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EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR
FRACTIONAL SYSTEMS IN BOUNDED DOMAINS

IMED BACHAR

Abstract. We prove the existence of positive continuous solutions to the
nonlinear fractional system

(−∆|D)α/2u + λg(., v) = 0,

(−∆|D)α/2v + µf(., u) = 0,

in a bounded C1,1-domain D in Rn (n ≥ 3), subject to Dirichlet conditions,
where 0 < α ≤ 2, λ and µ are nonnegative parameters. The functions f and g
are nonnegative continuous monotone with respect to the second variable and
satisfying certain hypotheses related to the Kato class.

1. Introduction and statement of main results

Let χ = (Ω,F ,Ft, Xt, θt, P
x) be a Brownian motion in Rn, n ≥ 3 and π =

(Ω,G, Tt) be an α
2 -stable process subordinator starting at zero, where 0 < α ≤ 2

and such that χ and π are independent. Let D be a bounded C1,1-domain in Rn and
ZD

α be the subordinate killed Brownian motion process. This process is obtained
by killing χ at τD, the first exit time of χ from D giving the process χD and then
subordinating this killed Brownian motion using the α/2-stable subordinator Tt.
For more description of the process ZD

α we refer to [7, 9, 14, 15]. Note that the
infinitesimal generator of the process ZD

α is the fractional power(−∆|D)α/2 of the
negative Dirichlet Laplacian in D, which is a prototype of non-local operator and
a very useful object in analysis and partial differential equations, see, for instance
[13, 16].

In this article, we will deal with the existence of positive continuous solutions
for the nonlinear fractional system

(−∆|D)α/2u+ λg(., v) = 0 in D, in the sense of distributions

(−∆|D)α/2v + µf(., u) = 0 in D, in the sense of distributions

lim
x→z∈∂D

u(x)
MD

α 1(x)
= ϕ(z), lim

x→z∈∂D

v(x)
MD

α 1(x)
= ψ(z),

(1.1)
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where λ, µ are nonnegative parameters, ϕ,ψ are positive continuous functions on
∂D and MD

α 1 is the nonnegative harmonic function with respect to ZD
α given by

the formula (see [7, Theorem 3.1],

MD
α 1(x) =

1− α
2

Γ(α
2 )

∫ ∞

0

t−2+ α
2 (1− PD

t 1(x))dt, (1.2)

where (PD
t )t>0 is the semi-group corresponding to the killed Brownian motion χD.

Note that from [15, remark 3.3], there exists a constant C > 0 such that

1
C

(
δ(x)

)α−2 ≤MD
α 1(x) ≤ C

(
δ(x)

)α−2
, for all x ∈ D, (1.3)

where δ(x) denotes the Euclidian distance from x to the boundary of D.
In the classical case (i.e. α = 2), there exist a lot of work related to the existence

and nonexistence of solutions for the problem (1.1); see for example, the papers
of Cirstea and Radulescu [3], Ghanmi et al [6], Ghergu and Radulescu [8], Lair
and Wood [10, 11] and references therein. Most of the studies of these papers turn
about the existence or the nonexistence of positive radial ones. In [11], the authors
studied the system (1.1) with α = 2, in the case µf(., u) = pus, λg(., v) = qvr,
s > 0, r > 0 and p, q are nonnegative continuous and not necessarily radial. They
showed that entire positive bounded solutions exist if p and q satisfy the following
condition

p(x) + q(x) ≤ C|x|−(2+γ)

for some positive constant γ and |x| large.
Throughout this article, we denote by GD

α the Green function of ZD
α . We recall

the following interesting sharp estimates on GD
α due to [14]. Namely, there exists a

positive constant C > 0 such that for all x, y in D, we have

1
C
H(x, y) ≤ GD

α (x, y) ≤ CH(x, y), (1.4)

where

H(x, y) =
1

|x− y|n−α
min

(
1,
δ(x)δ(y)
|x− y|2

)
.

