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BIFURCATION AND SPATIAL PATTERN FORMATION IN
SPREADING OF DISEASE WITH INCUBATION PERIOD IN A

PHYTOPLANKTON DYNAMICS

RANDHIR SINGH BAGHEL, JOYDIP DHAR, RENU JAIN

Abstract. In this article, we propose a three dimensional mathematical model
of phytoplankton dynamics with the help of reaction-diffusion equations that
studies the bifurcation and pattern formation mechanism. We provide an ana-
lytical explanation for understanding phytoplankton dynamics with three pop-
ulation classes: susceptible, incubated, and infected. This model has a Holling
type II response function for the population transformation from susceptible
to incubated class in an aquatic ecosystem. Our main goal is to provide a qual-
itative analysis of Hopf bifurcation mechanisms, taking death rate of infected
phytoplankton as bifurcation parameter, and to study further spatial patterns
formation due to spatial diffusion. Here analytical findings are supported by
the results of numerical experiments. It is observed that the coexistence of all
classes of population depends on the rate of diffusion. Also we obtained the
time evaluation pattern formation of the spatial system.

1. Introduction

It is well known that the phytoplankton and zooplankton are single cell or-
ganisms that drift with the currents on the surface of open oceans. Further, the
phytoplanktons are the staple items for the food web and they are the recycler of
most of the energy that flows through the ocean ecosystem. It has a major role in
stabilizing the environment and survival of living population as it consumes half
of the universal carbon-dioxide and releases oxygen. So far, there is a number of
studies which show the presence of pathogenic viruses in the plankton community
[1, 11]. A good review of the nature of marine viruses and their ecological as well
as their biological effects is given in [12]. Some researchers have shown using an
electronic microscope that these viral diseases can affect bacteria and phytoplank-
ton in coastal area and viruses are held responsible for the collapse of Emiliania
huxleyi bloom in Mesocosms [2, 14]. Marine viruses infect not only plankton but
cultivated stocks of Crabs, Oysters, Mussels, Clams shrimp, Salmon and Catfish,
etc., are all susceptible to various kinds of viruses. We know that the viruses are
nonliving organisms, in the sense, they have no metabolism when out side the host
and they can reproduce only by infecting the living organisms. Viral infection of
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the phytoplankton cell is of two types, namely, Lysogenic and Lytic. Moreover from
literature, in lytic viral infection, when a virus injects its DNA into a cell, it hijacks
the cell’s replication machinery and produces large a number of viruses. As a result,
they rupture the host and are released into the environment. On the other hand,
in lysogenic viral infection, the DNA of the viruses do not use the machinery of the
host themselves, but their genes are duplicated each time as the host cell divides.
Many papers have already been developed which have used this kind of lysogenic
viral infection [3, 6, 10, 17]. In this kind of infection, infected phytoplankton do not
grow like susceptible phytoplankton but their number grows and it is proportional
to the number of susceptible phytoplankton and infected phytoplankton. Moreover,
we do not look on the viruses as mere pathogens that destroy others life rather,
they produce the fuel, essential to the running of the marine engine by destroying
phytoplankton; i.e., they produce the essential minerals which are required for the
growth of phytoplankton. Secondly, we have introduced incubated class in between
a susceptible class and an infected class, Unlike simple S-I-S models in mathemati-
cal epidemiology. Generally, we have been using direct shifting from susceptible to
infected class, but this process is not regular, rather, phytoplankton stay for some
definite period in an incubated class after leaving the susceptible class and joining
the infected class. The period for which they stay in incubated class is termed as the
incubation period. The incubation period is defined as the time from the exposure
to the onset of disease, when they are exposed to infection. The incubation period
is useful not only for making the rough guesses for finding the cause and source
of infection, but also in developing treatment strategies to extend the incubation
period, and for performing an early projection of the disease prognosis [12, 16].

