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REGULARITY OF RANDOM ATTRACTORS FOR STOCHASTIC
SEMILINEAR DEGENERATE PARABOLIC EQUATIONS

CUNG THE ANH, TANG QUOC BAO, NGUYEN VAN THANH

Abstract. We consider the stochastic semilinear degenerate parabolic equa-
tion

du + [− div(σ(x)∇u) + f(u) + λu]dt = gdt +
mX

j=1

hjdωj

in a bounded domain O ⊂ RN , with the nonlinearity satisfies an arbitrary
polynomial growth condition. The random dynamical system generated by
the equation is shown to have a random attractor {A(ω)}ω∈Ω in D1

0(O, σ) ∩
Lp(O). The results obtained improve some recent ones for stochastic semilinear
degenerate parabolic equations.

1. Introduction

It is known that the asymptotic behavior of random dynamical systems generated
by stochastic partial differential equations can be determined by random attractors.
The concept of random attractors, which is an extension of the well-known concept
of global attractors [12], was introduced in [13, 14] and has been proved useful in
the understanding of the dynamics of random dynamical systems. In recent years,
many mathematicians paid their attention to the existence of random attractors
for stochastic parabolic equations with additive or multiplicative noise, both in
bounded domains [6, 11, 18, 19] and in unbounded domains [8, 22, 23]. However,
up to the best of our knowledge, little seems to be known for random attractors for
degenerate parabolic equations.

In this paper, we consider the stochastic semilinear degenerate parabolic equation

du + [−div(σ(x)∇u) + f(u) + λu]dt = gdt +
m∑

j=1

hjdωj , x ∈ O, t > 0,

u|∂O = 0, t > 0,

u|t=0 = u0,

(1.1)

where O ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary ∂O, λ > 0,
and {ωj}m

=1 are independent two-sided real-valued Wiener processes on a proba-
bility space which will be specified later. To study problem (1.1), we assume that
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the diffusion coefficient σ(x), the nonlinearity f(·), the external force g, and the
functions {hj}m

j=1 satisfy the following hypotheses:

(H1) The function σ : O → R is a non-negative measurable function such that
σ ∈ L1

loc(O) and for some α ∈ (0, 2), lim infx→z |x− z|−ασ(x) > 0 for every
z ∈ O;

(F1) The function f ∈ C1(R, R) satisfies a dissipativeness and growth condition
of polynomial type; that is, there is a number p ≥ 2 such that for all u ∈ R,

f(u)u ≥ C1|u|p − C2, (1.2)

|f(u)| ≤ C3|u|p−1 + C4, (1.3)

f ′(u) ≥ −`, (1.4)

where Ci, i = 1, 2, 3, 4, and ` are positive constants;
(G1) g ∈ L2(O);
(H2) The functions hj , j = 1, . . . ,m, belong to L2p−2(O) ∩ Dom(A) ∩ Dp(A),

where Au = −div(σ(x)∇u), Dom(A) = {u ∈ D1
0(O, σ) : Au ∈ L2(O)}, and

Dp(A) = {u ∈ D1
0(O, σ) :

∫
O |Au|pdx < +∞}.

Here the degeneracy of problem (1.1) is considered in the sense that the mea-
surable, non-negative diffusion coefficient σ(·), is allowed to have at most a finite
number of (essential) zeroes at some points. For the physical motivation of the
assumption (Hα), we refer the reader to [9, 16, 17].

In the deterministic case, problem (1.1) can be derived as a simple model for
neutron diffusion (feedback control of nuclear reactor) (see [15]). In this case u
and σ stand for the neutron flux and neutron diffusion respectively. The existence
and regularity of global attractors/pullback attractors for problem (1.1) in the
deterministic case has been studied extensively in both autonomous case [3, 5, 16,
17] and non-autonomous case [1, 2].

The existence of a random attractor in L2(O) for the random dynamical system
generated by problem (1.1) has been studied recently by Kloeden and Yang in
[24]. The aim of this paper is to study the regularity of this random attractor.
More precisely, we will prove the existence of random attractors in the spaces
Lp(O) and D1

0(O, σ), and these random attractors of course concide the random
attractor obtained in [24] because of the uniqueness of random attractors. To do
this, we exploit and develope the asymptotic a priori estimate method introduced
the first time in [20, 25] for autonomous deterministic equations to the random
framework. It is noticed that this method has been developed to study the regularity
of the pullback attractor for problem (1.1) in the deterministic case in some recent
works [1, 2]. The theory of pullback attractors has shown to be very useful in the
understanding of the dynamics of non-autonomous dynamical systems [10].

The paper is organized as follows. In Section 2, for convenience of the reader, we
recall some basic results on function spaces and the theory of random dynamical
systems. In Section 3, we prove the existence of a random attractor in Lp(O)
for the random dynamical system generated by problem (1.1). The existence of a
random attractor in D1

0(O, σ) is proved in the last section. The results obtained
improve some recent results for semilinear degenerate stochastic parabolic equations
in [24], and as far as we know, the existence of a random attractor in H1

0 (O), which
is formally obtained when σ = 1, is even new for stochastic reaction-diffusion
equations.
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2. Preliminaries

2.1. Function spaces and operators. We recall some basic results on the func-
tion spaces which we will use. Let N ≥ 2, α ∈ (0, 2), and

2∗α =

{
4
α if N = 2

2N
N−2+α ∈

(
2, 2N

N−2

)
if N ≥ 3.

The exponent 2∗α has the role of the critical exponent in the Sobolev embedding
below.

The natural energy space for problem (1.1) involves the space D1
0(O, σ) defined

as the completion of C∞
0 (O) with respect to the norm

‖u‖D1
0(O,σ) :=

( ∫
O

σ(x)|∇u|2dx
)1/2

.

The space D1
0(O, σ) is a Hilbert space with respect to the scalar product

((u, v)) :=
∫
O

σ(x)∇u∇vdx.

The following lemma comes from [9, Proposition 3.2].

Lemma 2.1. Assume that O is a bounded domain in RN , N ≥ 2, and σ satisfies
(Hα). Then the following embeddings hold:

(i) D1
0(O, σ) ↪→ L2∗α(O) continuously;

(ii) D1
0(O, σ) ↪→ Lp(O) compactly if p ∈ [1, 2∗α).

Under condition (Hα), it is well-known [1, 4] that Au = −div(σ(x)∇u) with the
domain

Dom(A) = {u ∈ D1
0(O, σ) : Au ∈ L2(Ω)}

is a positive self-adjoint linear operator with an inverse compact. Thus, there exists
a complete orthonormal system of eigenvectors (ej , λj) such that

(ej , ek) = δjk and − div(σ(x)∇ej) = λjej , j, k = 1, 2, 3, . . . ,

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , λj → +∞ as j → +∞.

Noting that

λ1 = inf
{‖u‖2D1

0(O,σ)

‖u‖2L2(O)

: u ∈ D1
0(O, σ), u 6= 0

}
,

we have
‖u‖2D1

0(O,σ) ≥ λ1‖u‖2L2(O), for all u ∈ D1
0(O, σ).

We also define Dp(A) = {u ∈ D1
0(O, σ) : Au ∈ Lp(O)}.

2.2. Random dynamical systems. Here, we recall some basic concepts on the
theory of random attractors for random dynamical systems (RDS for short); for
more details, we refer the reader to [6, 13].

Let (X, ‖ · ‖X) be a separable Banach space with Borel σ-algebra B(X), and let
(Ω,F , P ) be a probability space.