We also denote by MD
α ϕ the unique positive continuous solution of

(−∆|D)α/2u = 0 in D, in the sense of distributions

lim
x→z∈∂D

u(x)
MD

α 1(x)
= ϕ(z),

(1.5)

which is given (see [7]) by

MD
α ϕ(x) =

1
Γ(α/2)

Ex(ϕ(XτD
)τ

α
2−1

D ). (1.6)

We aim at giving two existence results for (1.1) as f and g are nondecreasing or
nonincreasing with respect to the second variable. More precisely, to state our first
existence result, we assume that f, g : D × [0,∞) → [0,∞) are Borel measurable
functions satisfying

(H1) The functions f and g are continuous and nondecreasing with respect to
the second variable.
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(H2) The functions

p̃(y) :=
1

MD
α ψ(y)

f(y,MD
α ϕ(y)) and q̃(y) :=

1
MD

α ϕ(y)
g(y,MD

α ψ(y))

belong to the Kato class Kα(D), defined below.

Definition 1.1 ([5]). A Borel measurable function q in D belongs to the Kato class
Kα(D) if

lim
r→0

(
sup
x∈D

∫
(|x−y|≤r(∩D

δ(y)
δ(x)

GD
α (x, y)|q(y)|dy

)
= 0.

This class is quite rich, it contains for example any function belonging to Ls(D),
with s > n/α (see Example 2.1 below). On the other hand, it has been shown in
[5], that

x→
(
δ(x)

)−γ ∈ Kα(D), for γ < α. (1.7)
For more examples of functions belonging to Kα(D), we refer to [5]. Note that for
the classical case (i.e. α = 2), the class K2(D) was introduced and studied in [12].

Our first existence result is the following.

Theorem 1.2. Assume that (H1), (H2) are satisfied. Then there exist two con-
stants λ0 > 0 and µ0 > 0 such that for each λ ∈ [0, λ0) and each µ ∈ [0, µ0),
problem (1.1) has a positive continuous solution such that

(1− λ

λ0
)MD

α ϕ ≤ u ≤MD
α ϕ in D,

(1− µ

µ0
)MD

α ψ ≤ v ≤MD
α ψ in D.

In particular limx→z∈∂D u(x) = ∞ and limx→z∈∂D v(x) = ∞.

We note that in [6], the authors studied a problem similar to (1.1) for the case
α = 2. They have obtained positive continuous bounded solution (u, v). Here, we
are interesting in the fractional setting.

As second existence result, we aim at proving the existence of blow-up positive
continuous solutions for the system

(−∆|D)α/2u+ p(x)g(v) = 0 in D, in the sense of distributions

(−∆|D)α/2v + q(x)f(u) = 0 in D, in the sense of distributions

lim
x→z∈∂D

u(x)
MD

α 1(x)
= ϕ(z), lim

x→z∈∂D

v(x)
MD

α 1(x)
= ψ(z),

(1.8)

where ϕ,ψ are positive continuous functions on ∂D and p, q are nonnegative Borel
measurable functions in D. To this end, we fix φ a positive continuous functions
on ∂D, we put h0 = MD

α φ and we assume the following:
(H3) The functions f, g : (0,∞) → [0,∞) are continuous and nonincreasing.
(H4) The functions p0 := p f(h0)

h0
and q0 := q g(h0)

h0
belongs to the class Kα(D).

As a typical example of nonlinearity f and p satisfying (H3)-(H4), we have
f(t) = t−ν , for ν > 0, and p a nonnegative Borel measurable function such that

p(x) ≤ C(
δ(x)

)r , for all x ∈ D,

for some C > 0 and r + (1 + ν)(α− 2) < α.
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Indeed, since there exists a constant c > 0, such that for all x ∈ D, h0(x) ≥
c
(
δ(x)

)α−2, we deduce by (1.7), that the function p0 := p f(h0)
h0

∈ Kα(D). Using
the Schauder’s fixed point theorem, we prove the following result.

