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RANGE OF SEMILINEAR OPERATORS FOR SYSTEMS AT
RESONANCE

PABLO AMSTER, MARIEL PAULA KUNA

Abstract. For a vector function u : R → RN we consider the system

u′′(t) +∇G(u(t)) = p(t)

u(t) = u(t + T ),

where G : RN → R is a C1 function. We are interested in finding all possi-
ble T -periodic forcing terms p(t) for which there is at least one solution. In
other words, we examine the range of the semilinear operator S : H2

per →
L2([0, T ], RN ) given by Su = u′′ +∇G(u), where

H2
per = {u ∈ H2([0, T ], RN ); u(0)− u(T ) = u′(0)− u′(T ) = 0}.

Writing p(t) = p + ep(t), where p := 1
T

R T
0 p(t) dt, we present several results

concerning the topological structure of the set

I(ep) = {p ∈ RN ; p + ep ∈ Im(S)}.

1. Introduction

Let G ∈ C1(RN ,R). A well known result establishes that if ∇G is bounded,
then the Dirichlet problem

u′′ +∇G(u) = p(t) (1.1)

u(0) = u(T ) = 0 (1.2)

has at least one solution for any p ∈ L2([0, T ],RN ); that is to say, the operator
S(u) := u′′ +∇G(u), regarded as a continuous function from H2 ∩H1

0 ([0, T ],RN )
to L2([0, T ],RN ), is surjective. This is due to the fact that the associated linear
operator Lu := −u′′ is invertible; thus, a simple proof follows as a straightforward
application of Schauder’s fixed point theorem. The boundedness condition ensures
that the nonlinearity does not interact with the spectrum of L.

The situation is different at resonance, namely when the associated linear oper-
ator is non-invertible. In particular, if we consider the periodic problem for (1.1),
then integrating we have

1
T

∫ T

0

∇G(u(t)) dt = p.
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Thus, the geometric version of the Hahn-Banach Theorem implies that a necessary
condition for the existence of solutions is that p ∈ co(Im(∇G)), where ‘co’ stands
for the convex hull. In particular, if we decompose L2([0, T ],RN ) as the orthogonal
sum of RN and the set L̃2 of zero-average functions; i.e.,

L2([0, T ],RN ) = RN ⊕ L̃2

p = p+ p̃,

with
L̃2 := {v ∈ L2([0, T ],RN ); v = 0},

then the range of S, now defined on H2
per, is contained in co(Im(∇G))⊕ L̃2. Thus,

it is useful to study, for a given p̃ ∈ L̃2, the set

I(p̃) := {p ∈ RN : p+ p̃ ∈ Im(S)} ⊂ co(Im(∇G)).

When ∇G is bounded it can be proven, generalizing the arguments given in [5] for
a scalar equation, that I(p̃) is non-empty and connected; if ∇G is also periodic,
then I(p̃) is compact (see e.g. [6]). For example, a quite precise description of this
set can be given when the radial limits

lim
s→+∞

∇G(sv) := Γ(v)

exist uniformly for v ∈ SN−1, the unit sphere of RN . In this case, a well-known
result by Nirenberg [9] implies that all the interior points of the field Γ : SN−1 → RN

(i. e. those points p such that the winding number of Γ with respect to p is nonzero)
is contained in I(p̃). If also co(Im(∇G)) ⊂ int(Γ), then the condition deg(Γ, p) 6= 0
is both necessary and sufficient, indeed:

Im(S) = Int(Γ)⊕ L̃2.

A different situation occurs when ∇G is unbounded; in particular, I(p̃) might
be empty. The following result, adapted from the main theorem in [1], is useful
to verify that this is not the case if G tends to +∞ or to −∞ as |u| → ∞. More
generally:

Theorem 1.1. Let G ∈ C1(RN ,R), p̃ ∈ L̃2 and p ∈ RN . If

lim
|u|→∞

G(u)− p · u = +∞ or lim
|u|→∞

G(u)− p · u = −∞,

then p ∈ I(p̃).

In particular, if G(u) → +∞ or G(u) → −∞ as |u| → ∞, then 0 ∈ I(p̃).
Furthermore, if G is strongly convex, in the sense that G(u) − c|u|2 is convex
for some constant c > 0, then I(p̃) = RN and hence S is surjective. The same
conclusion is obviously true when G is strongly concave.

Remark 1.2. When N = 1, Theorem 1.1 generalizes the well-known Landesman-
Lazer conditions. However, although [9] can be regarded as an extension of these
conditions, Theorem 1.1 does not necessarily generalize Nirenberg’s result.