Definition 2.2. (Ω,F , P, (θt)t∈R) is called a metric dynamical system if θ : R×Ω →
Ω is (B(R)×F ,F)-measurable, θ0 is the identity on Ω, θs+t = θtθs for all s, t ∈ R,
and θt(P ) = P for all t ∈ R.
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Definition 2.3. A function φ : R+ × Ω × X → X is called a random dynamical
system on a metric dynamical system (Ω,F , P, (θt)t∈R) if for P -a.e. ω ∈ Ω,

(i) φ(0, ω, ·) is the identity of X;
(ii) φ(t + s, ω, x) = φ(t, θtω, φ(s, ω, x)) for all t, s ∈ R+, x ∈ X.

Moreover, φ is said to be continuous if φ(t, ω, ·) : X → X is continuous for all
t ∈ R+ and for P -a.e. ω ∈ Ω.

We need the following definition about tempered random set.

Definition 2.4. A random bounded set {B(ω)}ω∈Ω of X is called tempered with
respect to (θt)t∈R if for P -a.e. ω ∈ Ω,

lim
t→∞

e−βtd(B(θ−tω)) = 0 for all β > 0,

where d(B) = supx∈B ‖x‖X .

Hereafter, we assume that φ is a random dynamical system on (Ω,F , P, (θt)t∈R)
and denote by D a collection of tempered random subsets of X.

Definition 2.5. A random set {K(ω)}ω∈Ω ∈ D is said to be a random absorbing
set for φ in D if for every B = {B(ω)}ω∈Ω ∈ D and P -a.e. ω ∈ Ω, there exists
tB(ω) > 0 such that

φ(t, θ−tω, B(θ−tω)) ⊂ K(ω) for all t ≥ tB(ω).

Definition 2.6. A random dynamical system φ is called D-pullback asymptoti-
cally compact in X if for P -a.e. ω ∈ Ω, {φ(tn, θ−tnω, xn)}n≥1 has a convergent
subsequence in X for any tn →∞, and xn ∈ B(θ−tnω) with B ∈ D.

Definition 2.7. A random set {A(ω)}ω∈Ω of X is called a D-random attractor for
φ if the following conditions are satisfied, for P -a.e. ω ∈ Ω,

(i) A(ω) is compact, and the map ω 7→ d(x,A(ω)) is measurable for every
x ∈ X;

(ii) {A(ω)}ω∈Ω is invariant; that is,

φ(t, ω,A(ω)) = A(θtω) for all t ≥ 0;

(iii) {A(ω)}ω∈Ω attracts every set in D; i.e., for every {B(ω)}ω∈Ω ∈ D,

lim
t→∞

distX(φ(t, θ−tω, B(θ−tω)),A(ω)) = 0,

where distX is the Hausdorff semi-distance of X,

distX(A,B) = sup
x∈A

inf
y∈B

‖x− y‖X where A,B ⊂ X.

The following result was proved in [7, 13].

Theorem 2.8 ([7, 13]). Assume that φ is a continuous RDS which has a random
absorbing set {K(ω)}ω∈Ω. If φ is pullback asymptotically compact, then it possesses
a random attractor {A(ω)}ω∈Ω, where

A(ω) = ∩τ≥0∪t≥τφ (t, θ−tω, K(θ−tω)).

As we know, the continuity of the RDS corresponding to (1.1) in Lp(O) and in
D1

0(O, σ) is not known, thus, we cannot apply Theorem 2.8 to prove the existence
of random attractors in these spaces. Fortunately, in [18], the authors have proved
that the existence of random attractors can be obtained under weaker assumptions
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on the continuity of the RDS, more precisely, we only need the RDS to be quasi-
continuous.

Definition 2.9 ([18]). A RDS φ is called to be quasi-continuous if for P -a.e.
ω ∈ Ω, φ(tn, ω, xn) ⇀ φ(t, ω, x) whenever {(tn, xn)} is a sequence in R+ ×X such
that {φ(tn, ω, xn)} is bounded and (tn, xn) → (t, x) as n →∞.

The following lemma gives us a criteria to check the quasi-continuity of a RDS.

Lemma 2.10 ([18]). Let X, Y be two Banach spaces with the dual spaces X∗, Y ∗,
respectively, and assume that

(i) the embedding i : X → Y is densely continuous;
(ii) the adjoint operator i∗ : Y ∗ → X∗ is dense; i.e., i∗(Y ∗) is dense in X∗.

If φ is continuous in Y , then φ is quasi-continuous in X.

In this article, we will use the following result on the existence of random at-
tractors for quasi-continuous dynamical systems.

Theorem 2.11 ([18]). Let φ be a quasi-continuous RDS which has a random ab-
sorbing set {K(ω)}ω∈Ω in X. Assume also that φ is pullback asymptotically compact
in X. Then, φ has a unique random attractor {A(ω)}ω∈Ω in X. Moreover, we have

A(ω) = ∩τ≥0∪t≥τφ (t, θ−tω, K(θ−tω))
weak

.

In what follows, for brevity, we will denote by | · |p and ‖ · ‖ the norms in Lp(O)
and D1

0(O, σ) respectively. The inner product in L2(O) will be written as (·, ·). The
letter C stands for an arbitrary constant which can be different from line to line
or even in the same line, D and Dp denote the collection of all tempered random
subsets of L2(O) and Lp(O) respectively

3. Existence of a random attractor in Lp(O)

We consider the canonical probability space (Ω,F , P ), where

Ω = {ω = (ω1, ω2, . . . , ωm) ∈ C(R; Rm) : ω(0) = 0},

and F is the Borel σ-algebra induced by the compact open topology of Ω, while P
is the corresponding Wiener measure on (Ω,F). Then, we identify ω with

W (t) = (ω1(t), ω2(t), . . . , ωm(t)) = ω(t) for t ∈ R.

We define the time shift by θtω(·) = ω(·+ t)− ω(t), t ∈ R. Then, (Ω,F , P, (θt)t∈R)
is a metric dynamical system.

We now want to establish a random dynamical system corresponding to (1.1).
For this purpose, we need to convert the stochastic equation with an additive noise
into a deterministic equation with random parameters.

Given j = 1, . . . ,m, consider the stochastic stationary solution of the one-
dimensional Ornstein-Uhlenbeck equation

dzj + λzjdt = dωj(t). (3.1)

One may check that a solution to (3.1) is given by

zj(t) = zj(θtωj) = −λ

∫ 0

−∞
eλτ (θtωj)(τ)dτ, t ∈ R.
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From Definition 2.4, the random variable |zj(ωj)| is tempered and zj(θtωj) is P -
a.e. continuous. Therefore, it follows from [6, Proposition 4.3.3] that there exists a
tempered function r(ω) > 0 such that

m∑
j=1

(
|zj(ωj)|2 + |zj(ωj)|p + |zj(ωj)|2p−2

)
≤ r(ω), (3.2)

where r(ω) satisfies, for P -a.e. ω ∈ Ω,

r(θtω) ≤ e
λ
2 |t|r(ω), t ∈ R. (3.3)

Combining (3.2) and (3.3), it implies that
m∑

j=1

(
|zj(θtωj)|2 + |zj(θtωj)|p + |zj(θtωj)|2p−2

)
≤ e

λ
2 |t|r(ω), t ∈ R.

Putting z(θtω) =
∑m

j=1 hjzj(θtωj), by (3.1) we have

dz + λzdt =
m∑

j=1

hjdωj .

Since hj ∈ L2p−2(O) ∩Dom(A) ∩Dp(A), we have

p(θtω) = ‖z(θtω)‖2 + |z(θtω)|pp + |z(θtω)|2p−2
2p−2 + |Az(θtω)|22 + |Az(θtω)|pp

≤ Ce
λ
2 |t|r(ω).