Theorem 1.3. Under the assumptions (H3), (H4), there exists a constant c > 1
such that if ϕ ≥ cφ and ψ ≥ cφ on ∂D, then problem (1.8) has a positive continuous
solution (u, v) satisfying for each x ∈ D,

h0 ≤ u ≤MD
α ϕ in D,

h0 ≤ v ≤MD
α ψ in D.

In particular limx→z∈∂D u(x) = ∞ and limx→z∈∂D v(x) = ∞.

This result extends the one of Athreya [1], who considered the problem

∆u = g(u), in Ω
u = ϕ on ∂Ω,

(1.9)

where Ω is a simply connected bounded C2-domain and g(u) ≤ max(1, u−α), for
0 < α < 1. Then he proved that there exists a constant c > 1 such that if ϕ ≥ ch̃0

on ∂Ω, where h̃0 is a fixed positive harmonic function in Ω, problem (∗) has a
positive continuous solution u such that u ≥ h̃0.

The content of this article is organized as follows. In Section 2, we collect some
properties of functions belonging to the Kato class Kα(D), which are useful to
establish our results. Our main results are proved in Section 3.

As usual, let B+(D) be the set of nonnegative Borel measurable functions in D.
We denote by C0(D) the set of continuous functions in D vanishing continuously
on ∂D. Note that C0(D) is a Banach space with respect to the uniform norm
‖u‖∞ = sup

x∈D
|u(x)|. The letter C will denote a generic positive constant which may

vary from line to line. When two positive functions ρ and θ are defined on a set S,
we write ρ ≈ θ if the two sided inequality 1

C θ ≤ ρ ≤ Cθ holds on S. For ρ ∈ B+(D),
we define the potential kernel GD

α of ZD
α by

GD
α ρ(x) :=

∫
D

GD
α (x, y)ρ(y)dy, for x ∈ D

and we denote by

aα(ρ) := sup
x,y∈D

∫
D

GD
α (x, z)GD

α (z, y)
GD

α (x, y)
ρ(y)dy. (1.10)

2. The Kato class Kα(D)

Example 2.1. For s > n
α , we have Ls(D) ⊂ Kα(D). Indeed, let 0 < r < 1 and

q ∈ Ls(D) with s > n
α . Using (1.4), there exists a constant C > 0, such that for

each x, y ∈ D
δ(y)
δ(x)

GD
α (x, y) ≤ C

1
|x− y|n−α

. (2.1)

This fact and the Hölder inequality imply that∫
B(x,r)∩D

( δ(y)
δ(x)

)
GD

α (x, y)|q(y)|dy
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≤ C

∫
B(x,r)∩D

|q(y)|
|x− y|n−α

dy

≤ C
( ∫

D

|q(y)|sdy
)1/s( ∫

B(x,r)

|x− y|(α−n) s
s−1 dy

) s−1
s

≤ C
( ∫ r

0

t(α−n) s
s−1+n−1dt

) s−1
s → 0,

as r → 0, since (α− n) s
s−1 + n− 1 > −1 when s > n

α .

Proposition 2.2 ([5]). Let q be a function in Kα(D), then we have
(i) aα(q) <∞.
(ii) Let h be a positive excessive function on D with respect to ZD

α . Then we
have ∫

D

GD
α (x, y)h(y)|q(y)|dy ≤ aα(q)h(x). (2.2)

Furthermore, for each x0 ∈ D, we have

lim
r→0

(
sup
x∈D

1
h(x)

∫
B(x0,r)∩D

GD
α (x, y)h(y)|q(y)|dy

)
= 0. (2.3)

(iii) The function x→
(
δ(x)

)α−1
q(x) is in L1(D).

Lemma 2.3. Let q be a nonnegative function in Kα(D), then the family of func-
tions

Λq =
{ 1
MD

α ϕ(x)

∫
D

GD
α (x, y)MD

α ϕ(y)ρ(y)dy, |ρ| ≤ q
}

is uniformly bounded and equicontinuous in D. Consequently Λq is relatively com-
pact in C0(D).

