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SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND
UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION
SYSTEM

ZHENGQIU LING, ZEJIA WANG

ABSTRACT. This article concerns the blow-up solutions of a reaction-diffusion
system with nonlocal sources, subject to the homogeneous Dirichlet boundary
conditions. The criteria used to identify simultaneous and non-simultaneous
blow-up of solutions by using the parameters p and ¢ in the model are proposed.
Also, the uniform blow-up profiles in the interior domain are established.

1. INTRODUCTION AND DESCRIPTION OF RESULTS

In this article, we investigate the following reaction-diffusion system with nonlo-
cal sources

= Au+||wl|?, (z,t) € Q2 x(0,T), (1.1)

=Av +[luvllf,  (x,t) € Q% (0,T) (1.2)
w(z,0) = uo(x), v(z,0)=uvo(x), z€Q, (1.3)
u(z,t) =0, wv(x,t)=0, (x,t)€dx(0,T), (1.4)

where Q = Br = {|z| < R} CRY (N > 1), o, > 1, p,q > 0, and the continuous
functions wg(x),vo(x) are nonnegative, nontrivial, radially symmetric, decreasing
with ||, and vanish on dBg, where || - |5 = [, |- |* dz.

Nonlinear parabolic systems — can be used to describe some reaction
diffusion phenomena, Such as heat propagations in a two-component combustible
mixture [3], chemical reactions [6], interaction of two biological groups without
self-limiting [I0], etc., where u and v represent the temperatures of two different
materials during a propagation, the thicknesses of two kinds of chemical reactants,
the densities of two biological groups during a migration, etc. Using the methods
of [7, 12, 4] we know that (L.I)-(1.4) has a local nonnegative classical solution.
Moreover, if p, ¢ > 1, then the uniqueness holds.

In recent years, many results on blow-up solutions have been obtained for the
nonlinear parabolic system. We will recall several results in the following. As for the
other related works on the global existence and blow-up of solutions of the nonlinear
parabolic system, they can be found in [15] [l [5l [I4] and references therein.
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Li, Huang and Xie in [8] and Deng, Li and Xie in [2] considered the following
two systems, respectively,

up = Au—i—/ u™(x, )" (x,t)de, v = Av —|—/ uP(z, t)vi(z, t) dz,
Q Q

with z € Q, t > 0; and
up = Au™ +aljvlls,  ve=Av" +b|ullf,  (2,t) € 2 x (0,T).

The authors showed some results on the global solutions, the blow-up solutions and
the blow-up profiles. In 2002, Zheng, Zhao and Chen in [I8] studied the problem

up = Au+ fi(u,v), v =Av+ folu,v), (z,t)€Qx(0,T) (1.5)
with homogeneous Dirichlet boundary conditions, where

fl (u,v) — emu(w,t)+pv(m,t)7 fg(u,’l]) _ equ(zﬂt)—i—v(x,t).

The simultaneous blow-up rates are obtained for radially symmetric blow-up solu-
tions in the exponent region {0 < m < ¢,0 < n < p}.

Later, Zhao and Zheng in [I7], Li and Wang in [9] studied the localized problem
(1.5) with the more general Q C R and

fl (U,U) — emu(wo,t)-&-pv(xo,t)’ f2(u7'0) — equ(wo,t)-‘,—nv(wo,t)7 T € Q.

The critical blow-up exponents were discussed. Uniform blow-up profiles for simul-
taneous blow-up solutions were proved in the exponent region {0 < m < ¢,0 <n <
p}.

Our present work is motivated by the above mentioned papers, the main purpose
of this paper is to identify the simultaneous and non-simultaneous blow-up of the
solutions and establish the uniform blow-up profiles for the system 7.

For convenience, we introduce a pair of parameters o and 6, the solution of

(ot ) @) =0) w

p—(¢g—1) _q—(p—1)
p+qg—1" "~ ptqg-1"

This paper is organized as follows. In the next Section, we investigate the simul-
taneous and non-simultaneous blow-up of the solutions for the system 7,
and give the blow-up criteria. In Section 3, we deal with the blow-up rates of the
solutions.

namely,

(1.7)

2. SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP

In this section, we discuss the simultaneous and non-simultaneous blow-up phe-
nomena for the system 7, and propose a complete and optimal classifica-
tion to identify the simultaneous and non-simultaneous blow-up solutions.