In the previous thirty years, the pattern formation in predator-prey systems has
been studied by many researchers. The spread of diseases in human populations can
exhibit large scale patterns, underlining the need for spatially explicit approaches.
The spatial component of ecological interactions has been identified as an important
factor in a spatial world and it is a natural phenomenon that a substance goes from
high density regions to low density regions. Also, spatial patterns are ubiquitous
in nature. These patterns modify the temporal dynamics and stability properties
of population densities at a range of spatial scales and their effects must be incor-
porated in temporal ecological models that do not represent space explicitly. The
spatial component of ecological interactions has been identified as an important
factor in how ecological communities are shaped [7, 9]. Patterns are present in
the chemical and biological worlds and since Turing [19] first introduced his model
of pattern formation, reaction-diffusion equations have been a primary means of
predicting them. Similarly structured systems of ordinary differential equations
govern the spatiotemporal dynamics of ecological population models, yet most of
the simple models predict spatially homogeneous population distributions [5]. It is
important to note that the above model takes into account the invasion of the prey
species by predators but does not include stochastic effects or any influences from
the environment. Nevertheless, a reaction-diffusion equation modeling predator-
prey interaction show a wide spectrum of ecologically relevant behavior resulting
from intrinsic factors alone, and is an intensive area of research. An introduction to
research in the application of reaction-diffusion equations to population dynamics
are available in [8, 15].
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These numerical simulations reveal that a large variety of different spatiotem-
poral dynamics can be found in this model. The numerical results are consistent
with our theoretical analysis. It should be noted that, if considered in a somewhat
broader ecological perspective, our results have an intuitively clear meaning. There
has been a growing understanding during the past years regarding the dynamics
of real ecosystems. It is important to reveal different spatial dynamical regimes
arising as a result of perturbation of the system parameters [18, 20].

The objective of the paper is to consider the Bifurcation and spatial pattern
formation in a Phytoplankton dynamics. In section 2 and 3, we have developed
mathematical model and analyzed dynamical behavior of system. In section 4,
studied the Hopf bifurcation mechanisms analytical and numerically, in section 5,
studied the spatial pattern formation and numerical simulation of two dimensional
systems and finally in section 6, we summarize our results and discuss the relative
importance of different mechanisms of bifurcation and spatial pattern formation.

2. Mathematical Model

Now, we consider the case of viral infection of phytoplankton population, the
shifting from susceptible to infected class is not regular. In fact, the susceptible
phytoplankton stay for some definite period in the incubated class after leaving the
susceptible class and joining the infected class. Taking the population densities of
susceptible and infected phytoplankton as Ps and Pi respectively, at any instant
of time T . The population of susceptible phytoplankton is assumed to be growing
logistically with intrinsic growth rate r and carrying capacity K. Now taking
Pin as the population density of population in incubated class. Here, we will use
nonlinear Holling Type II functional responses for disease spreading because the
disease conversion rates become saturated as victim densities increase. Let α be
the disease contact rate and it is volume-specific encounter rate between susceptible
and infected phytoplankton, which is equivalent to the inverse of the average search
time between successful spreading of disease. The coefficients δ and β are the total
removal of phytoplankton from the infected and incubated class because of the death
(including recovered) from disease and due to natural causes respectively. Again, γ1

be the fraction of the population recovered from infected phytoplankton population
and joined in the susceptible phytoplankton population and β1 is the fraction of
the incubated class population which will move to the infected class. Therefore,
quantitatively δ > γ1 and β > β1. Keeping in view the above, the mathematical
model for a viral infected phytoplankton population with an incubated class is
governed by the following set of differential equations:

dPs

dT
= rPs

(
1− Ps

K

)
− αPsPi

Ps + 1
+ γ1Pi, (2.1)

dPin

dT
=

αPsPi

Ps + 1
− βPin, (2.2)

dPi

dT
= β1Pin − δPi, (2.3)

Ps(0) > 0, Pi(0) > 0, Pin(0) > 0. (2.4)

The Holling type-II the functional response αPsPi

Ps+1 is used [4] and many other re-
searchers. In this section, we have studied the dynamical behavior of the system
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(2.1)-(2.3), with initial population; i.e., Ps(0) > 0, Pin(0) > 0, Pi(0) > 0 and the
total population at any instant t is N(t) = Ps(t) + Pin(t) + Pi(t).