Proof. Taking h ≡MD
α ϕ in (2.2), we deduce that for ρ such that |ρ| ≤ q and x ∈ D,

we have∣∣ ∫
D

GD
α (x, y)

MD
α ϕ(x)

MD
α ϕ(y)ρ(y)dy

∣∣ ≤ ∫
D

GD
α (x, y)

MD
α ϕ(x)

MD
α ϕ(y)q(y)dy ≤ aα(q) <∞. (2.4)

So the family Λq is uniformly bounded.
Next we aim at proving that the family Λq is equicontinuous in D. Let x0 ∈ D

and ε > 0. By (2.3), there exists r > 0 such that

sup
z∈D

1
MD

α ϕ(z)

∫
B(x0,2r)∩D

GD
α (z, y)MD

α ϕ(y)q(y)dy ≤ ε

2
.

If x0 ∈ D and x, x′ ∈ B(x0, r) ∩D, then for ρ such that |ρ| ≤ q, we have∣∣∣ ∫
D

GD
α (x, y)

MD
α ϕ(x)

MD
α ϕ(y)ρ(y)dy −

∫
D

GD
α (x′, y)

MD
α ϕ(x′)

MD
α ϕ(y)ρ(y)dy

∣∣∣
≤

∫
D

∣∣GD
α (x, y)

MD
α ϕ(x)

− GD
α (x′, y)

MD
α ϕ(x′)

∣∣MD
α ϕ(y)q(y)dy

≤ 2sup
z∈D

∫
B(x0,2r)∩D

1
MD

α ϕ(z)
GD

α (z, y)MD
α ϕ(y)q(y)dy

+
∫

(|x0−y|≥2r)∩D

∣∣GD
α (x, y)

MD
α ϕ(x)

− GD
α (x′, y)

MD
α ϕ(x′)

∣∣MD
α ϕ(y)q(y)dy
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≤ ε+
∫

(|x0−y|≥2r)∩D

∣∣GD
α (x, y)

MD
α ϕ(x)

− GD
α (x′, y)

MD
α ϕ(x′)

∣∣MD
α ϕ(y)q(y)dy.

On the other hand, for every y ∈ Bc(x0, 2r) ∩ D and x, x′ ∈ B(x0, r) ∩ D, by
using (1.4) and the fact that MD

α ϕ(z) ≈ (δ(z))α−2, we have∣∣ 1
MD

α ϕ(x)
GD

α (x, y)− 1
MD

α ϕ(x′)
GD

α (x′, y)
∣∣MD

α ϕ(y)

≤ MD
α ϕ(y)

MD
α ϕ(x)

GD
α (x, y) +

MD
α ϕ(y)

MD
α ϕ(x′)

GD
α (x′, y)

≤ C
[(
δ(x)

)3−α(
δ(y)

)α−1

|x− y|n+2−α
+

(
δ(x′)

)3−α(
δ(y)

)α−1

|x′ − y|n+2−α

]
≤ C

[ 1
|x− y|n+2−α

+
1

|x′ − y|n+2−α

]
(δ(y))α−1

≤ C
(
δ(y)

)α−1
.

Now since x 7→ 1
MD

α ϕ(x)
GD

α (x, y) is continuous outside the diagonal and q ∈
Kα(D), we deduce by the dominated convergence theorem and Proposition 2.2
(iii), that∫

(|x0−y|≥2r)∩D

∣∣GD
α (x, y)

MD
α ϕ(x)

− GD
α (x′, y)

MD
α ϕ(x′)

∣∣MD
α ϕ(y)q(y)dy → 0 as |x− x′| → 0.

If x0 ∈ ∂D and x ∈ B(x0, r) ∩D, then∣∣ ∫
D

GD
α (x, y)

MD
α ϕ(x)

MD
α ϕ(y)ρ(y)dy

∣∣ ≤ ε

2
+

∫
(|x0−y|≥2r)∩D

GD
α (x, y)

MD
α ϕ(x)

MD
α ϕ(y)q(y)dy.