(3.4)

To show that the problem (1.1) generates a random dynamical system, we let
v(t) = u(t)− z(θtω) where u is a solution of (1.1). Then v satisfies

vt + Av + f(v + z(θtω)) + λv = g −Az(θtω), (3.5)

where Au = −div(σ(x)∇u). By the Galerkin method, one can show that if f
satisfies (1.2)-(1.3), then for P -a.e. ω ∈ Ω and for all v0 ∈ L2(O), (3.5) has a unique
solution v(·, ω, v0) ∈ C([0, T ];L2(O)) ∩ L2(0, T ;D1

0(O, σ)) with v(0, ω, v0) = v0 for
every T > 0. Let u(t, ω, u0) = v(t, ω, u0 − z(ω)) + z(θtω), then u is the solution of
(1.1). We now define a mapping φ : R+ × Ω× L2(O) → L2(O) by

φ(t, ω, u0) = u(t, ω, u0) = v(t, ω, u0 − z(ω)) + z(θtω).

By Definition 2.3, φ is a random dynamical system associated to problem (1.1).
The following result was proved in [24].

Lemma 3.1. [24] Under assumptions (H1), (F1), (G1), (H2), the RDS φ corre-
sponding to (1.1) is continuous in L2(O). Moreover, φ possesses a random absorb-
ing set in D1

0(O, σ), that is, for any {B(ω)}ω∈Ω ∈ D, there exists T1 > 0 such that,
for P -a.e. ω ∈ Ω,

‖φ(t, θ−tω, u0(θ−tω))‖2 ≤ C (1 + r(ω)) ,

for all t ≥ T1 and u0(θ−tω) ∈ B(θ−tω).

Since D1
0(O, σ) ↪→ L2(O) compactly, we see that the RDS φ corresponding to

problem (1.1) possesses a random attractor in L2(O). To prove the existence of a
random attractor in Lp(O), we will use the following results.

Lemma 3.2. [23] Let φ be a continuous random dynamical system (RDS) on L2(O)
and an RDS on Lp(O), where 2 ≤ p ≤ ∞. Assume that φ has a D-random attractor.
Then φ has a Dp-random attractor if and only if the following conditions hold:
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(i) φ has a Dp-random absorbing set {K0(ω)}ω∈Ω;
(ii) for any ε > 0 and every {B(ω)}ω∈Ω ∈ D, there exist positive constants

M = M(ε, B, ω) and T = T (ε, B, ω) such that, for all t ≥ T ,

sup
u0(ω)∈B(ω)

∫
O(|Ψ(t)u0(θ−tω)|≥M)

|Ψ(t)u0(θ−tω)|pdx ≤ εp

2p+2
,

where Ψ(t) = φ(t, θ−tω) and

O(|Ψ(t)u0(θ−tω)| ≥ M) = {x ∈ O : |Ψ(t)u0(θ−tω)(x)| ≥ M}.
Moreover, the D-random attractor and the Dp-random attractor are iden-
tical in the set inclusion-relation sense.

Lemma 3.3 ([24]). Let assumptions (H1), (F1), (G1), (H2) hold, and let B =
{B(ω)}ω∈Ω ∈ D and u0(ω) ∈ B(ω). Then for P -a.e. ω ∈ Ω, there exists T =
T (B,ω) > 0 such that for all t ≥ T ,∫ t+1

t

|u(s, θ−t−1ω, u0(θ−t−1ω))|ppds ≤ c(1 + r(ω)).

We now show that φ processes a Dp-random absorbing set {K0(ω)}ω∈Ω, which
belong to Dp and absorbs every random set of D in the topology of Lp(O).

Lemma 3.4. Assume that (H1), (F1), (G1), (H2) hold. Let B = {B(ω)}ω∈Ω ∈ D
and u0(ω) ∈ B(ω). Then for P -a.e. ω ∈ Ω, for all t ≥ T ,∫ t+1

t

|v(s, θ−t−1ω, u0(θ−t−1ω)− z(θ−t−1ω))|ppds ≤ c(1 + r(ω)),

where c is a positive constant and r(ω) is a tempered random function in (3.2).

Proof. Note that

v(s, θ−t−1ω, u0(θ−t−1ω)− z(θ−t−1, ω)) = u(s, θ−t−1ω, u0(θ−t−1ω))− z(θs−t−1ω).

Then by Lemma 3.3 and (3.2)-(3.3), we have, with z(θtω) =
∑m

j=1 hjzj(θtωj) and
hj ∈ L2p−2(O) ∩Dom(A) ∩Dp(A),∫ t+1

t

|v(s, θ−t−1ω, u0(θ−t−1ω)− z(θ−t−1ω))|ppds

=
∫ t+1

t

|u(s, θ−t−1ω, u0(θ−t−1ω))− z(θs−t−1ω)|ppds

≤ 2p−1
( ∫ t+1

t

|u(s, θ−t−1ω, u0(θ−t−1ω))|ppds +
∫ t+1

t

|z(θs−t−1ω)|ppds
)

≤ 2p−1
(
c(1 + r(ω)) + c

∫ 0

−1

|z(θsω)|ppds
)

≤ 2p−1
(
c(1 + r(ω)) + c

∫ 0

−1

m∑
j=1

|zj(θsωj)|pds
)

≤ 2p−1
(
c(1 + r(ω)) + c

∫ 0

−1

r(θsω)ds
)

≤ 2p−1
(
c(1 + r(ω)) + cr(ω)

∫ 0

−1

e−
λ
2 sds

)
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≤ c(1 + r(ω))

for all t ≥ T (B,ω), where T (B,ω) > 0 is in Lemma 3.3. �

Lemma 3.5. Assume that (H1), (F1), (G1), (H2) hold. Let B = {B(ω)}ω∈Ω ∈ D
and u0(ω) ∈ B(ω). Then for P -a.e ω ∈ Ω, there exists T = T (B,ω) > 0 such that,
for all t ≥ T ,

|u(t, θ−tω, u0(θ−tω))|pp ≤ c(1 + r(ω)).
In particular, for ω ∈ Ω,K0(ω) = {u ∈ Lp(O) : |u|pp ≤ c(1 + r(ω))} is a Dp-random
absorbing set in Dp for φ.

Proof. Multiplying (3.5) with |v|p−2v and then integrating over O, we have

1
p

d

dt
|v|pp + λ|v|pp +

∫
O

σ(x)|∇v|2|v|p−2dx +
∫
O

f(v(t) + z(θtω))|v|p−2vdx

=
∫
O

(g(x)−Az(θtω))|v|p−2vdx.

(3.6)

To estimate the nonlinearity, we have

f(v + z(θtω))v = f(u)u− f(u)z(θtω)

≥ C1|u|p − C2 − (C3|u|p−1 + C4)z(θtω).

Using Young’s inequality, we obtain

C3|u|p−1z(θtω) ≤ 1
2
C1|u|p + C|z(θtω)|p

C4z(θtω) ≤ 1
2
C2

4 +
1
2
|z(θtω)|2.

Hence,

f(v + z(θtω))v ≥ 1
2
C1|u|p − C(|z(θtω)|p + |z(θtω)|2)− C.

By Hölder’s inequality, |u|p ≥ 21−p|v|p − |z(θtω)|p, then it implies that

f(v + z(θtω))v ≥ C1

2p
|v|p − C(|z(θtω)|p + |z(θtω)|2)− C|v|p−2, (3.7)

from which it follows by Young’s inequality that

f(v + z(θtω))|v|p−2v

≥ C1

2p
|v|2p−2 − C|z(θtω)|p|v|p−2 − C|z(θtω)|2vp−2 − C|v|p−2

≥ C1

2p
|v|2p−2 − C1

2p+1
|v|2p−2 − C|z(θtω)|2p−2 − λ(p− 1)

2p
|v|p − C|z(θtω)|p

− λ(p− 1)
2p

|v|p − C

≥ C1

2p+1
|v|2p−2 − λ(p− 1)

p
|v|p − C(|z(θtω)|2p−2 + |z(θtω)|p)− C.