Now, on rescaling the above system (2.1)-(2.3) using the change of variables:
x = Ps

K , y = Pin

K , z = Pi

K , t = rT , we obtain

dx

dt
= x(1− x)− axz

x + 1
+ cz, (2.5)

dy

dt
=

axz

x + 1
− dy, (2.6)

dz

dt
= d1y − ez, (2.7)

where a = αK
r , c = γ1

r , d = β
r , d1 = β1

r , e = δ
r , x(0) > 0, y(0) > 0 and z(0) > 0.

3. Boundedness of the system

Now, we will study the existence of all possible steady states of the system and the
boundedness of the solutions. There are three biologically feasible equilibriums for
the system (2.5)-(2.7), (i) E0 = (0, 0, 0) is the trivial steady state; (ii) E1 = (1, 0, 0)
is the disease free steady state and (iii) E∗ = (x∗, y∗, z∗) is endemic equilibrium
state, where

x∗ =
ed

d1a− ed
, y∗ =

e2d(ad1 − 2ed)
(ed− d1c)(ad1 − ed)2

, z∗ =
edd1(ad1 − 2ed)

(ed− d1c)(ad1 − ed)2
.

Further, it is clear from the above expression that E∗ ∈ R3
+, if a > de

d1
> c. Now,

we will show that all the solutions of the system (2.5)-(2.7) are bounded in a region
B ⊂ R3

+. We consider the function

w(τ) = x(τ) + y(τ) + z(τ), (3.1)

and substituting the values from (2.5)-(2.7), we obtain

dw

dτ
= x(1− x)− (d− d1)y − (e− c)z.

If we choose a positive real number η = min{d− d1, e− c}, then

dw(τ)
dτ

+ ηw(τ) ≤ x(1 + η)− x2 = f(x).

Moreover, f(x) has maxima at x = (1 + η)/2 and f(x) ≤ (1 + η)2/4 = M (say).
Hence, ẇ(τ) + ηw(τ) ≤ M . Now, using comparison theorem, as τ →∞, we obtain
sup w(τ) = M

η . Therefore, 0 ≤ x(τ) + y(τ) + z(τ) ≤ M
η . and let us consider the set

B = {(x, y, z) ∈ R3
+ : 0 ≤ x(τ)+y(τ)+z(τ) ≤ M/η}, hence, The system (2.5)-(2.7)

is uniformly bounded in the region B ⊂ R3
+.

3.1. Local stability of the system. We have already established that the system
(2.5)-(2.7) has three equilibrium points, namely, E0 = (0, 0, 0), E1 = (1, 0, 0) and
E∗ = (x∗, y∗, z∗) in the previous section. The general variational matrix corre-
sponding to the system is given by

J =

 1− 2x∗ − az∗

(x∗+1)2 0 − ax∗

(x∗+1) + c
az∗

(x∗+1)2 −d ax∗

(x∗+1)

0 d1 −e


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Now, corresponding to the trivial steady state E0 = (0, 0, 0) the Jacobian J has
the following eigenvalues λi = 1,−d,−e. Hence, E0 is repulsive in x-direction and
attracting in y − z plane. Clinically, it means that when there is no susceptible
population then, there will be no mass in incubated and in the infected class.
Hence, E0 is a saddle point. The corresponding to the disease free equilibrium
point E1 = (1, 0, 0), we have following λ1 = −1 and λ2,3 are the roots of the
quadratic equation λ2 + (d + e)λ + (de− ad1

2 ) = 0 when de > d1a/2, then both the
roots have a negative real parts and thus E1(1, 0, 0) is locally stable in this case.