Now, since GD
α (x,y)

MD
α ϕ(x)

→ 0 as |x− x0| → 0, for |x0 − y| ≥ 2r, then by same argument
as above, we obtain∫

(|x0−y|≥2r)∩D

GD
α (x, y)

MD
α ϕ(x)

MD
α ϕ(y)q(y)dy → 0 as |x− x0| → 0.

So the family Λq is equicontinuous in D. Therefore by Ascoli’s theorem, the family
Λq becomes relatively compact in C0(D). �

3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. Put

λ0 := inf
x∈D

MD
α ϕ(x)

GD
α (g(.,MD

α ψ))(x)
, µ0 := inf

x∈D

MD
α ψ(x)

GD
α (f(.,MD

α ϕ))(x)
.

Using (H2) and (2.2) we deduce that λ0 > 0 and µ0 > 0.
Let λ ∈ [0, λ0) and µ ∈ [0, µ0). Then for each x ∈ D, we have

λ0G
D
α (g(.,MD

α ψ))(x) ≤MD
α ϕ(x)

µ0G
D
α (f(.,MD

α ϕ))(x) ≤MD
α ψ(x).

So we define the sequences (uk)k≥0 and (vk)k≥0 by

v0 = 1,

uk(x) = 1− λ

MD
α ϕ(x)

∫
D

GD
α (x, y)g

(
y, vk(y)MD

α ψ(y)
)
dy,
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vk+1(x) = 1− µ

MD
α ψ(x)

∫
D

GD
α (x, y)f

(
y, uk(y)MD

α ϕ(y)
)
dy.

By induction, we can see that

0 < (1− λ

λ0
) ≤ uk ≤ 1,

0 < (1− µ

µ0
) ≤ vk+1 ≤ 1.

Next, we prove that the sequence (uk)k≥0 is nondecreasing and the sequence
(vk)k≥0 is nonincreasing. Indeed, we have

v1 − v0 = − µ

MD
α ψ

GD
α (f(., u0M

D
α ϕ)) ≤ 0

and therefore by (H1), we obtain that

u1 − u0 =
λ

MD
α ϕ

GD
α [g(., v0MD

α ψ)− g(., v1MD
α ψ)] ≥ 0.

By induction, we assume that uk ≤ uk+1 and vk+1 ≤ vk. Then we have

vk+2 − vk+1 =
µ

MD
α ψ

GD
α [f(., ukM

D
α ϕ)− f(., uk+1M

D
α ϕ)] ≤ 0

and
uk+2 − uk+1 =

λ

MD
α ϕ

GD
α [g(., vk+1M

D
α ψ)− g(., vk+2M

D
α ψ)] ≥ 0.

Therefore, the sequences (uk)k≥0 and (vk)k≥0 converge respectively to two functions
ũ and ṽ satisfying

0 < (1− λ

λ0
) ≤ ũ ≤ 1,

0 < (1− µ

µ0
) ≤ ṽ ≤ 1.

(3.1)

On the other hand, using (H1), Proposition 2.2 and the dominate convergence
theorem, we deduce that

ũ(x) = 1− λ

MD
α ϕ(x)

∫
D

GD
α (x, y)g(y, ṽ(y)MD

α ψ(y))dy,

ṽ(x) = 1− µ

MD
α ψ(x)

∫
D

GD
α (x, y)f(y, ũ(y)MD

α ϕ(y))dy.

Now by using (H1), (H2) and similar arguments as in the proof of Lemma 2.3, we
deduce that ũ and ṽ belongs to C(D).

Put u = ũMD
α ϕ and v = ṽMD

α ψ. Then u and v are continuous in D and satisfy

u(x) = MD
α ϕ(x)− λ

∫
D

GD
α (x, y)g(y, v(y))dy

v(x) = MD
α ψ(x)− µ

∫
D

GD
α (x, y)f

(
y, u(y)

)
dy.