(3.8)

So, we finally obtain the estimate of the nonlinearity as follows∫
O

f(v + z(θtω))|v|p−2vdx

≥ C1

2p+1
|v|2p−2

2p−2 −
λ(p− 1)

p
|v|pp − C(|z(θtω)|2p−2

2p−2 + |z(θtω)|pp)− C|O|.
(3.9)
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On the other hand, the term on the right-hand side of (3.6) is bounded by

|g|2.|v|p−1
2p−2 + |Az(θtω)|2.|v|p−1

2p−2 ≤
C1

2p+2
|v|2p−2

2p−2 + c|Az(θtω)|22 + c|g|22. (3.10)

Then it follows from (3.6) and (3.9)-(3.10) that
d

dt
|v|pp + λ|v|pp + c|v|2p−2

2p−2 ≤ c1(|z(θtω)|2p−2
2p−2 + |z(θtω)|22 + |Az(θtω)|22) + c0. (3.11)

From (3.11) we have
d

dt
|v|pp ≤ p(θtω) + c0. (3.12)

We let T (B,ω) be the same as in Lemma 3.4 and t ≥ T (B,ω). Integrating (3.12)
from s to t + 1, where s ∈ (t, t + 1), we obtain

|v(t + 1, ω, vo(ω))|pp ≤
∫ t+1

t

p(θτω)dτ + |v(s, ω, v0(ω))|pp + c0. (3.13)

By replacing ω by θ−t−1ω and then integrating from t to t + 1 in (3.13), it yields
that

|v(t + 1, θ−t−1ω, v0(θ−t−1ω))|pp

≤
∫ t+1

t

p(θτ−t−1ω)dτ +
∫ t+1

t

|v(s, θ−t−1ω, v0(θ−t−1ω))|ppds + c0.
(3.14)

By employing Lemma 3.4 and together with (3.4), it follows from (3.14) that

|v(t + 1, θ−t−1ω, v0(θ−t−1ω))|pp ≤
∫ 0

−1

p(θτω)dτ + c(1 + r(ω))

≤ c3r(ω)
∫ 0

−1

e−
1
2 λτdτ + c(1 + r(ω))

≤ c(1 + r(ω)).

Therefore, there exists T1(B,ω) > 0 such that, for all t ≥ T1(B,ω),

|v(t, θ−tω, u0(θ−tω))|pp ≤ c(1 + r(ω)),

from which and (3.2), it follows that for all t ≥ T1(B,ω),

|u(t, θ−tω, u0(θ−tω))|pp = |v(t, θ−tω, v0(θ−tω) + z(ω))|pp
≤ 2p−1(|v(t, θ−t−1ω, v0(θ−tω))|pp + |z(ω)|pp)
≤ c2p−1(1 + r(ω)) + 2p−1|z(ω)|pp
≤ c(1 + r(ω)).

(3.15)

Given ω ∈ Ω, denote

K0(ω) = {u ∈ Lp(O) : |u|pp ≤ c(1 + r(ω))}.
Then {K0(ω)}ω∈Ω ∈ Dp. Moreover, (3.15) indicates that {K0(ω)}ω∈Ω is a Dp-
random absorbing set in Dp for φ, which completes the proof. �

Lemma 3.6. Assume that (H1), (F1), (G1), (H2) hold. Let B = {B(ω)}ω∈Ω ∈ D
and u0(ω) ∈ B(ω). Then for P -a.e. ω ∈ Ω, there exists T = T (B,ω) > 0 such
that, for all t ≥ T and s ∈ [t, t + 1],

|v(s, θ−t−1ω, v0(θ−t−1ω))|22 ≤ c(1 + r(ω)),

where v0(ω) = u0(ω)− z(ω).
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Proof. Using a similar argument as given in [24, Lemma 6.1], we obtain

|v(s, ω, vo(ω))|22 ≤ e−λs|v0(ω)|22 +
∫ s

0

eλ(τ−s)p(θτω)dτ +
c

λ
. (3.16)

We choose s ∈ [t, t + 1]. By replacing ω by θ−t−1ω in (3.16), we obtain, with (3.3)

|v(s, θ−t−1ω, v0(θ−t−1ω))|22

≤ e−λs|v0(θ−t−1ω)|22 +
∫ s

0

eλ(τ−s)p(θτ−t−1ω)dτ +
c

λ

≤ eλe−λ(t+1)|v0(θ−t−1ω)|22 +
∫ t+1

0

eλ(τ−t)p(θτ−t−1ω)dτ +
c

λ

≤ eλe−λ(t+1)|v0(θ−t−1ω)|22 +
∫ 0

−t−1

eλ(τ+1)p(θτω)dτ +
c

λ

≤ eλ
(
e−λ(t+1)|v0(θ−t−1ω)|22 + c

∫ 0

−t−1

e
λ
2 τr(ω)dτ

)
+

c

λ

≤ eλ
(
e−λ(t+1)|v0(θ−t−1ω)|22 +

2c

λ
r(ω)

)
+

c

λ

≤ 2eλe−λ(t+1)
(
|u0(θ−t−1ω)|22 + |z(θ−t−1ω)|22

)
+

2ceλ

λ
r(ω) +

c

λ
.

(3.17)

Note that {B(ω)}ω∈Ω ∈ D and |z(ω)|22 is also tempered. Then for u0(θ−t−1ω) ∈
B(θ−t−1ω), there exists T = T (B,ω) such that, for all t ≥ T ,

2eλe−λ(t+1)
(
|u0(θ−t−1ω)|22 + |z(θ−t−1ω)|22

)
≤ c(1 + r(ω)). (3.18)

Hence, it follows from (3.17) and (3.18) that for all t ≥ T and s ∈ [t, t + 1],

|v(s, θ−t−1ω, v0(θ−t−1ω))|22 ≤ c(1 + r(ω)),

which completes the proof. �

Lemma 3.7. Assume that (H1), (F1), (G1), (H2) hold. Let B = {B(ω)}ω∈Ω ∈ D
and u0(ω) ∈ B(ω). Then for every ε > 0 and P -a.e. ω ∈ Ω, there exist T =
T (B,ω) > 0 and M = M(ε, B, ω) such that for all t ≥ T and s ∈ [t, t + 1],

m(O|v(s, θ−t−1ω, v0(θ−t−1ω))| ≥ M) < ε,

where v0(ω) = u0(ω)− z(ω) and m(e) is the Lebesgue measure of e ⊂ RN .

Proof. By Lemma 3.6, there exists a random variable M0 = M0(ω) such that, for
every B = {B(ω)}ω∈Ω ∈ D, we can find a constant T = T (B,ω) such that for all
t ≥ T and s ∈ [t, t + 1],

|v(s, θ−t−1ω, v0(θ−t−1ω)|22 ≤ M0

with v0(ω) = u0(ω)−z(ω) and u0 ∈ B(ω). On the other hand, for any fixed M > 0,

|v(s, θ−t−1ω, v0(θ−t−1ω))|22

=
∫
O
|v(s, θ−t−1ω, v0(θ−t−1))|2dx

≥
∫
O(|v(s,θ−t−1ω,v0(θ−t−1ω))|≥M)

|v(s, θ−t−1ω, v0(θ−t−1))|2dx

≥ M2m(O(|v(s, θ−t−1ω, v0(θ−t−1ω))| ≥ M)).