Further, from the existence of E∗ and the stability condition of E1, it is clear
that the instability of the disease free equilibrium will lead to the existence of
the endemic equilibrium. Now, we will examine the local behavior of the flow
of the system around the endemic equilibrium E∗. The characteristic equation
corresponding to the equilibrium is

P (λ) = λ3 + A1λ
2 + A2λ + A3 = 0, (3.2)

where

A1 = 2x∗ +
az∗

(x∗ + 1)2
+ d + e− 1,

A2 = 2x∗e + 2x∗d + ed− e− d− ad1x
∗

(x∗ + 1)
+

aez∗

(x∗ + 1)2
+

adz∗

(x∗ + 1)2
,

A3 =
eadz∗

(x∗ + 1)2
+

ad1x
∗

(x∗ + 1)
− 2ad1x

∗2

(x∗ + 1)
− acd1z

∗

(x∗ + 1)2
+ 2xed− ed.

Hence, using Routh-Hurwitz criteria E∗ is locally asymptotically stable, if Ai > 0,
i = 1, 2, 3 and A1A2 > A3.

4. Hopf-bifurcation analysis

In this section, we obtain the Hopf-bifurcation criteria of above system (2.5)-
(2.7), taking ”e” (i.e., total removal of phytoplankton from the infected population
) as the bifurcation parameter. Now, the necessary and sufficient condition for the
existence of the Hopf-bifurcation can be obtained if there exists e = e0, such that
(i) Ai(e0) > 0, i = 1, 2, 3, (ii) A1(e0)A2(e0) − A3(e0) = 0 and (iii) d

de (ui) 6= 0,
i = 1, 2, 3, where ui is the real part of the eigenvalues of the characteristic equation
(3.2). After substituting of the values of Ai for i = 1, 2, 3 in equation A1A2−A3 = 0
and solving it for e, it reduces to

e7B1 + e6B2 + e5B3 + e4B4 + e3B5 + e2B6 + eB7 + B8 = 0, (4.1)

where

B1 = (d6 − 2d5d1a + 8d6d1a),

B2 = (2d4d1
2a2 + 2d4d1

2ac− 2d6d1a + 2d5d1a + d7 − 2d5d1c− 12d5d1
2a2

− 16d5d1
2ac + 8d2d1a),

B3 = (2d5d1
2ac− 2d4d1a + 9d3d1

3a2c + 2d6d1a− 4d4d1
2ac− 2d4d1

2a2

+ 4d3d1
3a3 − d5d1

2a2 + d4d1
2c2 + 4d2d1

2ac− 2d6d1c + 4d4d1
3a3

+ 8d4d1
3ac2 + 24d4d1

3a2c− 12d6d1
2a2 − 16d6d1

2ac),
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B4 = (20d4d1
3a2c + 2d6d1

2ac + 2d6d1
2a2 − 4d5d1

2ac− 8d5d1
2a2 − 22d3d1

3a2c

+ 2d4d1
3ac2 + 4d4d1

3a3 − 2dd1
4a3c− 3d2d1

4a2c2 + 6d5d1
2a2 − 2d3d1

3ac2

+ d5d1
2c2 − 2d3d1

3a3 + 4d5d1
2ac− 12d3d1

4a2c2 − 8d3d1
4a3c

+ 4d5d1
3a3 + 24d5d1

3a2c + 8d5d1
3ac2),

B5 = (9d5d1
3a2c− 12d4d1

3a2c + 10d4d1
3a3 − 12d2d1

4a3 + 4dd1
5a3c2 − 12d3d1

4a3c

+ 7d2d1
4a2c2 − 8d4d1

3a2c− 4d4d1
3a3 + 8dd1

4a3c− dd1
4a4 − 3d3d1

4a2c2

+ dd1
5a4c− 2d4d1

3ac2 + d2d1
4a4 + 4d2d1

5a3c2 − 8d4d1
4a3c− 12d4d1

4a2c2),

B6 = (d4d1
4a4 − 4d3d1

4a3c− 2d3d1
3a4 − 12d2d1

5a3c2 − 2d5d1
4a2c2 − 6dd1

5a3c2

+ d2d1
4a3c + 11d3d1

4a2c2 + 4d2d1
5a4c− d4d1

4a2c2 − d6d1
4c),

B7 = (4d3d1
5a3c2 − 6d2d1

5a3c2 − dd1
6a4c2 + d3d1

5a4c + d1
6a4c2),

B8 = (dd1
6a4c2 − d2d1

6a4c2).