For problem —, because of the nonlinear sources, there exist solution
(u,v) that blow up in finite time, T, if and only if the exponents p, ¢ verify any of
conditions, p > 1,¢ > 1 or pg > (¢—1)(p—1). In particular, the component u(or v)
can blow up for the large initial data if p > ¢ — 1(or ¢ > p — 1), see [9, 12]. So
there may be non-simultaneous blow-up, that is to say that one component blows
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up while the other remains bounded. On the other hand, the simultaneous blow-up
means that

lim sup ||u(-,t)]|oo = limsup ||v(+, )]0 = +00.
t—T t—T
Assume the initial data ug(x), vo(x) satisfy
Aug(z) + |lugvol|h, — ep(x)ub (0)v(0) > 0, x € Bg, (2.1)
Avg(z) + [luovo||f — ep(z)ug(0)vg(0) > 0, =z € Br
for some a constant € € (0,1), where ¢(x) is the first eigenfunction of
—Ap=Ap, v € Br; ¢=0, x €0Bg,

normalized by ||¢]lcc = 1, ¢ > 0 in Bgr. In addition, by using the methods in
[16], it is easy to check that u, vy > 0 for (z,t) € Br x (0,T) by the comparison
principle.

Our results about the simultaneous and non-simultaneous blow-up criteria are
as follows.

Theorem 2.1. If p+ q > 1, then there exists initial data such that the non-
simultaneous blow-up occurs in (1.1)—(1.4) if and only if o < 0 (or 8 < 0) ( for

v(or u) blowing up alone, respectively).

Theorem 2.2. If p+ g > 1, then any blow-up in (1.1)—(1.4) is non-simultaneous
if and only if o > 0 with 8 < 0 ( for u blowing up alone ), or 0 > 0 with o < 0 (
for v blowing up alone).

Corollary 2.3. If p+ g > 1, then any blow-up in (1.1)—(L.4)) is simultaneous if
and only if 0 >0 and 60 > 0.

Similar to the study in[q], it is seen that

Corollary 2.4. All solutions are global in (1.1)—(1.4) if and only if ¢ < 0 and
0 <0(ie., p+q<1).

In summary, the complete and optimal classification for simultaneous and non-
simultaneous blow-up solutions of the problem (1.1)-(1.4)) can be described by Fig-
ure [T1

¢ fv blows up p=q—1 g=p—1
alone
simultaneous
1 blow-up

u blows up alone
(non-simultaneous blow-up)

(Oa O) 1 p

FIGURE 1. Regions of simultaneous and non-simultaneous blow-up

The key clues for the classification of simultaneous and non-simultaneous blow-
up solutions are the signs of p — (¢ — 1), ¢ — (p — 1) and p 4+ ¢ — 1. The conditions
p>q—1and p+ g > 1 imply that v may blow up by itself but cannot provide
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sufficient help to the blow-up of v (with small v), while ¢ < p — 1 ensures that v
can provide effective help to the blow-up of u, but v remains bounded.
Before we give the proof of Theorem we first introduce the following lemma.
Let ¢(x,t) satisfy
¢t:A¢7 (:ZZ,t) € Br x (OvT); ¢:07 (‘T,t) EaBRX (O7T)
with
o(x,0) = p(x), =« € Bg.
Lemma 2.5. Under conditions (2.1) and (2.2), the solution (u,v) of (1.1)—(1.4)
satisfies
ug(x,t) > ep(z, t)uP(0,t)vP(0,t), (x,t) € Bg x[0,T), (2.3)
ve(x,t) > ed(x, )ui(0,t)v9(0,t), (x,t) € Br x [0,T). (2.4)

Proof. Since that the proofs of the inequalities (2.3]) and (2.4]) are similar, we prove
only (2.3]). Let
J(.’,E, t) = Ut (‘Ta t) - 5¢($7 t)up(oa t)l}p(o, t)
It is easy to check that for € small enough since u¢, vy > 0, we obtain
Jy—AJ = (||uv||§)t - eqﬁ(up(O,t)vp(O,t))t >0, (x,t) € Brx(0,T),
J(xz,t) =0, (x,t) € 0Br x (0,T),
J(z,0) = Aug(z) + [Jugvo||%, — ep(x)uf (0)vh (0) >0, x € Bg.