(3.19)
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Then for any ε > 0, by (3.19), we obtain that m(O|v(s, θ−t−1ω, v0(θ−t−1ω))| ≥
M) < ε provided that we choose M >

(
M0
ε

)1/2
. �

By a technique similar to that in [23, Lemma 4.6], we can prove the following
lemma.

Lemma 3.8. Assume that (H1), (F1), (G1), (H2) hold. Let B = {B(ω)}ω∈Ω ∈ D,
then for every ε > 0 and P -a.e. ω ∈ Ω, there exists T = T (ε, B, ω) > 0,M1 =
M1(ε, B, ω) and M2 = M2(ε, B, ω) such that for all t ≥ T ,∫

O(|u(t,θ−t−1ω,u0(θ−t−1ω))|≥M1)

|u(t, θ−t−1ω, u0(θ−t−1ω))|2dx ≤ ε,∫
O(|v(t,θ−t−1ω,v0(θ−t−1ω))|≥M2)

|v(t, θ−t−1ω, v0(θ−t−1ω))|2dx ≤ ε, (3.20)

where v0(ω) = u0(ω)− z(ω).

Lemma 3.9. Assume that (H1), (F1), (G1), (H2) hold. Let B = {B(ω)}ω∈Ω ∈ D,
then for every ε > 0 and P -a.e ω ∈ Ω, there exist T = T (ε, B, ω) > 0,M =
M(ε, B, ω) such that for all t ≥ T ,∫

O(|u(t,θ−tω,u0(θ−tω))|≥M)

|u(t, θ−tω, u0(θ−tω))|pdx ≤ ε. (3.21)

Proof. For any fixed ε > 0, there exists δ > 0 such that for any e ⊂ O with
m(e) ≤ δ, we have ∫

e

|g|2dx < ε. (3.22)

In particular, by our assumptions hj ∈ L2p−2(O) ∩ Dom(A) ∩ Dp(A) for j =
1, 2, . . . ,m, there exists δ2 = δ2(ε) > 0 such that, for any e ⊂ RN with m(e) ≤ δ2,∫

e

(|hj(x)|2p−2 + |hj(x)|p + |hj(x)|2 + |Ahj(x)|2)dx <
ε

r(ω)
. (3.23)

On the other hand, from Lemma 3.7, we know that for every u0(ω) ∈ B(ω), there
exists T1 ≥ T and M3 such that for all t ≥ T1 and s ∈ [t, t + 1],

m(O(|v(s, θ−t−1ω, v0(θ−t−1ω))| ≥ M3)) ≤ min{ε, δ1, δ2}. (3.24)

Then inequalities (3.22)-(3.23) hold for e = O(|v(s, θ−t−1ω, v0(θ−t−1ω))| ≥ M3).
Let now M = max(M1,M2,M3), F = |z(ω)|∞, and t ≥ T1. By a similar com-
putation as in [23, Lemma 4.6], we can show that F is finite for P -a.e. ω ∈ Ω.
Multiplying (3.5) with (v −M)+ and then integrating over O, we have

1
2

d

dt
|(v −M)+|22 + λ

∫
O

v(v −M)+dx +
∫
O

σ(x)|∇(v −M)+|2dx

+
∫
O

f(v + z(θtω))(v −M)+dx

=
∫
O

(g −Az(θtω))(v −M)+dx,

(3.25)

where

(v −M)+ =

{
v −M if v ≥ M,

0 if v ≤ M.
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We now estimate all terms of (3.25). First, we have∫
O

σ(x)|∇(v −M)+|2dx ≥ 0, (3.26)

λ

∫
O

v(v −M)+dx ≥ λ|(v −M)+|22. (3.27)

From (3.7), we find that

f(v + z(θtω))(v −M)

= f(v −M + z(θtω) + M)(v −M)

≥ C1

2p
|v −M |p − C(|z(θtω) + M |p + |z(θtω) + M |2)− C

≥ C1

2p
|v −M |p − C(|z(θtω)|p + |z(θtω)|2)− C,

(3.28)

which gives∫
O(v≥M)

f(v + z(θtω))(v −M)dx

≥ c1

∫
O(v≥M)

|v −M |pdx− C

∫
O(v≥M)

(|z(θtω)|p + |z(θtω)|2)dx

− Cm(O(v ≥ M)),

(3.29)

where c1 = C1
2p . By Young’s inequality, we have∫

O(v≥M)

(g−Az(θtω))(v−M)+dx ≤ λ|(v−M)+|22+c

∫
O(v≥M)

(|g|2+|Az(θtω)|2)dx.

(3.30)
Then it follows from (3.25)-(3.30) that

d

dt
|(v −M)+|22 + 2c1

∫
O(v≥M)

|v −M |pdx

≤ 2C

∫
O(v≥M)

(|z(θtω)|p + |z(θtω)|2 + |Az(θtω)|2)dx

+
∫
O(v≥M)

2cg2dx + Cm(O(v ≥ M)).

(3.31)

Replacing t by τ and then integrating (3.31) for τ from t to t + 1, it yields∫ t+1

t

∫
O(v(τ,ω,v0(ω))≥M)

|v(τ, ω, v0(ω)−M)|pdxdτ

≤ c1

∫ t+1

t

∫
O(v(τ,ω,v0(ω))≥M)

(|z(θτω)|p + |z(θτω)|2 + |Az(θτω)|2)dxdτ

+ c2

∫ t+1

t

∫
O(v(τ,ω,v0(ω))≥M)

cg2dxdτ + c3

∫ t+1

t

m(O(v ≥ M))dτ

+ |(v(t, ω, v0(ω))−M)+|22.

(3.32)
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Let D1(τ) = O(v(τ, θ−t−1ω, v0(θ−t−1ω)) ≥ M). Replacing ω by θ−t−1ω in (3.32),
we see that∫ t+1

t

∫
D1(τ)

|v(τ, θ−t−1ω, v0(θ−t−1ω)−M)|pdxdτ

≤ c1

∫ t+1

t

∫
D1(τ)

(|z(θτ−t−1ω)|p + |z(θτ−t−1ω)|2 + |Az(θτ−t−1ω)|2)dxdτ

+ c2

∫ t+1

t

∫
D1(τ)

cg2dxdτ + c3

∫ t+1

t

m(O(v ≥ M))dτ

+ |(v(t, θ−t−1ω, v0(θ−t−1ω))−M)+|22.

(3.33)

By (3.20), together with (3.22) and (3.24), we have

c2

∫ t+1

t

∫
D1(τ)

cg2dxdτ + |(v(t, θ−t−1ω, v0(θ−t−1ω))−M)+|22 ≤ cε, (3.34)

where c is a generic positive constant independent of ε. By (3.23) and using Hölder’s
inequality repeatedly, we have the following bound for the first term on the right -
hand side of (3.33),

c1

∫ t+1

t

∫
D1(τ)

(|z(θτ−t−1ω)|p + |z(θτ−t−1ω)|2 + |Az(θτ−t−1ω)|2)dxdτ

≤ c1m
p−2

∫ t+1

t

∫
D1(τ)

( m∑
j=1

|hj |p
m∑

j=1

|zj(θτ−t−1ωj)|p

+
m∑

j=1

|hj |2
m∑

j=1

|zj(θτ−t−1ωj)|2 +
m∑

j=1

|Ahj |2
m∑

j=1

|zj(θτ−t−1ωj)|2
)

dxdτ

≤ 3cmp−2ε

r(ω)

∫ t+1

t

( m∑
j=1

|zj(θ−τ−t−1ωj)|p +
m∑

j=1

|zj(θ−τ−t−1ωj)|2
)

dτ

≤ 3cmp−1ε

r(ω)

∫ t+1

t

p(θτ−t−1ω)dτ

≤ 3cmp−1ε

r(ω)

∫ 0

−1

p(θτω)dτ

≤ 3cmp−1ε

r(ω)

∫ 0

−1

r(ω)e−
1
2 λτdτ ≤ cε.

