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ALMOST AUTOMORPHIC MILD SOLUTIONS OF HYPERBOLIC
EVOLUTION EQUATIONS WITH STEPANOV-LIKE ALMOST
AUTOMORPHIC FORCING TERM

INDIRA MISHRA, DHIRENDRA BAHUGUNA

ABSTRACT. This article concerns the existence and uniqueness of almost auto-
morphic solutions to the semilinear parabolic boundary differential equations

La(t) = ¢(t,z(t)), teR,
where A := Ay, |ker . generates a hyperbolic analytic semigroup on a Banach
space X, with Stepanov-like almost automorphic nonlinear term, defined on

some extrapolated space Xqo—1, for 0 < a < 1 and ¢ takes values in the
boundary space 0X.

1. INTRODUCTION

In this article, we prove existence and uniqueness results of almost automorphic
solutions to the following semilinear parabolic boundary differential equations, with
Stepanov-like almost automorphic nonlinear term using the techniques initiated by
Diagana and N’Guerekata in [4].

' (t) = Apx(t) + h(t,z(t)), teR,
Lx(t) = ¢(t>$(t))a teR,

where the first equation stands in the complex Banach space X, called the state
space and the second equation lies in a boundary space 0X; (A, D(4y)) is a
densely defined linear operator on X and L : D(A4,,) — 0X is a bounded linear
operator.

Motivation for this paper come basically from the following three sources.

The first one is a nice paper by Boulite et al [I]. They have established the exis-
tence and uniqueness of almost automorphic solutions to the semilinear boundary
differential equation using extrapolation methods.

The second source of motivation is a recent paper by Baroun et al [2], where
the authors have considered the same equation as (1.1)) and proved the existence
of almost periodic (almost automorphic) solutions, when the nonlinear term h is
almost periodic (almost automorphic), whereas we prove the assertion by taking

(1.1)
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h to be Stepanov-like almost automorphic function. The functions h and ¢ are
defined on some continuous interpolation space Xz, 0 < 8 < 1, with respect to the
sectorial operator A := A, |ker L-

To prove our results, we make use of the techniques initiated by Diagana and
N’Guerekata [4], which is also our third source of motivation.

Likewise [T, 2] we solve the by transforming the semilinear boundary dif-
ferential equation into an equivalent semilinear evolution equation,

2'(t) = Aa_12(t) + h(t, 2(t)) + (A — Aa_1)Lro(t,z(t)), teR,  (1.2)

where A,—1 0 < 8 < a < 1, is the continuous extension of A := A,,|kerr to the
extrapolated Banach space X,_1 of X, with respect to A and the semilinear term
h(t,z) + (A — Aa—1)Lag(t,x) := f(t,z) is an X,_1 valued function. As in [II [2]
we also assume Greiner’s assumption introduced by Greiner [8], which is stated in
Section 4| Under Greiner’s assumption on L, the operator L) := (L|kcr(>\,Am))_1,
called the Drichilet map of A,,, is a bounded linear map from X to X, where
X4—1 is a larger Banach space than X. The extrapolation theory was introduced
by Da Prato, Grisvard [3] and Nagel [7] and is used for various purposes. One can
see Section [2| for the mentioned notion (cf. [7, 1] for more details).

These days people have increasing interest in showing almost automorphy of the
solutions of the functional differential equations see for e.g. [II 2, [, [ @] 10 [13].
We refer [9], for the more details on the topic.

Our results generalize the existing ones in [I], in the sense that the function A is
assumed to be Stepanov-like almost automorphic functions.

2. PRELIMINARIES

In this section, we begin with fixing some notation and recalling the definitions
and basic results on generators of interpolation and extrapolation spaces. Let X
be a complex Banach space and (A, D(A)) be a sectorial operator on X; that is,
there exist the constants w € R, ¢ € (§,7) and M > 0 such that

M
RN A— <———, VAEX,4,
1RO A= )lec) < (7o y

where ¥, 5 ;= {A € C: A #w, |arg(A —w)| < ¢} C p(A4).