For better understanding of the above result, taking an example values of the
parameters c = 0.01, d = 0.11, d1 = 0.1 and a = 7.15, we obtain a positive
root e = 0.074 of the quadratic equation (4.1). Therefore, the eigenvalues of the
characteristic equation (4.1) at e = 0.074 are of the form λ1,2 = ±iv and λ3 = −w,
where v and w are positive real numbers.

Now, we will verify the condition (iii) of Hopf-bifurcation. Put λ = u + iv in
(3.2), we obtain

(u + iv)3 + A1(u + iv)2 + A2(u + iv) + A3 = 0. (4.2)

On separating the real and imaginary parts and eliminating v between real and
imaginary parts, we obtain

8u3 + 8A1u
2 + 2(A2

1 + A2)u + A1A2 −A3 = 0. (4.3)

Now, we have u(e0) = 0 as A1(e0)A2(e0) − A3(e0) = 0. Further, e = e0, is the
only positive root of A1(e0)A2(e0) − A3(e0) = 0, and the discriminate of 8u2 +
8A1u + 2(A2

1 + A2) = 0 is 64A2
1 − 64(A2

1 + A2) < 0. Here, differentiating (4.3)
with respect to e, we have

(
24u2 + 16A1u + 2(A2

1 + A2)
)

du
de +

(
8u2 + 4A1u

)
dA1
de +

2udA2
de + d

de (A1A2 −A3) = 0. Now, since at e = e0, u(e0) = 0, we obtain[du

de

]
e=e0

=
− d

de (A1A2 −A3)
2(A2

1 + A2)
6= 0,

which ensures that the above system has a Hopf-bifurcation. It is shown graphically
in figure 1.

5. Spatiotemporal model

Now, we consider the phytoplankton dynamics with movement (i.e., diffusion).
Therefore the population densities; i.e., Ps, Pi and Pin become space and time
dependent. Keeping in view of the above, our mathematical model can stated by
the reaction diffusion system

∂u

dt
= u(1− u)− auw

u + 1
+ cw + Da∇2u, (5.1)

∂v

dt
=

auw

u + 1
− dv + Db∇2v, (5.2)
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Figure 1. Phase plane representation of three species around the
endemic equilibrium, taking c = 0.01, d = 0.11, d1 = 0.1, a = 7.15:
(A) e = 0.073, (B) e = 0.074, (C) e = 0.075, (D) e = 0.076

∂w

dt
= d1v − ew + Dc∇2w, (5.3)

where (x, y) is the position in space for two dimensional on a bounded domain and
Da, Db and Dc are diffusion coefficients for susceptible phytoplankton, incubated
phytoplankton and infected phytoplankton population, respectively. The no-flux
boundary conditions were used.

Now, we will explore the possibility of diffusion-driven instability with respect
to the steady state solution, i.e., the spatially homogenous solution (u∗, v∗, w∗) of
the reaction diffusion system.

We assume that E∗ is stable in the temporal system and unstable in spatiotem-
poral system, which means that the spatially homogeneous equilibrium is unstable
with respect to spatially homogeneous perturbations.

We obtain the conditions for the diffusion instability to occur in system (5.1)-
(5.3), one should check how small heterogeneous perturbations of the homogeneous
steady state develop in the large-time limit. For this purpose, we consider the
perturbation

u(x, y, t) = u∗ + ε exp((kx + ky)i + λkt), (5.4)

v(x, y, t) = v∗ + η exp((kx + ky)i + λkt), (5.5)

w(x, y, t) = w∗ + ρ exp((kx + ky)i + λkt), (5.6)

where ε, η and ρ are chosen to be small and k = (kx, ky) is the wave number.
Substituting (5.4)-(5.6) into (5.1)-(5.3), linearizing the system around the interior
equilibrium E∗, we obtain the characteristic equation as follows:

|Jk − λkI2| = 0, (5.7)
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with

Jk =

1−Dak2 − 2u∗ + au∗w∗

(1+u∗)2 −
aw∗

1+u∗ 0 c− au∗

1+u∗

− au∗w∗

(1+u∗)2 + aw∗

1+u∗ −(d + Dbk
2) au∗

1+u∗

0 d1 −(e + Dck
2)