(3.35)

Then by (3.24), it follows from (3.33)-(3.35) that for all t ≥ T1,∫ t+1

t

∫
D1(τ)

|v(τ, θ−t−1ω, v0(θ−t−1ω)−M)|pdxdτ ≤ cε. (3.36)

We then take the inner product of (3.5) with (v −M)p−1
+ to find that

1
p

d

dt
|(v −M)+|pp + λ

∫
O

v(v −M)p−1
+ dx

+ (p− 1)
∫
O

σ(x)|∇(v −M)+|2|(v −M)+|p−2dx

+
∫
O

f(v + z(θtω))(v −M)p−1
+ dx
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=
∫
O

(g −Az(θtω))(v −M)p−1
+ dx.

If v ≥ M , then by (3.8), we have

f(v + z(θtω))(v −M)p−1

= f(v −M + z(θtω) + M)(v −M)p−1

≥ C1

2p+1
|v −M |2p−2 − λ|v −M |p − C(|z(θtω) + M |2p−2 + |z(θtω) + M |p)− C

≥ C1

2p+1
|v −M |2p−2 − λ|v −M |p − C(|z(θtω)|2p−2 + |z(θtω)|p)− C,

(3.37)
from which we have the following bounds for the nonlinearity∫

O
f(v + z(θtω))(v −M)p−1

+ dx

≥ C1

2p+1
|(v −M)+|2p−2

2p−2 − λ|(v −M)+|pp

− C

∫
O

(|z(θtω)|2p−2 + |z(θtω)|p)dx− cm(O(v ≥ M)).

(3.38)

On the other hand, we have

λ

∫
O

v(v −M)p−1
+ dx ≥ λ|(v −M)+|pp, (3.39)∫

O
σ(x)|∇(v −M)+|2|(v −M)+|p−2dx ≥ 0. (3.40)

By Young’s inequality, we deduce that∫
O

(g−Az(θtω))(v−M)p−1
+ dx ≤ C1

2p+1
|(v−M)+|2p−2

2p−2+c

∫
O(v≥M)

|g|2+|Az(θtω)|2dx.

(3.41)
Thus from (3.37) - (3.41), it follows that

1
p

d

dt
|(v −M)+|pp ≤ c1

∫
O(v≥M)

(|z(θtω)|2p−2 + |z(θtω)|p + |Az(θtω)|2)dx

+ c2

∫
O(v≥M)

g2dx + c3m(O(v ≥ M)).
(3.42)

Replacing t by τ and then integrating (3.42) for τ from s to t+1 with s ∈ [t, t+1],
we obtain that

|v(t + 1, ω, v0(ω)−M)|pp

≤ c1

∫ t+1

t

∫
O(v≥M)

(|z(θτω)|2p−2 + |z(θτω)|p + |Az(θτω)|2)dxdτ

+ c2

∫ t+1

t

∫
O(v≥M)

g2dxdτ + c3

∫ t+1

t

m(O(v ≥ M))dτ

+ |(v(s, ω, v0(ω))−M)+|pp.

(3.43)
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We first replace ω by θ−t−1ω, then integrate (3.43) for s in the interval [t, t + 1] to
find that

|(v(t + 1, θ−t−1ω, v0(θ−t−1ω))−M)+|pp

≤ c1

∫ t+1

t

∫
D1(τ)

(|z(θτ−t−1ω)|2p−2 + |z(θτ−t−1ω)|p + |Az(θτ−t−1ω)|2)dxdτ

+ c2

∫ t+1

t

∫
D1(τ)

g2dxdτ + c3

∫ t+1

t

m(D1(τ))dτ

+
∫ t+1

t

|(v(s, θ−t−1ω, v0(θ−t−1ω))−M)+|ppds,

(3.44)
where D1(τ) = O(v(τ, θ−t−1ω, v0(θ−t−1ω)) ≥ M . Then it follows from (3.22),
(3.24) and (3.36) that

c2

∫ t+1

t

∫
D1(τ)

g2dxdτ + c3

∫ t+1

t

m(D1(τ))dτ

+
∫ t+1

t

|(v(s, θ−t−1ω, v0(θ−t−1ω))−M)+|ppds ≤ cε,

(3.45)

and by similar argument as (3.35), we have

c1

∫ t+1

t

∫
D1(τ)

(|z(θτ−t−1ω)|2p−2 + |z(θτ−t−1ω)|p + |Az(θτ−t−1ω)|2)dxdτ ≤ cε.

(3.46)
Hence, from (3.44) - (3.46) we obtain that for all t ≥ T1

|(v(t + 1, θ−t−1ω, v0(θ−t−1ω))−M)+|pp ≤ cε, (3.47)

and then we deduce that for all t ≥ T1 + 1,∫
D2(t)

|v(t, θ−tω, v0(θ−tω))|pdx ≤ cε, (3.48)

where D2(t) = O(v(t, θ−tω, v0(θ−tω)) ≥ 2M). Note that u(t, θ−t, u0(θ−tω)) =
v(t, θ−tω, v0(θ−tω)) + z(ω). Then we see that

O(|u(t, θ−t, u0(θ−tω))| ≥ 2M + F ) ⊂ O(|v(t, θ−tω, v0(θ−tω))| ≥ 2M) = D2(t),

where F = |z(ω)|∞. This, together with (3.24) and (3.48), gives that for all t ≥
T1 + 1 ∫

O(u(t,θ−tω,u0(θ−tω))≥2M+F )

|u(t, θ−tω, u0(θ−tω))|pdx

≤ 2p−1
( ∫

D2(t)

|v(t, θ−tω, v0(θ−tω))|pdx +
∫

D2(t)

|z(ω)|pdx
)

≤ 2p−1(cε + F pm(D2(t))) ≤ cε.

(3.49)

Repeating the same arguments above, just taking (v +M)− and |(v +M)−|p−2(v +
M)− instead of (v − M)+ and (v − M)p−1

+ , respectively, where (v + M)− is the
negative part of v + M , we can deduce that∫

O(|u(t,θ−tω,u0(θ−tω))|≤−2M−F )

|u(t, θ−tω, u0(θ−tω))|pdx ≤ cε. (3.50)

Then the result (3.21) follows from (3.49) and (3.50). �
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Theorem 3.10. Assume that (H1), (F1), (G1), (H2) hold. Then the RDS φ gen-
erated by (3.5) has a unique Dp-random attractor {Ap(ω)}ω∈Ω which is a compact
and invariant tempered random subset of Lp(O) attracting every tempered random
subset of L2(O). Furthermore, Ap(ω) = A(ω), where {A(ω)}ω∈Ω is the random
attractor in L2(O).

4. Existence of a random attractor in D1
0(O, σ)

We denote by

B∗(ω) = {u ∈ Lp(O) ∩ D1
0(O, σ) : |u|pp + ‖u‖2 ≤ c(1 + r(ω))} (4.1)

for ω ∈ Ω. By Lemma 3.1 and Lemma 3.5 we see that {B∗(ω)}ω∈Ω is a random
absorbing set for φ in Lp(O) ∩ D1

0(O, σ). In the next lemma, we show that we can
take initial data in {B∗(ω)}ω∈Ω to obtain the pullback asymptotic compactness of
φ.

Lemma 4.1. Assume that {B∗(ω)}ω∈Ω is a random absorbing in Lp(O)∩D1
0(O, σ)

for the RDS φ. Then φ is pullback asymptotically compact if for P -a.e. ω ∈ Ω,
{φ(tn, θ−tn

ω, xn)} whenever tn → +∞ and xn ∈ B∗(θ−tn
ω).