The real interpolation space X, for a € (0,1), is a Banach space endowedwith the
norm,

|z]|q := sup |A*(A — w)R(A, A — w)x||. (2.1)
A>0

Here we denote by, Xy := X, X; := D(A), ||z|lo = ||lz|, and |jz]1 = [[(A —w)z|.
The extrapolation space X_1 associated with A, is defined to be the completion of

(X, || ||=1), where X := D(A), endowed with the norm || - |_; given by
lzll-1 = [[(w - A)~"a2ll, zeX.
=llla—
In a similar fashion, we can define the space X471 = (X_1)q = X , with
|z]|a—1 = supysg [A*R(A, A_1 —w)z||. The restriction Aq_1 : Xo — Xo—1 of A_4
generates the analytic semigroup (Th—1(t))i>0 on Xo—1 which is the extension of
T(t) to Xo—1. Observe that w — A,—1 : Xy — X,—1 is an isometric isomorphism.
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We have the following continuous embedding of the spaces, which will be fre-
quently used here.

D(A) — Xg— D((w— A)Y) — Xy — X,
X — Xﬁ—l — D((w — A_l)a) — Xoc—l — X_l,

forall 0 < a< (g <1.
Now we state certain propositions for the proofs of which one can see [2].

Proposition 2.1. Assume that 0 < a < 1 and 0 < g < 1. Then the following
assertions hold for 0 < t < tg, to > 0 and € > 0 such that 0 < a — € < 1 with
constants possibly depending on tg.
(i) The operator T(t) has continuous extensions To_1(t) : Xo—1 — X satisfy-
mg

a1 (Ol ey < et (22)
(ii) For z € Xo—1 we have

ITamr()lls < et a1 (2.3)

Remark 2.2. We can remove € in Proposition by extending T'(t) to operators
from D(w — A_1)°* to X, with norms bounded by t*~1*¢ where 0 < a £ ¢ < 1,
and therefore by employing the reiteration theorem and the interpolation property,
the inequality in the assertion (i) can be obtained without €. For a more general
situation see [12].

Definition 2.3. An analytic semigroup (7'(¢)):>0 is said to be hyperbolic if it
satisfies the following three conditions.
(i) there exist two subspaces X (the stable space) and X, (the unstable space)
of X such that X = X, & X,;
(ii) T'(¢) is defined on X, T'(t)X, C Xy, and T(t) X, C X for all £ > 0;
(iii) there exist constants M, > 0 such that

T Ps|| < Me™, t >0, |T(t)P,| <Me, t <0, (2.4)
where P and P, are the projections onto X, and X, respectively.

Recall that an analytic semigroup (7'(t))¢>0 is hyperbolic if and only if o(A) N
iR = ¢, (cf. [0, Prop. 1.15]). In the next proposition, we show the hyperbolicity
of the extrapolated semigroup (Tn—_1(t))¢>0. Before stating the proposition, we
assume that the part of A, A|p, : P,(X) — P,(X) is bounded, which implies

[AP.| < C,
where C' is some constant.

Proposition 2.4. Let T(+) be hyperbolic and 0 < « < 1. Then the operators Py and
P, admit continuous extensions Py o1 : Xo—1 — X and Ps o1 : Xo—1 — Xa1
respectively. Moreover we have the following assertions.
(1> Pu,ocleafl = P.X;
(11) Ta—l(t)Ps,a—l = Ps,a—lTa—l(t);
(ill) Ta-1(t) : Pua—1(Xaz1) = Pua-1(Xa—1) is an invertible function with
inverse To_1(—t);
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(iv) for 0 < a — € < 1, we have
| To1(t)Psar|| < mt* = fe " ||2||goy  forz € Xoq and t >0, (2.5)
(T 1(t)Pya1z| < Ce®||x||a_1 forx € Xo 1 andt <0, (2.6)
Proposition 2.5. Forz € X, 1 and 0 < <1, 0 < «a <1, we have the following
assertions.

(i) there is a constant c(a, 3), such that

1T () Praa13lls < el ) allar fort <0, (2.7)
(ii) there is a constant m(«, 3), such that for t >0 and 0 < o — € < 1.