This paper is organized as follows. In the next section, we prove a basic criterion
which ensures that p ∈ RN belongs to I(p̃) for some given p̃. In section 3, we give
sufficient conditions for a point p0 ∈ I(p̃) to be interior. In section 4, we extend a
well known result by Castro [2] for the pendulum equation; more precisely, we prove
that if ∇G is periodic then I regarded as a function from L̃ to the set of compacts
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subsets of RN (equipped with the Hausdorff metric) is continuous. Finally, in
section 5, we prove that if G is strictly convex and satisfies some accurate growth
assumptions, then I(p̃) = Im(∇G) for all p̃.

2. A basic criterion for general G

Proposition 2.1. Let p ∈ RN and define ψp : RN → R by ψp(u) := p · u −G(u).
Assume that:

(1) ψp is bounded from below,
(2) lim inf |u|→+∞ ψp(u) > infu∈RN ψp(u) + T

8π2 ‖p̃‖2L2(0,T ).

Then p ∈ I(p̃).

Proof. Consider the functional J : H1
per := {u ∈ H1([0, T ],RN ) : u(0) = u(T )} → R

given by

J(u) :=
∫ T

0

|u′(t)|2

2
+ ψp(u(t)) + p̃(t) · u(t) dt.

It is readily seen that J is continuously Fréchet differentiable, and

DJ(u)(v) =
∫ T

0

u′(t) · v′(t)−∇G(u(t)) · v(t) + p(t) · v(t) dt. (2.1)

Thus, if u is a minimum of J , u is a weak solution of (1.1), and by standard
arguments we deduce that it is classical. Also, it is known that J is weakly lower
semicontinuous; thus, due to Theorem 1.1 of [8], it suffices to prove that J has a
bounded minimizing sequence. Without loss of generality, we may suppose that
G(0) = 0.
Claim 1: −∞ < inf J ≤ T inf ψp ≤ 0. Indeed, let us recall the well known Wirtinger
inequality:

‖u− u‖22 ≤
( T
2π

)2‖u′‖22. (2.2)

From (2.2) and Cauchy-Schwarz inequality we deduce:

J(u) ≥ 1
2
‖u′‖22 − ‖p̃‖2‖u− u‖2 +

∫ T

0

ψp(u(t)) dt.

Thus,

J(u) ≥ 1
2

(
‖u′‖2 −

T

2π
‖p̃‖2

)2

− T 2

8π2
‖p̃‖22 + T inf

u∈RN
ψp (2.3)

an the first inequality is proven. For the second inequality, it is sufficient to observe
that

inf
u∈H1

per

J(u) ≤ inf
u∈RN

J(u) ≤ T inf
u∈RN

ψp(u).

The third inequality is obvious since ψp(0) = 0.
Next, consider a sequence (un)n∈N such that limn→∞ J(un) = inf J .

Claim 2: The sequence (un)n∈N is bounded in H1
per. From the previous claim, for

any given ε > 0 there exists n0 ∈ N such that

J(un) < T inf ψp + ε, for all n ≥ n0. (2.4)

Then (2.3) yields (
‖u′n‖2 −

T

2π
‖p̃‖2

)2

<
T 2

4π2
‖p̃‖22 + 2ε
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so
‖u′n‖22 <

T

π
‖p̃‖2‖u′n‖2 + 2ε.

Hence, there exists τ > 0, independent of n, such that ‖u′n‖2 ≤ T
π ‖p̃‖2 + τ .

As before,

J(un) ≥ 1
2

(
‖u′n‖2 −

T

2π
‖p̃‖2

)2

− T 2

8π2
‖p̃‖22 +

∫ T

0

ψp(un(t)) dt,

and from (2.4) we deduce that∫ T

0

ψp(un(t)) dt ≤ T 2

8π2
‖p̃‖22 + T inf ψp + ε. (2.5)

Suppose that ‖un‖H1 → ∞, then from the bound for ‖u′n‖2 and the standard
inequality

‖un − un‖∞ ≤
√
T

2
‖u′n‖2

we deduce that |un| → ∞ and |un(t)| → ∞ uniformly in t. Thus, for a given δ > 0
there exists n1 ≥ n0 such that ψp(un(t)) ≥ lim inf |u|→∞ ψp(u) − δ

T for all n ≥ n1.
Hence ∫ T

0

ψp(un(t)) dt ≥ T lim inf
|u|→∞

ψp(u)− δ for all n ≥ n1.