Proof. Take an arbitrary random set {B(ω)}ω∈Ω ∈ D, a sequence tn → +∞ and
yn ∈ B(θ−tnω). We have to prove that {φ(tn, θ−tnω, yn)} is precompact.

Since {B∗(ω)} is a random absorbing for φ, then there exists T > 0 such that,
for all ω ∈ Ω,

φ(t, θ−tω, B(θ−tω)) ⊂ B∗(ω) for all t ≥ T. (4.2)

Because tn → +∞, we can choose n1 ≥ 1 such that tn1 − 1 ≥ T . Applying (4.2)
for t = tn1 − 1 and ω = θ−1ω, we find that

x1 := φ(tn1 − 1, θ−tn1
ω, yn1) ∈ φ(tn1 − 1, θ−tn1

ω, B(θ−tn1
ω)) ⊂ B∗(θ−1ω). (4.3)

Similarly, we can choose a subsequence {nk} of {n} such that n1 < n2 < · · · <
nk → +∞ such that

xk := φ(tnk
− k, θ−tnk

ω, ynk
) ∈ B∗(θ−kω). (4.4)

Hence, by the assumption we conclude that

the sequence {φ(k, θ−kω, xk)} is precompact. (4.5)

On the other hand, by (4.4)

φ(k, θ−kω, xk) = φ(k, θ−kω, φ(tnk
− k, θ−tnk

ω, ynk
))

= φ(tnk
, θ−tnk

ω, ynk
), ∀k ≥ 1.

(4.6)

Combining (4.5), (4.6) we obtain that the sequence {φ(tnk
, θ−tnk

ω, ynk
)} is pre-

compact, thus {φ(tn, θtn
ω, yn)} is precompact. This completes the proof. �

Lemma 4.2. There exists T > 0 such that, for P -a.e. ω ∈ Ω∫ t

0

e−λ(t−s)|v(s, θ−tω, v0(θ−tω))|2p−2
2p−2ds ≤ C(1 + r(ω)), (4.7)

for all t ≥ T and all u0(θ−tω) ∈ B∗(θ−tω).
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Proof. We recall here inequality (3.11),

d

dt
|v|pp + λ|v|pp + c|v|2p−2

2p−2 ≤ c1(|z(θtω)|2p−2
2p−2 + |z(θtω)|22 + |Az(θtω)|22) + c0. (4.8)

Multiplying (4.8) by eλt and integrating over (0, t), we have

|v(t, ω, v0(ω))|pp + c

∫ t

0

e−λ(t−s)|v(s, ω, v0(ω))|2p−2
2p−2ds

≤ e−λt|v0(ω)|pp + c1

∫ t

0

e−λ(t−s)(|z(θsω)|2p−2
2p−2 + |z(θsω)|22 + |Az(θsω)|22)ds

+ c0

∫ t

0

e−λ(t−s)ds.

(4.9)

We replace ω by θ−tω in (4.9) to obtain

c

∫ t

0

e−λ(t−s)|v(s, θ−tω, v0(θ−tω))|2p−2
2p−2ds

≤ e−λt|v0(θ−tω)|pp + c1

∫ 0

−t

eλs(|z(θsω)|2p−2
2p−2 + |z(θsω)|22 + |Az(θsω)|22)ds +

c0

λ

≤ e−λt|u0(θ−tω)− z(θ−tω)|pp + c1

∫ 0

−t

p(θsω)ds +
c0

λ

≤ 2p(e−λt|u0(θ−tω)|pp + e−λt|z(θ−tω)|pp) +
2c1r(ω)

λ
+

c0

λ
.

(4.10)
Since u0(θ−tω) ∈ B∗(θ−tω) and |z(ω)| is tempered, we have

lim
t→+∞

e−λt|u0(θ−tω)|pp = lim
t→+∞

e−λt|z(θ−tω)|pp = 0.

Hence, from (4.10), we can choose T large enough such that∫ t

0

e−λ(t−s)|v(s, θ−tω, v0(θ−tω))|2p−2
2p−2ds ≤ c(1 + r(ω)),∀t ≥ T.

�

Lemma 4.3. For all t ≥ T and all u0(θ−tω) ∈ B(θ−tω), we have∫ t

0

e−λ(t−s)

∫
O
|f(u(s, θ−tω, u0(θ−tω)))|2 dx ds ≤ C(1 + r(ω)). (4.11)

Proof. By condition (1.3) of f , we find that∫
O
|f(u(s, θ−tω, u0(θ−tω)))|2dx

≤ C2
3

∫
O
|u(s, θ−tω, u0(θ−tω))|2p−2dx + C2

4 |Ω|

≤ C2
322p−2

∫
O

(
|v(s, θ−tω, v0(θ−tω))|2p−2 + |z(θs−tω)|2p−2

)
dx + C2

4 |Ω|

≤ C
(
|v(s, θ−tω, v0(θ−tω))|2p−2

2p−2 + |z(θs−tω)|2p−2
2p−2 + 1

)
≤ C

(
|v(s, θ−tω, v0(θ−tω))|2p−2

2p−2 + p(θs−tω) + 1
)

.

(4.12)
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Thus,∫ t

0

e−λ(t−s)

∫
O
|f(u(s, θ−tω, u0(θ−tω)))|2 dx ds

≤ C

∫ t

0

e−λ(t−s)
(
|v(s, θ−tω, v0(θ−tω))|2p−2

2p−2 + p(θs−tω) + 1
)

ds

≤ C

∫ t

0

e−λ(t−s)|v(s, θ−tω, v0(θ−tω))|2p−2
2p−2ds + C

∫ 0

−t

eλτp(θτω)dτ + C

≤ C

∫ t

0

e−λ(t−s)|v(s, θ−tω, v0(θ−tω))|2p−2
2p−2ds + C

∫ 0

−t

eλτe−
λ
2 τr(ω)dτ + C

≤ C

∫ t

0

e−λ(t−s)|v(s, θ−tω, v0(θ−tω))|2p−2
2p−2ds + C(1 + r(ω)).

(4.13)

By (4.7) and (4.13), we obtain (4.11). �

Lemma 4.4. Let τ ∈ R. If a function h : R → R+ satisfies that

sup
t≥τ

∫ t

τ

e−µ(t−s)h(s)ds < +∞, for some µ > 0,

then we have

lim
γ→∞

sup
t≥τ

∫ t

τ

e−γ(t−s)h(s)ds = 0.

Proof. The idea of the proof follows from [21]. First, we prove that, for any ε > 0,
there exists η > 0 such that

sup
r≥τ

∫ r+η

r

e−µ(t−s)h(s)ds < ε.

Indeed, if not, there exist ε0 and rn ≥ τ, ηn > 0 and ηn → 0+, as n → ∞, such
that ∫ rn+ηn

rn

e−µ(t−s)h(s)ds ≥ ε0 for all n ≥ 1.

