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NODAL SOLUTIONS FOR SIXTH-ORDER M-POINT
BOUNDARY-VALUE PROBLEMS USING

BIFURCATION METHODS

YUDE JI, YANPING GUO, YUKUN YAO, YINGJIE FENG

Abstract. We consider the sixth-order m-point boundary-value problem

u(6)(t) = f
`
u(t), u′′(t), u(4)(t)

´
, t ∈ (0, 1),

u(0) = 0, u(1) =

m−2X
i=1

aiu(ηi),

u′′(0) = 0, u′′(1) =

m−2X
i=1

aiu
′′(ηi),

u(4)(0) = 0, u(4)(1) =

m−2X
i=1

aiu
(4)(ηi),

where f : R × R × R → R is a sign-changing continuous function, m ≥ 3,

ηi ∈ (0, 1), and ai > 0 for i = 1, 2, . . . , m − 2 with
Pm−2

i=1 ai < 1. We first
show that the spectral properties of the linearisation of this problem are simi-
lar to the well-known properties of the standard Sturm-Liouville problem with
separated boundary conditions. These spectral properties are then used to
prove a Rabinowitz-type global bifurcation theorem for a bifurcation problem
related to the above problem. Finally, we obtain the existence of nodal solu-
tions for the problem, under various conditions on the asymptotic behaviour
of nonlinearity f by using the global bifurcation theorem.

1. Introduction

Multi-point boundary value problems for ordinary differential equations arise
in different areas of applied mathematics and physics. The existence of solutions
for second order and high order multi-point boundary value problems has been
studied by many authors and the methods used are the nonlinear alternative of
Leray-Schauder, coincidence degree theory, fixed point theorems in cones and global
bifurcation techniques; see [2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15] and the references
therein.
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We consider the sixth order m-point boundary value problem (BVP, for short)

u(6)(t) = f
(
u(t), u′′(t), u(4)(t)

)
, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi),

u′′(0) = 0, u′′(1) =
m−2∑
i=1

aiu
′′(ηi),

u(4)(0) = 0, u(4)(1) =
m−2∑
i=1

aiu
(4)(ηi),

(1.1)

where f : R×R×R → R is a sign-changing continuous function, m ≥ 3, ηi ∈ (0, 1),
and ai > 0 for i = 1, 2, . . . ,m− 2 with

m−2∑
i=1

ai < 1. (1.2)

Ma and O’Regan [11] investigated the existence of nodal solutions of m-point
boundary value problem

u′′(t) + f(u) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi).
(1.3)

where ηi ∈ Q(i = 1, 2, . . . ,m− 2) with 0 < η1 < η2 < · · · < ηm−2 < 1, and αi ∈ R
(i = 1, 2, . . . ,m− 2) with ai > 0 and

∑m−2
i=1 ai ≤ 1. They obtained some results on

the spectrum of the linear operator corresponding to (1.3) and gave conditions on
the ratio f(s)/s at infinity and zero that guarantee the existence of nodal solutions.
The proofs of main results are based on bifurcation techniques.

Recently, An and Ma [1] extended this result, they considered the nonlinear
eigenvalue problems

u′′(t) + rf(u) = 0, 0 < t < 1,

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi).
(1.4)

under the following conditions:
(A0) ai > 0 for i = 1, 2, . . . ,m− 2 with 0 <

∑m−2
i=1 ai < 1, r ∈ R;

(A1) f ∈ C1(R, R) and there exist two constants s2 < 0 < s1 such that f(s1) =
f(s2) = f(0) = 0;

(A2) There exist f0, f∞ ∈ (0,∞) such that

f0 := lim
|u|→0

f(u)
u

, f∞ := lim
|u|→∞

f(u)
u

.

Using Rabinowitz global bifurcation theorem, An and Ma established the following
theorem.

Theorem 1.1. Let (A0), (A1), (A2) hold. Assume that for some k ∈ N,

λk

f∞
<

λk

f0

(
resp.,

λk

f0
<

λk

f∞

)
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Then
(i) if r ∈ ( λk

f∞
, λk

f0
] (resp., r ∈ (λk

f0
, λk

f∞
]) then (1.4) has at least two solutions

u±k,∞ (resp.,u±k,0), such that u+
k,∞ ∈ T+

k and u−k,∞ ∈ T−k (resp., u+
k,0 ∈ T+

k

and u−k,0 ∈ T−k ),
(ii) if r ∈ (λk

f0
,∞) (resp., r ∈ ( λk

f∞
,∞)) then (1.4) has at least four solutions

u±k,∞ and u±k,0, such that u+
k,∞, u+

k,0 ∈ T+
k , and u−k,∞, u−k,0 ∈ T−k .