Then, by (2.5)

T lim inf
|u|→∞

ψp(u) ≤ T inf ψp +
T 2

8π2
‖p̃‖22 + ε+ δ, (2.6)

which contradicts hypothesis 2 when ε+ δ is small enough. So (un)n∈N is bounded
in H1

per. �

Remark 2.2. In particular, if

lim inf
|u|→+∞

ψp(u)− inf ψp = r > 0,

then p ⊕ B̃r(0) ⊂ Im(S), where B̃r(0) ⊂ L̃2 denotes the open ball of radius r
centered at 0.

Example 2.3. Suppose that

lim sup
|u|→∞

G(u)
|u|

= −R < 0.

Then BR(0) ⊆ I(p̃) for any p̃.
Indeed, if |p| < R let ε = R−|p|

2 and fix r0 such that G(u)
|u| < −R+ ε for |u| ≥ r0.

Hence

ψp(u) = |u|
( u

|u|
· p− G(u)

|u|

)
> |u|(R− ε− |p|) = ε|u| → +∞

as |u| → ∞ and the result follows. This particular case is obviously covered by
Theorem 1.1; however, Proposition 2.1 is still applicable for example if

lim sup
|u|→∞

G(u)
|u|

≤ 0 and lim sup
|u|→∞,u∈C

G(u)
|u|

= −R < 0

with
C := {u ∈ RN : u · w > −c|u|}
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for some w ∈ Sn−1 and c ∈ (0, 1). In this case, I(p̃) contains all the vectors
p ∈ BR(0) such that the angle between p and −w is smaller than π

2 − arccos(c).

3. Interior points

In this section we give sufficient conditions for a point p0 ∈ I(p̃) to be interior.
Roughly speaking, we shall prove that if the Hessian matrix of G does not interact
with the spectrum of the operator Lu := −u′′ then I(p̃) is a neighborhood of p0.
More precisely:

Theorem 3.1. Let us assume that G ∈ C2(RN ,R) and let p0 ∈ I(p̃) for some
p̃ ∈ L̃2. Further, let u0 be a solution of (1.1) for p = p0 and assume there exist
symmetric matrices A, B ∈ RN×N such that

A ≤ d2G(u0(t)) ≤ B t ∈ [0, T ]

and (2πNk

T

)2

< λk ≤ µk <
(2π(Nk + 1)

T

)2

for some integers Nk ≥ 0, k = 1, . . . , N , where λ1 ≤ λ2 ≤ · · · ≤ λN and µ1 ≤ µ2 ≤
· · · ≤ µN are the respective eigenvalues of A and B. Then there exists an open set
U ⊂ RN such that p0 ∈ U ⊆ I(p̃).

The proof relies in the following uniqueness result, which has been proven by
Lazer in [7] using a lemma on bilinear forms.

Theorem 3.2. Let Q be a real N × N symmetric matrix valued function with
elements defined, continuous and 2π-periodic on the real line. Suppose there exist
real constant symmetric A,B ∈ RN×N such that

A ≤ Q(t) ≤ B, t ∈ [0, 2π], (3.1)

and such that if λ1 ≤ λ2 ≤ · · · ≤ λN and µ1 ≤ µ2 ≤ · · · ≤ µN denote the eigenvalues
of A and B respectively and there exist integers Nk ≥ 0, k = 1, . . . , N , such that

N2
k < λk ≤ µk < (Nk + 1)2. (3.2)

Then, there exist no non-trivial 2π−periodic solution of the vector differential equa-
tion

w′′ +Q(t)w = 0. (3.3)

Proof of Theorem 3.1. Let us consider the operator

F : H2
per × RN → L2,

(u, p) 7→ u′′ +∇G(u)− p̃− p,

then clearly F (u0, p0) = 0.
On the other hand, F is Fréchet differentiable, and its differential with respect

to u at (u0, p0) is computed by

DuF (u0, p0)(ϕ) = lim
t→0

F (u0 + tϕ, p0)− F (u0, p0)
t

= lim
t→0

tϕ′′ +∇G(u0 + tϕ)−∇G(u0)
t

= ϕ′′ + lim
t→0

∇G(u0 + tϕ)−∇G(u0)
t

= ϕ′′ + d2G(u0)ϕ
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Taking Q(t) = d2G(u0(t)) in Theorem 3.2 we deduce that DuF (u0, p0) : H2
per → L2

is a monomorphism; furthermore, from the Fredholm Alternative (see e. g. [3]) we
conclude that DuF (u0, p0) is an isomorphism.