If {rn}n≥1 is bounded, there exists a convergent subsequence {rnk
} of {rn} and

r′ ∈ R such that limk→∞ rnk
= r′. We have

ε0 ≤ lim
k→∞

∫ rnk
+ηnk

rnk

e−µ(t−s)h(s)ds =
∫ r′

r′
e−µ(t−s)h(s)ds = 0,

this contradicts to ε0 > 0.
If rn → +∞, then we obtain

ε0 ≤
∫ rn+ηn

rn

e−µ(t−s)h(s)ds ≤
∫ +∞

rn

e−µ(t−s)h(s)ds → 0, as n → +∞,

we also have a contradiction.
Next, by the above result, for given ε > 0 we can get η > 0 such that

sup
r≥τ

∫ r+η

r

e−µ(t−s)h(s)ds ≤ ε.
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We choose k ∈ N such that t− kη ≥ τ ≥ t− (k + 1)η to have∫ t

τ

e−γ(t−s)h(s)ds

=
∫ t

t−η

e−(γ−µ)(t−s)e−µ(t−s)h(s)ds +
∫ t−η

t−2η

e−(γ−µ)(t−s)e−µ(t−s)h(s)ds

+ · · ·+
∫ t−kη

τ

e−(γ−µ)(t−s)e−µ(t−s)h(s)ds

≤
∫ t

t−η

e−µ(t−s)h(s)ds + e−(γ−µ)η

∫ t−η

t−2η

e−µ(t−s)h(s)ds

+ · · ·+ e−k(γ−µ)η

∫ t−kη

τ

e−µ(t−s)h(s)ds

≤ ε
(
1 + e−(γ−µ)η + e−2(γ−µ)η + · · ·+ e−k(γ−µ)η

)
≤ ε

1− e−(γ−µ)η
→ ε

as γ → +∞, uniformly in t and in τ . This completes the proof. �

The following lemma is the key to prove the pullback asymptotic compactness
of the random dynamical system.

Lemma 4.5. For any η > 0, there exist t0 > 0 and m ∈ N∗ such that

‖(IdD1
0(O,σ) − Pm)v(t, θ−tω, v0(θ−tω))‖2 ≤ η, ∀t ≥ t0,∀u0(θ−tω) ∈ B∗(θ−tω),

(4.14)
where Pm is a canonical projector from D1

0(O, σ) onto an m-dimensional subspace.

Proof. We denote by Hm = span{e1, e2, . . . , em}, where {ej}j≥1 are eigenvalues
of the operator A = −div(σ(x)∇) with Dirichlet boundary condition. For any v
solution to (3.5), we write v = Pmv + (Id− Pm)v = v1 + v2. Multiplying (3.5) by
Av2 then integrating over O, we find that

1
2

d

dt
‖v2‖2 + |Av2|22 +

∫
O

f(v + z(θtω))(Av2)dx + λ‖v2‖2

=
∫
O

(g −Az(θtω))(Av2)dx.

(4.15)

Using the Cauchy inequality, we have∫
O

(g −Az(θtω))(Av2)dx ≤ 2(|g|22 + |Az(θtω)|22) +
1
4
|Av2|22, (4.16)

and ∫
O

f(v + z(θtω))(Av2)dx ≤
∫
O
|f(v + z(θtω))|2dx +

1
4
|Av2|22. (4.17)

Combining (4.15)-(4.17) and noting that |Av2|22 ≥ λm+1‖v2‖2, we obtain

d

dt
‖v2‖2 + λm+1‖v2‖2 ≤ C

(
1 + |Az(θtω)|22 +

∫
O
|f(v + z(θtω))|2dx

)
. (4.18)

By Gronwall’s inequality,

‖v2(t, ω, v0(ω))‖2
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≤ e−λm+1t‖v0(ω)‖2 + C

∫ t

0

e−λm+1(t−s)
(
1 + |Az(θsω)|22 +

∫
O
|f(u)|2dx

)
ds.

Replacing ω by θ−tω leads to

‖v2(t, θ−tω, v0(θ−tω))‖2

≤ e−λm+1t‖v0(θ−tω)‖2 + C

∫ t

0

e−λm+1(t−s)
(
1 + |Az(θs−tω)|22

+
∫
O
|f(u(s, θ−tω, u0(θ−tω)))|2dx

)
ds.

(4.19)

We need to estimate all terms on the right hand side of (4.19). First,

e−λm+1t‖v0(θ−tω)‖2 ≤ 2e−λm+1t(‖u0(θ−tω)‖2 + ‖z(θ−tω)‖2) → 0, (4.20)

as t, m →∞ since u0(θ−tω) ∈ B∗(θ−tω) and ‖z(ω)‖2 is tempered. Second,∫ t

0

e−λm+1(t−s)ds =
1

λm+1
(1− e−λm+1t) → 0 as m →∞. (4.21)

Third,∫ t

0

e−λm+1(t−s)|Az(θs−tω)|22ds ≤
∫ 0

−t

eλm+1τp(θτω)dτ

≤
∫ 0

−t

eλm+1τe
−λ
2 τr(ω)dτ

≤ r(ω)
λm+1 − λ

2

(1− e−(λm+1−λ
2 )t) → 0,

(4.22)

as m →∞. Finally, due to Lemmas 4.3 and 4.4, we have

lim
m→∞

∫ t

0

e−λm+1(t−s)

∫
O
|f(u(s, θ−tω, u0(θ−tω)))|2 dx ds = 0. (4.23)

Applying (4.20)-(4.23) to (4.19), we obtain (4.14). �

Theorem 4.6. Suppose that assumptions (H1), (F1), (G1), (H2) hold. Then the
random dynamical system generated by (1.1) possesses a compact random attractor
A = {A(ω)}ω∈Ω in D1

0(O, σ).

Proof. By Lemma 3.1, φ is quasi-continuous in D1
0(O, σ) and has a random ab-

sorbing set in D1
0(O, σ). Due to Theorem 2.11, we remain to prove the pullback

asymptotic compactness of φ in D1
0(O, σ). Using Lemma 4.1, we have to show

that {φ(tn, θ−tn
ω, u0(θ−tn

ω))} is precompact in D1
0(O, σ) for any tn → +∞ and

u0(θ−tnω) ∈ B∗(θ−tnω). For any given ε > 0, since tn → +∞, we can apply Lemma
4.5 to find that there exist N1 > 0 and m ∈ N such that

‖(IdD1
0(O,σ)−Pm)φ(tk, θ−tk

ω, u0(θ−tk
ω))‖ ≤ ε, ∀k ≥ N1. (4.24)

From Lemma 3.1, since tn → +∞ and u0(θ−tn
ω) ∈ B∗(θ−tn

ω), we conclude that
{φ(tn, θ−tnω, u0(θ−tnω))} is bounded in D1

0(O, σ).
Thus, {Pmφ(tn, θ−tnω, u0(θ−tnω))} is bounded in Pm(D1

0(O, σ)). Because the
set Pm(D1

0(O, σ)) is a finite dimensional subspace of D1
0(O, σ), we can assume that

{Pmφ(tn, θ−tnω, u0(θ−tnω))} is a Cauchy sequence. Thus, there exists N2 > 0
satisfying

‖Pmφ(tk, θ−tk
ω, u0(θ−tk

ω))− Pmφ(tl, θ−tl
ω, u0(θ−tl

ω))‖ ≤ ε, (4.25)
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for all k, l ≥ N2. Now, we set N = max{N1, N2}. Hence, from (4.24) and (4.25),
we find that, for all k, l ≥ N ,

‖φ(tk, θ−tk
ω, u0(θ−tk

ω))− φ(tl, θ−tl
ω, u0(θ−tl

ω))‖
≤ ‖Pmφ(tk, θ−tk

ω, u0(θ−tk
ω))− Pmφ(tl, θ−tl

ω, u0(θ−tl
ω))‖

+ ‖(IdD1
0(O,σ) − Pm)φ(tk, θ−tk

ω, u0(θ−tk
ω))‖

+ ‖(IdD1
0(O,σ) − Pm)φ(tl, θ−tl

ω, u0(θ−tl
ω))‖ ≤ 3ε.

(4.26)

This show that {φ(tn, θ−tn
ω, u0(θ−tn

ω))} is precompact in D1
0(O, σ), and thus it

completes the proof. �
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