(3.2)

In addition, since for each x ∈ D, f
(
y, u(y)

)
≤ C

(
δ(y)

)α−2
p̃(y) and g

(
y, u(y)

)
≤

C
(
δ(y)

)α−2
q̃(y), we deduce by Proposition 2.2 (iii) that the map y → f

(
y, u(y)

)
∈

L1
loc(D) and y → g

(
y, u(y)

)
∈ L1

loc(D). On the other hand, by (3.2), we have that
GD

α f(., u) ∈ L1
loc(D) and GD

α g(., v) ∈ L1
loc(D). Hence, applying (−∆|D)α/2 on both

sides of (3.2), we conclude by [9, p. 230] that (u, v) is the required solution. �
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Example 3.1. Let ν ≥ 0, σ ≥ 0, r+(1−σ)(α−2) < α and β+(1−ν)(α−2) < α.
Let p and q be two positive Borel measurable functions such that

p(x) ≤ C
(
δ(x)

)−r
, q(x) ≤ C

(
δ(x)

)−β for all x ∈ D.

Let ϕ and ψ be positive continuous functions on ∂D. Therefore by Theorem 1.2,
there exist two constants λ0 > 0 and µ0 > 0 such that for each λ ∈ [0, λ0) and each
µ ∈ [0, µ0), the problem

(−∆|D)α/2u+ λp(x)vσ = 0 in D, in the sense of distributions

(−∆|D)α/2v + µq(x)uν = 0 in D, in the sense of distributions

lim
x→z∈∂D

u(x)
MD

α 1(x)
= ϕ(z), lim

x→z∈∂D

v(x)
MD

α 1(x)
= ψ(z),

has a positive continuous solution (u, v) such that

(1− λ

λ0
)MD

α ϕ ≤ u ≤MD
α ϕ in D,

(1− µ

µ0
)MD

α ψ ≤ v ≤MD
α ψ in D.

In particular, limx→z∈∂D u(x) = ∞ and limx→z∈∂D v(x) = ∞.

Proof of Theorem 1.3. Let c := 1+aα(p0)+aα(q0), where aα(p0) and aα(q0) are the
constant defined by the formula (1.10). We recall that from (H4) and Proposition
2.2 (i), we have aα(p0) < ∞ and aα(q0) < ∞. Let ϕ,ψ be positive continuous
functions on ∂D such that ϕ ≥ cφ and ψ ≥ cφ on ∂D. It follows from the integral
representation of MD

α ϕ(x) and MD
α ψ(x) (see [5, p. 265]), that for each x ∈ D we

have
MD

α ϕ(x) ≥ ch0(x) and MD
α ψ(x) ≥ ch0(x). (3.3)

Let Λ be the nonempty closed convex set given by

Λ =
{
ω ∈ C(D) :

h0

MD
α ϕ

≤ ω ≤ 1
}
.

We define the operator T on Λ by

T (ω) = 1− 1
MD

α ϕ
GD

α (pf
[
MD

α ψ −GD
α (qg(ωMD

α ϕ))
]
). (3.4)

We will prove that T has a fixed point. Since for ω ∈ Λ, we have ω ≥ h0
MD

α ϕ
, then

we deduce from hypotheses (H3), (H4) and (2.2) that

GD
α (qg(ωMD

α ϕ)) ≤ GD
α (qg(h0)) = GD

α (q0h0) ≤ aα(q0)h0. (3.5)

So by using (3.3) and (3.5), we obtain

MD
α ψ −GD

α (qg(ωMD
α ϕ)) ≥MD

α ψ − aα(q0)h0

≥ ch0 − aα(q0)h0

= (1 + aα(p0))h0

≥ h0 > 0.

Hence, by using again (H3), (H4) and (2.2), we deduce that

GD
α (pf

[
MD

α ψ −GD
α (qg(ωMD

α ϕ))
]
) ≤ GD

α (pf(h0)) = GD
α (p0h0) ≤ aα(p0)h0. (3.6)
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Using the fact that MD
α ϕ ≈ h0 and Lemma 2.3, we deduce that the family of

functions { 1
MD

α ϕ
GD

α (pf
[
MD

α ψ −GD
α (qg(ωMD

α ϕ))
]
) : ω ∈ Λ

}
is relatively compact in C0(D). Therefore, the set T Λ is relatively compact in
C(D).

