augmented lagrangian method - see [5],[4]- which
converged in very few iterations -two or three iterations. The discrete equations
(2.12)-(2.14) corresponding to the finite volume approximation of the concentration
equation (2.9) were solved with a conjugate gradient method which converged also
in few iterations - less than ten iterations.

The contour plots for the concentration of the invading fluid at time t = 3 years,
5 years, 7 years and 10 years for the data above are presented in figures 1−4. They
indicate the uniform fluid front move from the injection source towards the pro-
duction well and the reservoir invasion with time. We have also observed that this
reservoir invasion is closely related to the injection and production rates. We did
not take into our model the permeability and the porosity since we are mainly con-
cerned with the degenerate parabolic nature of the concentration equation (2.9).
That is why we did not treat the other examples reported in [6, 22, 21], but at
the difference of Chainais and Droniou [6] who have only observed that their ap-
proximate concentration remains in [0;1]( and such is the case for other proposed
numerical methods; e.g., [22, 21]), we have rigourously proved the boundedness of
our approximate concentration, more precisely 0 ≤ ch(x, t) ≤ 1 a.e. in ΩT under
the grid conditions (2.16) and (2.17). It is possible to include the permeability in
our model and still having the uniform estimates for the approximate concentra-
tion since the permeability tensor is only used in the determination of the velocity
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fluxes un+1
j,k on which we did not make any restrictive assumption. The time step

restriction(2.18)is only used in the proof of the grid conditions (2.16) and (2.17)and
is easily satisfied with the large steps h and ∆t typical in petroleum engineering -
we used h = 50ft, ∆t = 3.6day in our reported numerical test.

Our grid conditions (2.16) and (2.17) depends of the injections rates but are easily
satisfied even for very large time steps and spatial steps as long as the injections
rates are not very high.

We have also observed in the tests corresponding to different data that our
numerical scheme (2.6)-(2.7), (2.12) generates stable numerical approximations as
long as the grid conditions (2.16) and (2.17) were satisfied. This suggests that these
conditions are in fact necessary and sufficient conditions.

3 years 5 years

7 years 10 years

Figure 1. Concentration contour plots of invading fluid at 3, 5,
7 and 10 years

5. Appendix

Let T be the triangle with vertices A = (0, 0); B = (b, 0); C = (c1, c2), with
c1 > 0, c2 > 0. Let v ∈ Vh and such that v restricted to T is a polynomial of
degree 1. Now assume that v(B) = v(C) = 0. Now we have by integration by
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parts ∫
T

v · ∂v
∂x

dx dy = −
∫
T

∂v
∂x

v dx dy +
∫
∂T

v · vνxdσ

where ν = (νx, νy) is the outward unit normal to ∂T and dσ is the usual measure
on the boundary.

It follows from the integral above that (by transfering to the right hand side)

2
∫
T

v · ∂v
∂x

dx dy =
∫
∂T

v · vνxdσ (5.1)

Now given that v(B) = v(C) = 0 it follows that
∫
BC

v2νxdσ = 0 similarly, since
νx = 0 on AB, we have also

∫
AB

v2νxdσ = 0.
It is easy to see that there exist a positive constant γ such that

‖v‖2L2(AC) ≤ γ|
∫
AC

v · vνxdσ|. (5.2)

Combining (5.1) and (5.2) and using Cauchy - Schwartz we obtain

‖v‖2L2(AC) ≤ 2γ|
∫
T

v · ∂v
∂x

dx dy| ≤ 2γ(
∫
T

v2 dx dy)1/2 · (
∫
T

(
∂v
∂x

)2 dx dy)1/2 (5.3)

Now we simply use the fact that(∫
T

(
∂v
∂x

)2 dx dy
)1/2

≤ ‖ |∇v|2‖L2(T ) (5.4)

The proof obviously can be easily extended to the other sides of the triangle. To
get the estimate we want we will also use the following inverse inequality that can
be found in Ciarlet [10, formula (3.2.33) p. 141].

|vh|m,q,K ≤ C
(hn)

1
q−

1
r

hm−l
|vh|l,r,K (5.5)

with m = 1, q = r = 2, l = 0.
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Addendum posted by the editor on September 16, 2013

An anonymous reader informed us that the results in this article are incorrect.
Here is an extract of the reader’s message and of the author’s response.

(1) READER: This scheme is unfortunately based on a completely false mathe-
matical approximation of the fluxes for the dispersion operator. The author approx-
imates u · grad c, with u the Darcy velocity given by the elliptic equation and c the
concentration, along an edge of the mesh by neglecting the tangential component
of grad c along this edge. The author writes

u · grad c ≈ (u · ν)(grad c · ν),

instead of
u · grad c ≈ (u · ν)(grad c · ν) + (u · t)(grad c · t)

where ν is the unit normal vector, and t is a tangential unit vector to the edge. In
general, the term grad c · t is not negligible in front of (u · ν)(grad c · ν).

AUTHOR: We approximate the concentration c(x; tn) by cnh(x) which is piecewise
constant on each triangle and therefore the grad cnh(x) has no tangential component,
and the approximation

grad ch · νjk =
ck − cj
djk

+O(h)
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holds. This approximation of the gradient may not be precise enough - it is only of
order one - but it is correct in our case.

READER: It is unacceptable to justify this approximation by saying that “c is a
piecewise constant function on each triangle and therefore grad c has no tangential
component”. If we follow this reasoning, then grad c has no normal component
either (since c is constant in the triangle) and it can be safely approximated by 0,
thus removing any convection or diffusion from the equation in practice.

A classical Mixed Finite Element scheme (for example the P0-P1 method) ap-
proximates c by piecewise constant functions on the triangles and grad c by piece-
wise linear functions on the triangles. All components of the gradients must be
approximated if we are to obtain a consistent scheme in the case of anisotropic
diffusion. It is a very active research to find proper approximations of the gra-
dient while not increasing the degrees of freedom (on c) too much. But nobody
expects, because c is piecewise constant, grad c to be 0 or only along some particu-
lar (normal) directions. It has also been shown, for a long time ago, that neglecting
one component of the gradient while approximating anisotropic diffusion leads to
schemes that do not converge to the proper solution.

(2) READER: The numerical results are completely inconsistent with the ones
found in the literature (compare with [8]). In the numerical tests performed by the
author, the fluid simply does not invade the domain, it remains around the injection
well. That is an unphysical behaviour which should have warned the authors that
their scheme simply does not converge to an appropriate solution, because it is in
fact inconsistent. Simply put, it is not possible to approximate a dispersive flux,
involving a full matrix D(u), by a 2-points flux. Compare the invasion speed with
test 2 in the article:

Hong Wang, Dong Liang, Richard E. Ewings Stephen L. Lyons, Guan Qin;
An approximation to miscible fluid flows in porous media with point sources and
sinks by an EulerianLagrangian localized adjoint method and mixed finite element
methods SIAM J. Sci. Compt. Vol. 22, No. 2, pp. 561581

AUTHOR: I did not take into account in our model the permeability and the
porosity of the domain, that is what makes the difference between our numerical
results and those mentioned. Certainly a more complete model would be more
realistic but will require a complete reprogramming. We were more interested in
proving that under non restrictive grid conditions, our scheme is stable.

End of addendum.

Rabah-Hacene Bellout

Faculté de Mathématiques, Université des Sciences, et Technologies Houari Boumedi-
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E-mail address: rbellout@usthb.dz
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