By the Implicit Function Theorem (see [10, Theorem 1.6]), there exists an open
neighborhood U of p0 and a unique function u : U → H2

per such that

F (u(p), p) = 0, for all p ∈ U.
Thus U ⊂ I(p̃) and the proof is complete. �

Remark 3.3. A simple computation shows that a similar result is obtained when
d2G(u0(t)) lies at the left of the first eigenvalue. Indeed, it suffices to assume:

(1) d2G(u0(t)) ≤ 0 for all t.
(2) There exists A ⊂ [0, T ] with meas(A) > 0 such that d2G(u0(t)) < 0 for

t ∈ A.
As before, it suffices to prove that Lϕ := ϕ′′ + d2G(u0)ϕ is a monomorphism.

Suppose that Lϕ = 0, then

0 = −
∫ T

0

Lϕ(t) · ϕ(t) dt =
∫ T

0

|ϕ′(t)|2 dt−
∫ T

0

d2G(u0(t))ϕ(t) · ϕ(t) dt,

Then∫ T

0

|ϕ′(t)|2 dt =
∫ T

0

d2G(u0(t))ϕ(t) · ϕ(t) dt ≤
∫

A

d2G(u0(t))ϕ(t) · ϕ(t) dt,

and we conclude that ϕ ≡ 0.

The following corollary is immediate.

Corollary 3.4. Let p̃ ∈ L̃2 and assume that

d2G(u) < 0 for all u ∈ RN

or that
A ≤ d2G(u) ≤ B for all u ∈ RN

with A and B as in Theorem 3.1. Then I(p̃) is open.

4. Continuity of the function I

In this section we assume that ∇G is periodic and give a characterization of the
set I(p̃) which, in particular, will allow us to prove the continuity of the function
I : L̃→ K(RN ), where K(RN ) denotes the set of compacts subsets of RN equipped
with the Hausdorff metric. In fact, we prove a little more.

Theorem 4.1. Assume that G ∈ C2(RN ,R) satisfies:
(1) ∇G is periodic, that is: for every j = 1, . . . , N there exists Tj > 0 such that

∇G(u+ Tjej) = ∇G(u).
(2) There exists a discrete set S ⊂ RN such that

(∇G(u)−∇G(v)) · (u− v) <
( T

2π

)2

‖u− v‖22 for u, v ∈ RN\S. (4.1)

Then for every p̃ ∈ L̃2 there exists a periodic function Fep ∈ C(RN ,RN ) such that
I(p̃) = Im(Fep). Furthermore, if p̃n → p̃ weakly in L̃2, then I(p̃n) → I(p̃) for the
Hausdorff metric.
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Remark 4.2. In particular, it follows that I(p̃) is compact and arcwise connected.
This has been proven also by topological methods in [6]. As mentioned in the
introduction, we also know that I(p̃) ⊂ co(Im(∇G)).

For convenience, let us consider the decomposition H1
per = RN ⊕ H̃1

per, where
H̃1

per = H1
per ∩ L̃2, and denote the functional defined in section 2 by Jp : H1

per → R.
The proof of Theorem 4.1 shall be based on a series of lemmas. From now on, we
shall assume that all the preceding assumptions on G are satisfied.

Lemma 4.3. For each x ∈ RN and p ∈ L2([0, T ],RN ), there exists a unique
φ(x, p) ∈ H̃1

per such that

DJp(x+ φ(x, p))(v) = 0 for all v ∈ H̃1
per. (4.2)

Moreover, the function φ(·, p) : RN → H̃1
per is continuous.

Proof. Let us first prove the uniqueness of φ(x, p). Suppose u1, u2 ∈ H̃1
per are such

that
DJp(x+ u1)(v) = 0 = DJp(x+ u2)(v) for all v ∈ H̃1

per.

Taking v = u1 − u2, using (2.1) it follows that∫ T

0

|(u1 − u2)′|2 dt =
∫ T

0

(∇G(x+ u1)−∇G(x+ u2)) · (u1 − u2) dt. (4.3)

This fact, (2.2) and (4.1) imply that u1 = u2.
Next we prove the existence of φ(x, p). Let Ix : H̃1

per → R be the functional
defined by Ix(v) = Jp(x+ v), then

Ix(v) =
1
2
‖v′‖22 +

∫ T

0

p(t) · (x+ v(t))−G(x+ v(t)) dt

≥ 1
2
‖v′‖22 − ‖p̃‖2‖v‖2 + T (p · x− ‖∇G‖∞)

(4.4)

It follows that Ix is coercive and hence it achieves an absolute minimum, which
satisfies (4.2).