Consequently, ([2.3)) is true by the comparison principle. O

Proof of Theorem[2.1. Without loss of generality, we only prove that there exist
suitable initial data such that u blows up while v remains bounded if and only if
0 < 0.

Assume 6 < 0, namely, p — 1 > ¢ and p > 1 by Figure[l]and (1.7). From (2.3)),
we obtain that

u(0,t) > epp(0, T)uP(0,¢)vh(0), te0,T). (2.5)
Integrating the above inequality (2.5) from ¢ to T', we have the estimate for u as

follows
—-1/(p—1)
u(0,6) < (=(p = 1)6(0, 1)} (0)) (T—)"Y@V, tef0,T). (26)
At the same time, since the initial data (ug,vp) is radially symmetric and non-
increasing, therefore the (u,v) is also radial symmetrical and non-increasing; i.e.,
up(r,t),v.(r,t) < 0 for r € [0,R). Thus, u(x,t) and v(x,t) always reach their
maxima at x = 0, which means that

Au(0,t) <0, Av(0,t) <0.

Hence, from (|1.1)) and (|1.2)), we know that there exist constants Cq,C3 > 0 such
that
u(0,8) < JJuv|®? < C1uP(0,¢)vP(0,¢), te€[0,T)

(0, 1) < [Juv]|f < Cou?(0,£)0(0,t), ¢ € [0,T). 27)
Let

1 |z —y|?
r(t — s)v2 P {- A(t—s) }
be the fundamental solution of the heat equation. Suppose that (g, 0g) is a pair of
initial data such that the solution of f blows up. Fix radially symmetrical

F(x’ y) t7 S) =
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vo(> Up) in Br and take constant M; > vg(x). By the proof of [I1, Theorem 1.1],
we know that if ug is large with vy fixed then T becomes small. Therefore, let
uo(> o) be large such that T becomes small and satisfies

_p=
p—1l-gq
where [|My ]|} = (/g Mlﬁ dz)9/8. Consider the following auxiliary problem

p—1—

((p — 1)$(0, T)0h(0)) 7T 77" | My |5,

My > vo(0) +

— 9 _ q
vy = Av + (€(p - 1)¢(07T)Ug(0)) P (T - t)iﬁ”MlH%v (l‘,t) € Br % (O7T)a
o(x,t) =0, (x,t) € O0Br x(0,T),
o(x,0) = vo(z), =« € Bp.
Since p — 1 > ¢, we obtain by Green’s identity that
-1 e S
v <w(0) + pff_q(dp - 1)¢(0,T)v§(0)> K My < My,
and hence v satisfies
0 2 A0+ (e(p — (0, T)wf(0) 7 (T — )77 (e, )3
On the other hand, v satisfies

v < Av+ (e(p — 1)(0, T)vF(0)) 77 (T — )77 [|o(a, )13,

Therefore, by the comparison principle, we conclude v < v < Mj.
Now assume that u blows up while v remains bounded. By (2.7) we have

ut(0,t) < CuP(0,t), forte[0,T).
This implies p > 1 and the estimate for u that
U(O, t) Z (C(p _ 1))*1/(17*1) (T o t)*l/(Pfl)'
Therefore, by using (2.4)), we have
v(0,8) > e6(0,T)(Cp — 1)) 7w (0)(T — )77
By integrating, we obtain that

q t q
v(0,t) > v9(0) +£¢(0,T)(C(p — 1))_Ev8(0)/ (T — s)" 71 ds. (2.8)
0
The boundedness of v requires p — 1 > ¢ from (2.8)), that is 8 < 0. Thus, the proof
is complete. (I

Proof of Theorem[2.3. We only treat the case of u blowing up and v remains
bounded.