 ,

where I3 and k are third order identity matrix and wave number respectively. The
characteristic equation following form:

λ3 + P2λ
2 + P1λ + P0 = 0, (5.8)

where

P2 = −
(
1− d− e−Dak2 −Dbk

2 −Dck
2 − 2u∗ +

au∗w∗

(1 + u∗)2
− aw∗

1 + u∗

)
,

P1 = −
(
d + e− de− dDak2 + Dbk

2 + Dck
2 − dDck

2 −Daek2 −Dbek
2

−DaDbk
4 −DaDck

4 −DbDck
4 − 2du∗ − 2eu∗ − 2Dbk

2u∗ − 2Dck
2u∗

+
ad1u

∗

(1 + u∗)
+

adu∗w∗

(1 + u∗)2
+

aeu∗w∗

(1 + u∗)2
+

aDbk
2u∗w∗

(1 + u∗)2
+

aDck
2u∗w∗

(1 + u∗)2

− adw∗

1 + u∗
− aew∗

1 + u∗
− aDbk

2w∗

1 + u∗
− aDck

2w∗

1 + u∗

)
,

P0 =
(
− de− dDck

2 + dDaek2 −Dbek
2 + dDaDck

4 −DbDck
4 + DaDbek

4

+ DaDbDck
6 + 2deu∗ + 2dDck

2u∗ + 2Dbek
2u∗ + 2DbDck

4u∗ +
ad1u

∗

1 + u∗

− ad1Dak2u∗

1 + u∗
− 2ad1u

∗2

1 + u∗
+

acd1u
∗w∗

(1 + u∗)2
− adeu∗w∗

(1 + u∗)2
− adDck

2u∗w∗

(1 + u∗)2

− aDbek
2u∗w∗

(1 + u∗)2
− aDbDck

4u∗w∗

(1 + u∗)2
− acd1w

∗

1 + u∗
+

adew∗

1 + u∗
+

adDck
2w∗

1 + u∗

+
aDbek

2w∗

1 + u∗
+

aDbDck
4w∗

1 + u∗

)
.

According to the Routh-Hurwitz criterium all the eigenvalues have negative real
parts if and only if the following conditions hold:

P2 > 0, (5.9)

P0 > 0, (5.10)

Q = P0 − P2P1 < 0. (5.11)

This is best understood in terms of the invariants of the matrix and of its inverse
matrix

J−1
k =

1
det(Jk)

M11 M12 M13

M21 M22 M23

M31 M32 M33

 ,

where M11 = de − ad1u
(u+1) , M12 = −d1c − ad1u

u+1 , M13 = d(c − au
u+1 ), M21 = aew

(u+1)2 ,
M22 = −e(1− 2u− aw

(u+1)2 ), M23 = −( au
(u+1) (1− 2u− aw

(u+1)2 )− aw
(u+1)2 (c− au

(u+1) )),
M31 = ad1w

(u+1)2 , M32 = −d1(1 − 2u − aw
(u+1)2 ), M33 = −d(1 − 2u − aw

(u+1)2 ). Here,
matrix Mij is the adjunct of Jk.
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We obtain the following conditions of the steady-state stability (i.e. stability for
any value of k):
(i) All diagonal cofactors of matrix Jk must be positive.
(ii) All diagonal elements of matrix Jk must be negative.

The two above condition taken together are sufficient to ensure stability of a give
steady state. It means that instability for some k > 0 can only be observed if at
least one of them is violated. Thus we arrive at the following necessary condition
for the Turing Instability [13]: (i) The largest diagonal element of matrix Jk must
be positive and/or (ii) the smallest diagonal cofactor of matrix Jk must be negative.

By the Routh-Hurwitz criteria, instability takes place if and only if one of the
conditions (5.9)-(5.11) is broken. We consider (5.10) for instability condition:

P0(k) = DaDbDck
6 − (DaDba33 + DbDca11 + DaDca22)k4

+ (DaM11 + DbM22 + D3M33)k2 − det J.