Finally, let xn → x and suppose that φ(xn, p) 6→ φ(x, p). From (4.4), the
sequence (φ(xn, p))n is bounded in H̃1

per. Taking a subsequence, if necessary, we
may assume that it converges weakly to some w ∈ H1

per, uniformly and ‖φ(xn, p)−
φ(x, p)‖H1 ≥ ε > 0 for all n. Passing to the limit in the equalities

DJp(xn + φ(xn, p))(v) = 0 for all v ∈ H̃1
per

we deduce thatDJp(x+w)(v) = 0 for all v ∈ H̃1
per and hence w = φ(x, p). Moreover,

as

Jp(xn + φ(xn, p)) ≤ Jp(xn + φ(x, p)) and Jp(x+ φ(x, p)) ≤ Jp(x+ φ(xn, p))

for all n, we deduce that

lim sup
n→∞

∫ T

0

|φ(xn, p)′|2 dt ≤
∫ T

0

|φ(x, p)′|2 dt ≤ lim inf
n→∞

∫ T

0

|φ(xn, p)′|2 dt

and hence ‖φ(xn, p)′‖2 → ‖φ(x, p)′‖2. Thus,

‖φ(xn, p)′ − φ(x, p)′‖22 = ‖φ(xn, p)′‖22 + ‖φ(x, p)′‖22 − 2
∫ T

0

φ(xn, p)′ · φ(x, p)′ dt→ 0

as n→∞, which contradicts the fact that φ(xn, p) 6→ φ(x, p). �
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Lemma 4.4. The function φ(·, p) depends only on p̃.

Proof. Let c ∈ RN , then

DJp+c(x+ φ(x, p))(v) =
∫ T

0

φ(x, p)′ · v′ −∇G(x+ φ(x, p)) · v + (p+ c) · v dt

=
∫ T

0

φ(x, p)′ · v′ −∇G(x+ φ(x, p)) · v + p · v dt = 0

for all v ∈ H̃1
per. From uniqueness, we deduce that φ(·, p) = φ(·, p+ c). �

Let us denote by J̃p : RN → R the function defined by

J̃p(x) = Jp(x+ φ(x, p)).

It is readily seen that J̃p ∈ C1(RN ,R) and

∇J̃p(x) · y = DJp(x+ φ(x, p))(y + v) for all y ∈ RN , v ∈ H̃1
per. (4.5)

The following lemma will allow us to reduce the problem of finding a critical point
in H1

per to a finite-dimensional problem.

Lemma 4.5. The element x+ v ∈ RN ⊕ H̃1
per is a critical point of Jp if and only

if v = φ(x, p) and x is a critical point of J̃p.

Proof. By Lemma 4.3, if x + v is a critical point of Jp, then v = φ(x, p). From
(4.5), ∇J̃p(x) · y = 0 for every y ∈ RN and hence x is a critical point of J̃p.

Conversely, suppose v = φ(x, p) and ∇J̃p(x) = 0. For u ∈ H1
per, let us write

u = u+ ũ with u ∈ RN and ũ ∈ H̃1
per. Then

DJp(x+ v)(u) = DJp(x+ φ(x, p))(u+ ũ) = ∇J̃p(x) · u = 0,

so x+ v is a critical point of Jp. �

Lemma 4.6. The function φ(·, p) is periodic.

Proof. Let x ∈ RN . From the periodicity of ∇G we deduce that

DJp(x+ Tjej + φ(x, p))(v) = DJp(x+ φ(x, p))(v) = 0

for all v ∈ H̃1
per. By Lemma 4.3, φ(x+ Tjej , p) = φ(x, p). �

The following proposition will provide the proof of Theorem 4.1.

Proposition 4.7. Let p̃ ∈ L̃2 and define the function Fep : RN → RN by

Fep(x) =
∫ 2π

0

∇G(x+ φ(x, p̃(t))) dt.

Then Fep is continuous and I(p̃) = Im(Fep). Moreover, if p̃n ∈ L̃2 converges weakly
to some p̃ ∈ L̃2, then I(p̃n) converges to I(p̃) for the Hausdorff topology.