Assume o > 0 with § < 0; that isp > ¢—1,¢ < p—1 and p > 1 by Figure[I]and
(1.7). From ([2.3) and (2.7, we have

_ Co _
P=a(0,¢t t) < ———u?7P(0,t t t T). 2.
v (Oa )Ut(oa )— E¢(0,T)u (07 )U’t(ov )a € [Oa ) ( 9)
By Theorem [2.1] it is impossible for v blowing up alone under ¢ > 0 with 6 < 0.
Then we show that v is bounded. In fact, by integrating the inequality (2.9) from
0 to t, we have
WP~ITH0,8) < C — Cu~P=17(0, 1)

for some a C' > 0. Therefore, we can get the boundedness of v(0, t).
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Now, assume that any blow-up must be the case for u blowing up alone. This
requires 6 < 0 by Theorem Again by Theorem if in addition o < 0, there
exists the initial data such that v blows up alone. Therefore, it has to be satisfied
that o > 0. Then, the proof is complete. (I

3. UNIFORM BLOW-UP PROFILES

In this section, we study the uniform blow-up profiles for system (|L.1| . At
first, the following result of Souplet for a single diffusion equation Wlth nonlocal
nonlinear sources [I3, Theorem 4.1] will play a basic role in our discussion.

Lemma 3.1. Let u € C%1(Q x (0,T*)) be a solution of the problem
=Au+g(t), (zt)eQx(0,T"),
u(z,t) =0, (x,t) €90 x (0,T7),
u(z,0) = up(x), x€€Q,
where g(t) is nonnegative and may depend on the solution u. Then

i [Ju(-, 1)l = +00 (3.1)

if and only if fo s)ds = 4o00. Furthermore, if (3.1)) is fulfilled, then

w(z,t) o ud, )Hoo _
By G(t) 7tLH¥* G(t) =1

uniformly on compact subsets of Q, where G(t fo

For convenience, we denote

t t
£O =l o) = [urly FO = [ fe)ds, GO = [ g5
0 0
According to the Lemma we have the following result.

Lemma 3.2. Assume u,v € C>1(Q x [0,T)) are the solutions of (L.I)-(T4). If u
and v blow up simultaneously in the finite time T, then we have
u(,t) _v(z,t)
o F(t) 0 eere G()
uniformly on compact subsets of 2, and
lim F(t) = li =
im F(t) Jim G(t)

t—T*

We remark that if we assume that only u (or v) blows up in finite time 7%, then
the above conclusions about u ( or v) and F' (or G) are also valid.

Throughout this section the notation f(t) ~ g(t) is used to describe such func-
tions f(t) and g(t) satisfying f(¢t)/g(t) — 1 as t — T*. When u and v blow up
simultaneously, we have the following results about the uniform blow-up profiles
for v and v.

Theorem 3.3. Let (u,v) be a solution of (1.1)—(1.4) with simultaneous blow-up
time T*. Then the following limits hold uniformly on any compact subset of Q):
(1) If o > 0 and 0 > 0, then

lim (e, )(T" — )7 = (IQI (=% Sy} 7, (3.2)

t—T*
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. oo (17 e a0
Jim v, (7 — 1) = (Fg—(2lF ) ) - 63
(2) If 0 =0, then
2 p q
li 2 * -1_ Z o B 4
dim (2, 0)| In(T7 — 1) p\m 5, (3.4)
a 1 P_4ay\—q/2
li D 1 2 * — —q/B a a/ . .
Jim o (z, t) (Ino(z, 1)) * (T7 — 1) HQ| (21Q1=77) (3.5)
(3) If 6 = 0, then we have
B2 1 q p —
thr%l ud(z, t)(lnu(z,t))g(T* —t) = §|Q\7P/O‘(2|Q|3_;) p/Qa (3.6)
lim v2(z, )| In(T* — £)]~* = 2|05 ~% (3.7)
t—T* ’ q
Proof. From Lemma [3.2] we know that u(z,t) ~ F(t) and v(z,t) ~ G(t), then
u®(x,t) o v¥(x,t)
e Fa() et Ga(t)

i ub(z,t) ~ lim vP(z, 1) B
t—T+ FB(t) o1 GB(t)