According to Routh-Hurwitz criterium P0(k2) < 0 is sufficient condition for
matrix Jk being unstable. Let us assume that M33 < 0. If we choose Da = 0, Db = 0
and

P0(k2) = DcM33k
2 − det(Jk)

= −
[
dDck

2
(
1− 2u∗ − aw∗

(1 + u∗)2
)

+
1

(1 + u∗)2
(1 + u∗)(2u∗ − 1)

×
(
ed + Dcdk2 + edu∗ + Dcdu∗k2 − ad1u

∗
)

+ (edaw∗ + Dcdaw∗k2 − cad1)
]

< 0.

(5.12)

Hence, in this system diffusion-driven instability occur.
Now, we obtain the eigenvalues of the characteristic equation (5.8) numerically of

the spatial system (5.1)-(5.3). Here, we choose some parametric values of a = 0.4,
c = 0.01, d = 0.11, d1 = 0.1, e = 0.08. In this set of values P0(k2) < 0, for all
k > 0, hence from (5.12), we can observe diffusion driven instability of the system
(see Fig.2).

5.1. Pattern formation. Now, we will study numerical system (5.1)-(5.3) for the
pattern formation of two dimensional space with zero-flux boundary conditions is
used. We choose the initial spatial distributions of each species are random and the
numerical results are obtained using finite difference method for figure 3-4 and we
use the parametric values same as above section.

Now, we obtain that the spatial distributions of phytoplankton dynamics in the
time evaluation in figures 3-4. By varying coupling parameters, we observed that
one parameter value change then spatial structure change over the times of the
spatial system. In figure 3-4 have observed well organized structures for the spatial
distribution population also observed that time T increase from 10 to 300 the den-
sity of different classes of population become uniform throughout the space. Finally,
all these figure are shown that the qualitative changes spatial density distribution
of the spatial system for the each species.

Conclusion. In this paper, we have studied a phytoplankton dynamics with viral
infection. We observed that in a three dimensional phytoplankton system with the
Holling-II response function, there exit Hopf bifurcation with respect to remove rate
including nature death of infected phytoplankton. In the qualitative analysis, we
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Figure 2. Plot of max Re(λ(k)) against k. The other parametric
values are given in text
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Figure 3. Spatial distribution of susceptible phytoplankton [first
column], incubated phytoplankton [second column] and infected
phytoplankton [third column] population density of the model sys-
tem (5.1)-(5.3). The diffusivity coefficient values are: Da = 0.02,
Db = 0.2, Dc = 5. Spatial patterns are obtained at different time
levels: for plot T = 10 (a, b, c), T = 40 (d, e, f), T = 80 (g, h, i)

studied the boundedness, dynamical behavior and local stability of the system. It is
established that the rate of total removal of phytoplankton from the infected class;
i.e., e, crossed its threshold value, e = e0, then susceptible, incubated and infected
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Figure 4. Spatial distribution of susceptible phytoplankton [first
column], incubated phytoplankton [second column] and infected
phytoplankton [third column] population density of the model sys-
tem (5.1)-(5.3). The diffusivity coefficient values are: Da = 0.02,
Db = 0.2, Dc = 5. Spatial patterns are obtained at different time
levels: for plot T = 100 (a, b, c), T = 200 (d, e, f), T = 300 (g, h,
i)

phytoplankton population started oscillating around the endemic equilibrium. The
above result has been shown numerically in figure 1 for different values of e. In
particular, in figure 1(A), we observed that the endemic equilibrium was stable,
when e < 0.074, but when it crossed the threshold value of e = 0.074, the above
system showed Hopf-bifurcation, shown in figure 1(B, C, D). We have also observed
spatially ordered structures of patterns in spatial systems and the solutions of the
spatial system converges to its equilibrium as time T increase from 10 to 300 in
the two-dimensional pattern formation, shown in figures 3-4. It is numerically
established that with slight change in a time T parameter of the system (5.1)-(5.3),
can lead to dramatic changes in the qualitative behavior of the system.
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