Proof. The continuity of Fep is clear from the continuity of φ(·, p̃) and the embedding
H̃1

per ↪→ C([0, T ],RN ). Let us prove that I(p̃) = Im(Fep). According to (4.5),
Lemma 4.4 and Lemma 4.5, problem (1.1) has a weak solution if and only if there
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exists x ∈ RN such that DJp(x + φ(x, p̃))(y) = 0 for every y ∈ RN . From (2.1),
this is equivalent to

0 =
∫ T

0

−∇G(x+ φ(x, p̃)) · y + p · y dt = y ·
∫ T

0

−∇G(x+ φ(x, p̃)) + p dt

for all y ∈ RN . Thus, the problem has a solution if and only if

p =
∫ T

0

∇G(x+ φ(x, p̃)) dt,

for some x ∈ RN ; that is, p ∈ Im(Fep).
Finally, suppose that p̃n → p̃ weakly in L̃2 and denote Jn := Jepn , J := Jep,

φn(·) := φ(·, p̃n), φ(·) := φ(·, p̃), Fn := Fepn and F := Fep.
We claim that Fn → F pointwise. Indeed, for fixed x ∈ RN proceeding as in the

proof of Lemma 4.3 it is easy to see that if n → ∞, then φn(x) → φ(x). As ∇G
is continuous, we deduce from the Lebesgue’s dominated convergence theorem that
Fn(x) → F (x).

To prove that I(p̃n) → I(p̃) as n→∞ for the Hausdorff topology, we need to
see that:

(i) supqn∈I(epn) dist(qn, I(p̃)) → 0,
(ii) supq∈I(ep) dist(q, I(p̃n)) → 0.

For (i), denote Sn = supqn∈I(epn) dist(qn, I(p̃)) and let pn ∈ I(p̃n) be chosen in
such a way that dist(pn, I(p̃)) ≥ Sn − 1

n . We shall prove that dist(pn, I(p̃)) → 0.
By contradiction, suppose there exists a subsequence, still denoted {pn}, such that

dist(pn, I(p̃)) ≥ ε > 0. (4.6)

Moreover, we know that I(p̃) ⊂ co(Im(∇G)); in particular, taking a convergent
subsequence if necessary we may suppose that pn → p for some p ∈ RN . For each
n, let un ∈ H1

per be a solution of the problem for pn. From the periodicity of ∇G,
we may assume that the sequence {un} is bounded in RN . Thus, {un} is bounded
in H1

per and ∫ T

0

u′n · v′ −∇G(un) · v + (p̃n + pn) · v dt = 0 (4.7)

for all v ∈ H1
per. Taking again a subsequence, we may assume that un → u0 weakly

in H1
per and hence ∫ T

0

u′0 · v′ −∇G(u0) · v + (p̃+ p) · v dt = 0

for all v ∈ H1
per. Then u0 is a weak solution of (1.1) with p = p̃+ p and p ∈ I(p̃),

which contradicts (4.6). Thus dist(pn, I(p̃)) → 0 and consequently Sn → 0.
Next we prove (ii). Denote now Sn = supq∈I(ep) dist(q, I(p̃n)) and take qn ∈ I(p̃)

such that dist(qn, I(p̃n)) ≥ Sn − 1
n . As before, suppose there exists a subsequence,

still denoted {qn}, such that

dist(qn, I(p̃n)) ≥ ε > 0. (4.8)

Passing to a subsequence if necessary, there exist q ∈ I(p̃) = Im(F ) and n1 ∈ N
such that dist(qn, q) < ε

2 for all n ≥ n1. Fix x0 ∈ RN such that F (x0) = q and
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let pn = Fn(x0) ∈ I(p̃n). As Fn(x0) → F (x0), there exists n2 ∈ N such that
dist(pn, q) < ε

2 for all n ≥ n2. Take n0 = max{n1, n2} and hence

dist(qn, I(p̃n) ≤ dist(qn, pn) ≤ dist(qn, q) + dist(q, pn) < ε

for n ≥ n0. This contradicts (4.8), so we conclude that Sn → 0. �

5. Characterization of I for convex G

In this section, we shall assume that G is a strictly convex function, namely

G(sx+ (1− s)y) < sG(x) + (1− s)G(y) for all s ∈ (0, 1), x, y ∈ RN .

Our main result reads as follows.

Theorem 5.1. Assume that:
(1) There exist α <

(
T
2π

)2
and β ∈ R such that

G(u) ≤ α

2
|u|2 + β for all u ∈ RN (5.1)

(2) For every a ∈ RN there exists r0 > 0 such that
∂G

∂w
(rw + x) ≥ ∂G

∂w
(a) (5.2)

for all r ≥ r0, w ∈ Sn−1 and |x| ≤ C, where C = C(a, p̃) is the constant
defined below in (5.7).