T s () Pasa12lls < (e, B)e 453~ ]y, (23)

Definition 2.6. A continuous function f : R — X, is called almost automorphic,
if for every sequence (o, )nen of real numbers, there is a subsequence (s, )nen C
(0n)nen such that

lm f(t+ sn — sm) = f(t), foreachteR.

n,m— o0

This is equivalent to

g(t) = lim f(t+s,), and f(t)= lim g(t—s,),

n—oo

are well defined for each ¢ € R. The function ¢ in the above definition measurable
but not necessarily continuous.

Remark 2.7. An almost automorphic function is continuous but may not be uni-
formly continuous, for e.g. let p(t) = 2 + cos(t) + cos(v/2t) and f : R — R defined
as f := sin(1/p), then f € AA(X), but f is not uniformly continuous on R, so

f ¢ AP(X).
Lemma 2.8. We have the following properties of almost automorphic functions:

(a) For f € AA(X), the range Ry := {f(t) : t € R} is precompact in X, so
that f is bounded.

(b) For f,g € AA(X) then [+ g € AA(X).

(c) Assume that f, € AA(X) and f, — g uniformly on R, then g € AA(X).

(d) AA(X), equipped with the sup norm given by

If1I = sup [|f(£)]], (2.9)
teR

turns out to be a Banach space.
2.1. SP-Almost automorphy.

Definition 2.9. [I4] The Bochner transform f°(t,s), t € R, s € [0, 1] of a function
f:R — X is defined by f(t,s) := f(t + s).

Definition 2.10. The Bochner transform f°(¢,s,u), t € R, s € [0,1], u € X of a
function f(t,u) on R x X, with values in X, is defined by

fo(t s, u) = f(t+s,u)
for each x € X.
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Definition 2.11. For p € (1,00), the space BSP(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f : R — X
such that f* belongs to L*°(R; LP((0,1), X)). This is a Banach space with the
norm

t+1 1/p
I£lse = 18 man =sup ([ Isoipar) (2.10)
teR t

Definition 2.12. [I3] The space ASP(X) of Stepanov almost automorphic func-
tions (or SP-almost automorphic) consists of all f € BSP(X) such that f° €
AA(LP(0,1; X)). That is, a function f € L} (R, X) is said to be SP-almost auto-
morphic if its Bochner transform f? : R — LP(0,1; X) is almost automorphic in the
sense that, for every sequence (s}, )nen of real numbers, there exists a subsequence

(Sn)nen and a function g € LP (R, X) such that

loc

|/ T on +9) - (o) 1Pas]) " =0,

[/tt+1 Hg(s _ sn) — f(s)”pds} 1/p o0,

as n — oo pointwise on R.

Remark 2.13. ASP(X,_1) is the extrapolated space of ASP(X,) equipped with
norm || - [[g»_ , given by

t+1 1/p
95y, =swp ([ 1r@lar)
teR i

Remark 2.14. It is clear that if 1 <p < ¢ < oo and f € L] (R; X) is S%-almost

automorphic, then f is SP-almost automorphic. Also if f € AA(X), then f is
SP-almost automorphic for any 1 < p < oco.

Let (Y, || - ||y) be an abstract Banach space.

Definition 2.15. A function F : R x Y — X, (t,u) — F(t,u) with F(-,u) €
LY (R; X) for each u € Y, is said to be SP-almost automorphic in ¢ € R uniformly
inueYift— F(tu) is SP-almost automorphic for each u € Y, that is for
every sequence of real numbers (s),)nen, there exists a subsequence (s, )nen and a

function G(-,u) € LI (R, X) such that following statements hold

loc
1/p

[/:H |F(sn +s) — G(s)des} — 0,

1/p

t+1
[ 166 s - Fepas] o
t
as n — oo pointwise on R for each u € Y.

The collection of all SP-almost automorphic functions from f: R x Y — X will
be denoted by ASP(R x Y). Now we have the following composition theorem due
to Diagana [6].