Next, we shall prove that T maps Λ into it self.
Since MD

α ψ − GD
α (qg(ωMD

α ϕ)) ≥ h0 > 0, we have for all ω ∈ Λ, Tω ≤ 1.
Moreover, form (3.6), we obtain Tω ≥ 1 − aα(p0)h0

MD
α ϕ

≥ h0
MD

α ϕ
, which proves that

T (Λ) ⊂ Λ.
Now, we shall prove the continuity of the operator T in Λ in the supremum norm.

Let (ωk)k∈N be a sequence in Λ which converges uniformly to a function ω in Λ.
Then, for each x ∈ D, we have

|Tωk(x)− Tω(x)| ≤ 1
MD

α ϕ(x)
GD

α

[
p
∣∣∣f(MD

α ψ −GD
α (qg(ωkM

D
α ϕ)))

− f(MD
α ψ −GD

α (qg(ωMD
α ϕ)))

∣∣∣](x).
On the other hand, by similar arguments as above, we have

p
∣∣∣f(MD

α ψ −GD
α (qg(ωkM

D
α ϕ)))− f(MD

α ψ −GD
α (qg(ωMD

α ϕ)))
∣∣∣

≤ p
[
f(MD

α ψ −GD
α (qg(ωkM

D
α ϕ))) + f(MD

α ψ −GD
α (qg(ωMD

α ϕ)))
]

≤ 2p0h0.

By the fact that MD
α ϕ ≈ h0, (2.2) and the dominated convergence theorem, We

conclude that for all x ∈ D,

Tωk(x) → Tω(x) as k → +∞.

Consequently, as T (Λ) is relatively compact in C(D), we deduce that the pointwise
convergence implies the uniform convergence, namely,

‖Tωk − Tω‖∞ → 0 as k → +∞.

Therefore, T is a continuous mapping from Λ into itself. So, since T (Λ) is relatively
compact in C(D), it follows that T is compact mapping on Λ.

Finally, the Schauder fixed-point theorem implies the existence of a function
ω ∈ Λ such that ω = Tω. Put

u(x) = ω(x)MD
α ϕ(x) and υ(x) = MD

α ψ(x)−GD
α (qg(u))(x), for x ∈ D.

Then (u, υ) satisfies

u(x) = MD
α ϕ(x)−GD

α (pf(υ))(x),

υ(x) = MD
α ψ(x)−GD

α (qg(u))(x).

Finally, we verify that (u, υ) is the required solution. �

Example 3.2. Let ν > 0, σ > 0, r+(1+ν)(α−2) < α and β+(1+σ)(α−2) < α.
Let p and q be two nonnegative Borel measurable functions such that

p(x) ≤ C
(
δ(x)

)−r
, q(x) ≤ C

(
δ(x)

)−β for all x ∈ D.
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Let ϕ,ψ and φ be positive continuous functions on ∂D. Then there exists a constant
c > 1 such that if ϕ ≥ cφ and ψ ≥ cφ on ∂D, then the problem

(−∆|D)α/2u+ p(x)v−σ = 0 in D, in the sense of distributions

(−∆|D)α/2v + q(x)u−ν = 0 in D, in the sense of distributions

lim
x→z∈∂D

u(x)
MD

α 1(x)
= ϕ(z), lim

x→z∈∂D

v(x)
MD

α 1(x)
= ψ(z),

has a positive continuous solution (u, v) satisfying that for each x ∈ D,

MD
α φ ≤ u ≤MD

α ϕ in D,

MD
α φ ≤ v ≤MD

α ψ in D.

In particular u(x) ≈
(
δ(x)

)α−2 ≈ v(x) in D.
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