Then I(p̃) = Im(∇G).

Proof. Firstly, we shall prove the inclusion Im(∇G) ⊆ I(p̃). For simplicity, from
the rescaling v(t) = u( T

2π t) we may assume that T = 2π. Let K : L̃2 → H2 ∩ L̃2

be the inverse of the operator Lu := u′′, namely Kh = u, where u is the unique
solution of the problem

u′′ = h

u(0) = u(2π), u′(0) = u′(2π)
u = 0.

Claim 1:
∫ 2π

0
Kh(t) · h(t) dt+

∫ 2π

0
|h(t)|2 dt ≥ 0. Indeed, from (2.2) it is seen that∫ 2π

0

|(Kh)′(t)|2 dt = −
∫ 2π

0

Kh(t) · h(t) dt ≤ ‖(Kh)′‖2‖h‖2,

which implies that ‖(Kh)′‖2 ≤ ‖h‖2, and hence

−
∫ 2π

0

Kh(t) · h(t) dt =
∫ 2π

0

|(Kh)′(t)|2 dt ≤ ‖h‖22.

For p ∈ Im(∇G), fix a ∈ RN such that ∇G(a) = p, and define the functions

F (t, u) := G(u)− p(t) · u;
and, for given ε > 0,

Fε(t, u) := G(u)− p(t) · u+
ε

2
|u|2

where p(t) = p̃(t) + p. Next, consider the Fenchel transform F ∗ε of the function Fε

defined as
F ∗ε (t, v) = max

w∈RN
(v · w − Fε(t, w)) . (5.3)
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Observe that F ∗ε is well defined, since Fε is strongly concave; hence a unique
global maximum w is achieved and satisfies the following properties:

(1) v = ∇Fε(t, w),
(2) w = ∇F ∗ε (t, v),
(3) v · w − Fε(t, w) = F ∗ε .

Properties 1 and 2 are known as Fenchel duality (see [8]).
Define the functional Iε : L̃2 → R given by

Iε(v) =
∫ 2π

0

1
2
Kv(t) · v(t) + F ∗ε (t, v(t)) dt.

From (5.3) and (5.1),

F ∗ε (t, v) ≥ |v|2 − Fε(t, v) = |v|2 + p · v − ε

2
|v|2 −G(v)

≥ |v|2 + p · v − ε+ α

2
|v|2 − β

and using Claim 1, Cauchy-Schwarz Inequality and the fact that v ∈ L̃2 we deduce:

Iε(v) ≥ −1
2

∫ 2π

0

|v(t)|2 dt+
∫ 2π

0

|v(t)|2 + p̃(t) · v(t)− ε+ α

2
|v(t)|2 − β dt;

that is,

Iε(v) ≥
1− α− ε

2
‖v‖22 − ‖p̃‖2‖v‖2 − 2πβ. (5.4)

Thus Iε is coercive for ε < 1 − α and hence it achieves a minimum uε. As K is
self-adjoint, it is easy to verify that∫ 2π

0

[Kuε(t) +∇F ∗ε (t, uε(t))] · ϕ(t) dt = 0, for all ϕ ∈ L̃2.

Then K(uε) +∇F ∗ε (s, uε) = A ∈ RN . Let vε = ∇F ∗ε (s, uε) = A −K(uε), then by
the Fenchel duality uε = ∇Fε(s, vε). In other words, uε = ∇G(vε)− p(t) + εvε.

On the other hand, v′′ε = (−K(uε))′′ = −uε; hence, vε satisfies

v′′ε +∇G(vε) + εvε = p(t)

vε(0) = vε(2π), v′ε(0) = v′ε(2π).
(5.5)

Moreover, if F ∗ denotes the Legendre transform of F defined by

F ∗(t, v) = sup
w∈RN

(v · w − Fε(t, w))

then it is obvious that F ∗ε ≤ F ∗. As uε is the minimum, it follows that

Iε(uε) ≤ Iε(−p̃) =
∫ 2π

0

1
2
Kp̃(t) · p̃(t) + F ∗(t,−p̃(t)) dt. (5.6)

For fixed t, let Ψ(y) := −p̃ · y − F (t, y) = p · y −G(y), then

∇Ψ(y) = −p̃−∇F (t, y) = p−∇G(y).