Theorem 2.16. [6] Assume that ¢ € ASP(Y) such that K := {¢(t):t e R} C Y
is a relatively compact subset of X. Let F € ASP(R xY) and let the function
(t,u) — F(t,u) be Lipschitz continuous that is there exists a constant L > 0 such
that

|F(t,w) — F(t, )] < Llju —olly,
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for allt € R, (u,v) € Y XY. Then the function T : R — X defined by T'(:) :=
F(-,¢(-)) belongs to ASP(X).

3. MAIN RESULTS

In this section we discuss the existence and uniqueness of almost automorphic
solutions of the following semilinear evolution equation,

2 (t) = Ag_12(t) + f(t,2(t), teR, (3.1)
with the following assumptions;

(A1) A is the sectorial operator and the generator of a hyperbolic analytic semi-
group (T'(t))eo-

(A2) f: R x Xg — Xqo_1, is Stepanov-like almost automorphic in ¢, for each
X € Xg.

(A3) f is uniformly Lipschitz with respect to the second argument, that is

1f & 2) = f& ) lla—1 < Ellz —ylls, (32)
for all t € R, z,y € X3, and some constant k£ > 0.

Definition 3.1. A continuous function x : R — Xjg, is said to be a mild solution
of (3.1)), if it satisfies following variation of constants formula

t

x(t) =Tt — s)z(s) + / To-1(t—0)f(o,2(0))do (3.3)
forallt > s, t,s € R.
Definition 3.2. A function v : R — Xg, is said to be a bounded solution of (3.1)
provided that

t e}
ut) = [ Taalt= )P ulo)do = [ Tas(t = ) Puacs flo,u(o))do,
t

B (3.4)
teR.

Throughout the rest of this paper, we assume Hu(t) := Hyu(t) + Hau(t), where

Hyu(t) = / To-1(t —0)Ps o—1f(0,u(0))do,

— 00

Hou(t) := / To-1(t —0)Pya-1f(0o,u(o))do,
¢
for all t € R.
Lemma 3.3. Assume that assumptions (A1)—(A3) are satisfied. If

n

M(a,B,q,7) =Y [/ o799 = a(BH1+E—0) g s

n—1

}Uq < 0, (3.5)

n=1

then the operator H maps AA(Xg) — AA(Xg).

Proof. Let u be in AA(Xg). Then u € ASP(X3) and by Lemma the set
{u(t) : t € R} is compact in Xg. Since f is Lipschitz, then it follows from The-
orem [2.16] (also see [5, Theorem 2.21]) that the function ¢(t) := f(t,u(t)) belongs
to ASP(Xg). Now we show that Hu € AA(Xp).
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For that we first define a sequence of integral operators {¢,} as follows

On(t) = / To-1(t —0)Ps.a—19(c)do, t€R and n=1,2,3... (3.6)
n—1
Putting r =t — o,
t—n+1
On(t) = / To—1(r)Ps,0—19(t — r)dr. (3.7)
t—n
Let 0< €+ 08 < a,0< a—¢é<1 and using Proposition [2.5| we have
t—n+1 ~
foalls < [ mla Bttt gl - )l dr
t—n

now, r — (t —r),

< / ma, B)(t — ) e g (1) | go dr,
n—1

n
< / mla, B0 P1=5=7||g|lg» do,
n—1 o

Sq(a,ﬂ)[/n

n—1

By Weierstrass theorem and (3.5)), it follows that the series

O(t) =Y énlt)

- 1/q
e*'yqoaq(a*ﬁ*kddg] ||g||sg

_1.

is uniformly convergent on R. Moreover & € C(R, X3);

(3.8)

a—1"

1@(t)lls <Y llen(®)lls < ala, BYM(, B, 0,7)]| ]2
n=1

We show that for all n = 1,2,3, ¢, € AA(Xpg). Since g € ASP(X,_1), which
implies that for every sequence (s}, )nen of real numbers, there exist a subsequence
($n)nen and a function ¢’ such that

t+1
/ lg(e + sn) = g'(0)|le—1do — 0. (3.9)
t
Let us define another sequence of integral operators
n
On(t) = / To-1(t —0)Pso-1¢'(c)do forn=1,2,3,.... (3.10)
n—1