By the Lebesgue dominated convergence theorem, we find that

F'(t) = f(t) = [luv]|} ~ |QP/*FP($)G(1), (3.8)
G'(t) = g(t) = Juvll§ ~ QP FI(6)G(2). (3.9)

Hence,
FIPdF ~ |Q«~#GP~94dG. (3.10)

(1) Note that the conditions o > 0 and # > 0 imply that p+1 > ¢,g+1 > p
since p + ¢ > 1. Integrating (3.10) from 0 to ¢, we obtain

_ 2_4 +1-—p _ z_g
Fati-p Ql= 2 d T 17D ptig O« p+1-qy 11
(t) ~ [ - qG (t) =1« UG (t). (3.11)
Combining (3.9) and (3.11)), we can obtain
G'(t) ~ |Q\q/ﬁ(|9|"i9) T G (). (3.12)
o

Since

2 -1 1

¢ _ pte-1_ 1 _,

q+1-p  q+1-p 0
and lim;_ 7~ G(t) = 0o, by integrating (3.12)), we obtain
Qle/8 s a0 -0 3
G(t) ~ (%(\Qla —)‘1+1 1’) (T* —t)~°. (3.13)
From (3.13) and Lemma[3.2] we have

q/B P PN
i o0 0 = (27 it ),

t—t* 9

which holds uniformly on the compact subsets of Q.
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Combining (3.8) and (3.11]), and applying the similar proofs of F and u, we
obtain that

|Q‘P/Oé

. % o 4_p Oy b—\T7
Jim e, t)(T° = )7 = (S (0)# £ %))

holds uniformly on the compact subsets of (2.
(2) When o =0, or p+ 1 = ¢, noticing (3.9) and (3.10), we see that

G'(t) ~ Q77 (2105~ 3) 2 Ga(t) (In G (1) > (3.14)
Note that lim; 7~ G(t) = oo, integrating (3.14]) from #(> 0) to T™ asserts
*° 1 P _dN\q/2
—————ds ~ [QP (210 = 8) V(T —t). 3.15
L, e 4o~ 190 @I H (315)
Furthermore,
fcoc()t) s79(Ins) "9/ ds ) fgo s~ 9(Ins)"9/?ds 1 1

tig“l* 1— —q/2 :Gﬂoo 1— —q/2 - q—l - p
G q(t)(lnG(t)) G q(ln G)
That is to say that

p/oo s79(Ins)"92ds ~ G (In G (1)) "2 = G7P(H)(In G(t)) "2, (3.16)

G(t)
By (3.15)) and (3.16]), it indicates

GP(1)(InG(1)) /% ~ plQ)*/? (20| 5~ #) (T —1). (3.17)

Since lim;_, 7+ v(z, t) = oo uniformly on the compact subset of Q and lim; 7« G(t) =
00, we may claim that the following equivalent is valid uniformly on the compact
subset of €2,

v(z,t) ~ G(t) = Inv(z,t) ~InG(t).
And thus by (3.17), we reach the conclusion

v (2, 1) (Inw(z, )79/ ~ plQ9/P (205 ) (1 — 1),

Then uniformly on the compact subsets of §2, it yields

]. P q .\ —
i P /2 _ 4 = Z|Q|~1/8 2-%\~4/2
tlilgpl*v (z,t)(Inov(z, )V =(T* —t) p|Q| (21Q]=77) .
Since )
InG(t) ~ 5|7~ F2(1),
it follows from (3.8)) and (3.17) that
_ Fiq(t) P_a
F'(£)F7P(t) ~ |QP/*GP(t) ~ Q=5 1
(OF7P(t) ~ QPGP (2) p(T*—t)|| (3.18)

In view of (3.18]), we have

1 1 . »_a
—F2(t) ~ Z|Q|a "3 |In(T* — ¢
3 (t) pll | In( )

Therefore, by Lemma we obtain

D

2 q
u?(2,8) ~ =[Qf= 75 | In(T™ —)];
p
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that is to say

dim () In(T* — )|~ = Q= #

TN

holds uniformly on the compact subsets of (2.
(3) When 6 = 0, the proof is similar to that of the case (2). Then, the proof is
completed. ([l
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