Thus, a is a critical point of Ψ and, as Ψ is strictly concave, we conclude that a is
the absolute maximum. Then

−p̃ · a− F (t, a) = max
w∈RN

(−p̃(t) · w − F (t, w)) = F ∗(t,−p̃(t)).
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Hence, from (5.6) and the fact that p̃ ∈ L̃2 we obtain:

Iε(uε) ≤
∫ 2π

0

1
2
Kp̃(t) · p̃(t)− F (t, a) dt = 2π (a · ∇G(a)−G(a))− 1

2
‖(Kp̃)′‖22.

Fixing c < (1− α)/2, we conclude from (5.4) that if ε is small enough then

c‖uε‖22 − ‖p̃‖2‖uε‖2 ≤ 2π (a · ∇G(a)−G(a) + β)− 1
2
‖(Kp̃)′‖22.

As v′′ε = −uε, it follows that ṽε is bounded for the H2 norm; in particular,

‖vε‖∞ ≤ C (5.7)

for some constant C, depending only on p̃ and a.
Let us prove now that vε is bounded. By direct integration of (5.5) we obtain:

1
2π

∫ 2π

0

∇G(vε(t))dt+ εvε = p. (5.8)

Writing vε = rw, where r = |vε| and |w| = 1, and multiplying (5.8) by w, we obtain

εr +
1
2π

∫ 2π

0

∂G

∂w
(rw + ṽε(t)) dt = p · w = ∇G(a) · w =

∂G

∂w
(a).

As |ṽε(t)| ≤ C, for r ≥ r0 inequality (5.2) yields:

0 = εr +
1
2

∫ 2π

0

(∂G
∂w

(rw + ṽε(t))−
∂G

∂w
(a)

)
dt ≥ εr,

a contradiction. So, |vε| ≤ r0 and vε is bounded for the H2 norm.
From the compact embedding H2([0, 2π],RN ) ↪→ C1([0, 2π],RN ), there exists

a sequence {vεn
}n∈N that converges in C1([0, 2π],RN ) to some function v. From

(5.5),∫ 2π

0

(
v′′εn

(t) +∇G(vεn
(t)) + εnvεn

(t)
)
· ϕ(t) dt =

∫ 2π

0

p(t) · ϕ(t) dt ∀ϕ ∈ L̃2.

Integrating by parts and passing to the limit, we obtain:

−
∫ 2π

0

v′(t) · ϕ′(t) dt+
∫ 2π

0

∇G(v(t)) · ϕ(t) dt =
∫ 2π

0

p(t) · ϕ(t) dt.

Then v is a solution of (1.1).
Finally, let us prove that I(p̃) ⊆ Im(∇G). As previously mentioned, we know

that I(p̃) ⊆ co(Im(∇G)), so it remains to see that Im(∇G) is convex.
Claim 2 : If F ∈ C1(RN ,R) is strictly convex, then

0 ∈ Im(F ) ⇐⇒ lim
|x|→+∞

F (x) = +∞.

The sufficiency is obvious. In order to prove the necessity, assume that ∇F (x0) = 0
for some x0 ∈ RN and for each w ∈ Sn−1 define Φw(t) := ∂F

∂w (x0 + tw). From the
convexity of F we deduce that Φw is strictly increasing. Furthermore, the function
Φ : Sn−1 × [0,+∞) → R given by Φ(w, t) := Φw(t) is continuous and Φ(w, 1) > 0
for all w ∈ Sn−1. Hence, there exists a constant c > 0, such that Φw(1) ≥ c > 0
for all w ∈ Sn−1. As Φw is strictly increasing, we conclude that Φw(t) > c for all
t > 1. Thus,

F (x0 +Rw)− F (x0 + w) = R∇F (x0 + ξw) · w = R
∂F

∂w
(x0 + ξw) ≥ cR.
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We conclude that F (x0 +Rw) ≥ F (x0 + w) + cR and the claim is proved.
Next, let us consider y1, y2 ∈ Im(∇G) and y = a1y1 + a2y2, with a1 + a2 = 1

and a1, a2 ≥ 0. Define

F (x) = G(x)− y · x = a1 (G(x)− y1 · x) + a2(G(x)− y2 · x).
As G(x)− y1 · x and G(x)− y2 · x are strictly convex, it follows from Claim 2 that
both functions tend to +∞ as |x| → ∞, and hence

lim
|x|→+∞

F (x) = +∞. (5.9)

Using Claim 2 again, (5.9) implies that 0 ∈ Im(∇F ) = Im(∇G − y), then y ∈
Im(∇G) and so completes the proof. �
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