Now we show for n = 1,2,3,... that ¢, € AA(Xg). Since g € ASP(X,_1), for
every sequence (s, )nen of real numbers, there exists a subsequence (s, )nen and a
function ¢’ such that

t+1
/ lg(o + sn) — ¢'(0)la—1do — 0. (3.11)
t
Define for all n = 1,2,3,... another sequence of integral operators
n
on(t) = / To-1(t — 0)Ps a-19'(c)do, (3.12)
n—1

for all ¢t € R. Consider
Gn(t + sn,,) — bn(t)
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n

= / To—1(t + sp, —0)Ps,a—19(0)do — / To-1(t — 0)Ps a-14'(0)do,
n—1

n—1
n

= / Ta—l(t - U)Re,a—lg(g + Snk)dg - / Ta—l(t - U)Ps,a—lg/(g)dga
n—1

n—1

= /" To-1(t —0)Psa-1[g(oc + sn,) — ¢'(0)]do.

-1
Using Proposition we have

[ Pn(t + sny,) — Pn(t)lls

< [ mlape =0y e D g(o ts,,) < g0y, do
n—1

—0, ask—oo, teR, (sincege ASP(Xn-1)).

This implies that q?);(t) = limg oo Gn(t +8n,), n=1,2,3,... and t € R.
In a similar way, one can show that ¢, (t) = limg_.oc ¢n(t—sp, ), for all ¢ € R and
n=1,2,3,.... Therefore for each n =1,2,3, ..., the sequence ¢, € AA(X3). O

Now we state the main result of this Section.

Theorem 3.4. Let 0 < < a, € >0 suchthat0 < a—€é<1land 0 < [+ €< a,
moreover assume that the constant

K :=km(a, BT (a - B — &) +cla,p)d < 1

and equation (3.5)) hold. Then under assumptions (A1)—(A3) and for f € ASP(R x
X3, Xo-1), equation (3.1) has unique almost automorphic solution uw € AA(Xg),
satisfying the following variation of constants formula.

’U,(t) = / Ta—l(t - U)Ps,a—lf(07 U(U))dd - Zm Ta—l(t - U)Pu,a—lf(g7 U(U))dga

— 00

teR.

Proof. We first show that H is a contraction. Let v,w € AA(X3) and consider the
following

[Hyo(t) — Hiw(t)]|s

< / m(a, B)(t — )" P71 E eI £ (s, 0(s)) — f(5,0(8)) lamrds

— 00

g[ km(a, B)(t — 5)2 P18 ||y (s) — w(s)||pds

< km(a, BT T (o — B — &)|lv — w4,

where I'(a) := [ t* 'e~'dt. Similarly we have

[Hzo(®) ~ Hawlt)ls < [ o g)e™ " o(s) = w(s) ads
t
< cla, 95 o~ wlls.
Consequently,
[7¢0(®) = Hoft)s < (bl By~ T a = 5 + el )3 o = w]s

<o =wls-
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Hence by the well-known Banach contraction principle, H has unique fixed point u
in AA(X3) satistying Hu = u (cf. Lemma for almost automorphy of solution).

O
4. SEMILINEAR BOUNDARY DIFFERENTIAL EQUATIONS
Consider the semilinear boundary differential equation
' (t) = Apx(t) + h(t,z(t)), teR,
() = Ana(®) + hit,a(t) )

Lz(t) = ¢(t,z(t)), teR,

where (A,,, D(A,,)) is a densely defined linear operator on a Banach space X and
L: D(A,;,) — 0X, the boundary Banach space and the functions h : Rx X,,, — 90X
and ¢ : R x X,,, — dX are continuous.
Likewise [I} 2] here we assume the assumptions introduced by Greiner [§] which
are given as follows
(H1) There exists a new norm |- | which makes the domain D(A,,) complete and
then denoted by X,,. The space X,, is continuously embedded in X and
Ap € L( X, X).
(H2) The restriction operator A := A, |rer(r) is a sectorial operator such that
o(A)NiR = ¢.
H3) The operator L : X,,, — 0X is bounded and surjective.
H4) X,, — X, for some 0 < o < 1.
H5) h:Rx X3 — X and ¢ : R x Xg — 0X are continuous for 0 < § < a.

A function z : R — Xg is a mild solution of if we have the following
(i) fst x(r)dr € X,
(i) @(t) — x(s) = Ay, [ a(r)dr + [ h(1,2(7))dT,
(iii) Lf; x(7)dr = fst (7, z(7))dr,
forallt > s, t,s € R.
Now we transform (|1.1)) to the equivalent semilinear evolution equation
z'(t) = Ag—12(t) + h(t,z(t)) — Aa—1Loo(t,2(t)), tER, (4.2)
where Lg := (L|Ker(A,)) L.

(
(
(

Theorem 4.1. Assume that functions ¢ € ASP(R x Xg,0X) and h € ASP(R x
X3, X), are globally Lipschitzian with small lipschitz constants. Then under the
assumptions (H1)-(H5), the semilinear boundary differential equation has a
unique mild solution ©x € AA(Xg), satisfying the following formula for all t € R.

z(t) = / T(t — s)Psh(s,x(s))ds — /too T(t — s)Pyh(s,z(s))ds

— 00

N A[/_too T(t — 8)PsLod(s, (s))ds — /too T(t — s)PuLod(s, x(s))ds] .
(4.3)

Proof. Tt is clear that A,_1Lg is a bounded operator from 0X — X, ;. Since
¢ € ASP(Rx X3,0X) and h € ASP(Rx X, X) and from the injection X — X,_1,
the function f(t,z) := h(t,x) — Ag—1Lop(t,x) € ASP(Rx Xg, Xo—1). This function
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is also globally Lipschitzian with a small constant. Hence by Theorem [3.4] there is
a unique mild solution z € AA(Xj3) of (4.2)), satisfying

2(t) = / Py 1To_1(t — 5)f(s,2(s))ds — /t h Pyo-1To-1(t —5)f(s,2(s))ds,

—00

from which we deduce the variation of constants formula (4.3) and = € AA(X3) is
the unique mild solution. (Il

Example 4.2. Consider the partial differential equation

—u(t,z) = Au(t,z) + au(t,z), teR, z€Q

%t (4.4)
%u(t, z) =T, m(z)u(t,z)), teR, zed.

Where a € R, and m is a C* function and  C R" is a bounded open subset of
R™ with smooth boundary 092. Here we use the following notation/conventions:
X = L*(Q), X,, = H?(Q) and the boundary space X = H'/?(99Q). The operators
Ap X — X, given by Ao = Ap +a¢ and L : X,,, — 90X, given by Ly := g—i.
The operator L is bounded and surjective, follows from Sections [15], 4.3.3, 4.6.1].
It is also known that the operator A := A,,|ker 1 generates an analytic semigroup,
moreover we also have X,,, — X, for o < 3/4 (cf. [15, Sections 4.3.3, 4.6.1]). The
eigenvalues of Neumann Laplacian A is a decreasing sequence (\,) with A\g = 0,
A1 < 0, taking @ = —)\1 /2, we have o(A) NiR = ¢. Hence the analytic semigroup
generated by A is hyperbolic.

_ kb(t)

1+ |m(z)e(z)]’
where b(t) is SP Stepanov-like almost automorphic function and b(-) has relatively
compact range. It can be easily seen that ¢ is continuous on R x H 2ﬁ'(Q) for some
1 < B < B <2, which is embedded in R x Xg (cf. [I5]). Using the definitions
of fractional Sobolev spaces, one can easily show that ¢(t,¢)(.) € H'/2(0Q) for all
p € H?0 H'(Q2). Moreover ¢ is globally Lipschitzian for each ¢ € X3. Now
for a small constant k, all assumptions of Theorem are satisfied. Hence (4.4))
admits a unique almost automorphic mild solution u with values in Xg.

ot ¢)(@) = T(t, m(z)p(x)) tER, z € o0
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