Where λk is the kth eigenvalue of

u′′(t) + λu(t) = 0, 0 < t < 1, u(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi).

Remark 1.2. Comparing results in [11] and the above theorem, we see that as f
has two zeros s1, s2 : s2 < 0 < s1, the bifurcation structure of the nodal solutions of
(1.4) becomes more complicated: the component of the solutions of (1.4) from the
trivial solution at (λk

f0
, 0) and the component of the solutions of (1.4) from infinity

at ( λk

f∞
,∞) are disjoint; two new nodal solutions are born when r > max{λk

f0
, λk

f∞
}.

Liu and O’Regan [8] studied the existence and multiplicity of nodal solutions for
fourth order m-point BVPs:

u(4)(t) = f(u(t), u′′(t)), t ∈ (0, 1),

u′(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi),

u′′′(0) = 0, u′′(1) =
m−2∑
i=1

aiu
′′(ηi),

where f : R×R → R is a given sign-changing continuous function, m ≥ 3, ηi ∈ (0, 1),
and ai > 0 for i = 1, 2, . . . ,m − 2 satisfies (1.2). The main tool be used is global
results on bifurcation from infinity, while in [16] is results on bifurcation coming
from the trivial solutions.

Motivated by [1, 8, 16], in this paper we consider the existence of nodal solu-
tions (that is, sign-changing solutions with a specified number of zeros) of BVP
(1.1). To the best of our best knowledge, only [8, 17] seems to have considered the
existence of nontrivial or positive solutions of the nonlinear multi-point BVPs for
fourth order differential equations. Of course an interesting question is, as for sixth
order m-point BVPs, whether we can obtain some new results which are similar
to [1, 8]. Using the global bifurcation techniques, we study the global behavior
of the components of nodal solutions of BVP (1.1) and give a positive answer to
the above question. However, when m-point boundary value condition of (1.1) is
concerned, the discussion is more difficult since the problem is nonsymmetric and
the corresponding operator is disconjugate. Although the paper [3] has also ob-
tained sign-changing solutions of (1.1), but no information is obtained regarding
the number of zeros of the solution, and the method of proof is entirely different
(relying on degree theory in cones).

The article is organized as follows. Section 2 gives some preliminaries. The
results we obtain are similar to the standard spectral theory of the linear, separated
Sturm-Liouville problem, with a slight difference in the nodal counting method
used, to deal with the multi-point boundary conditions. We also show that the
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standard counting method is inadequate in this situation, and that the condition
(1.2) is optimal for the results in Section 2 to hold. This section deals entirely with
the linear eigenvalue problem. In Section 3 we first consider a bifurcation problem
related to (1.1), and prove a Rabinowitz-type global bifurcation theorem for this
problem. The proof uses the spectral properties of the linearisation obtained in
Section 2. Finally, we use the global bifurcation theorem to obtain nodal solutions
of (1.1), under various hypotheses on the asymptotic behaviour of f . Specifically,
we consider the cases where f is asymptotically linear.

To conclude this section we give some notation and state four lemmas, which
will be used in Section 3. Following the notation of Rabinowitz, let F : R×E → E
where E is real Banach spaces and F is continuous. Suppose the equation F (U) = 0
possesses a simple curve of solutions C given by {U(t)|t ∈ [a, b]}. If for some
τ ∈ (a, b), F possesses zeroes not lying on C in every neighborhood of U(τ), then
U(τ) is said to be a bifurcation point for F with respect to the curve C .

A special family of such equations has the form

u = G(λ, u). (1.5)

where λ ∈ R, u ∈ E, a real Banach space with norm ‖ · ‖ and G : R × E → E is
compact and continuous. Equations of the form (1.5) are usually called nonlinear
eigenvalue problems and arise in many contexts in mathematical physics. It is
therefore of interest to investigate the structure of the set of their solutions.

Bifurcation phenomena occur in many parts of physics and have been intensively
studied. It is often the case in applications that F (λ, u) = u − (λLu + H(λ, u))
where L : E → E is a compact linear operator and H : R×E → E is compact(i.e.,
continuous and maps bounded sets into relatively compact sets) with H(λ, u) =
o(‖u‖) at u = 0 uniformly on bounded λ intervals. The zeros R = {(λ, 0) : λ ∈ R}
of F are then called the line of trivial solutions of

u = λLu + H(λ, u). (1.6)

If there exists µ ∈ R and 0 6= v ∈ E such that v = µLv, µ is said to be a real
characteristic value of L. The set of real characteristic values of L will be denoted
by r(L). The multiplicity of µ ∈ r(L) is

dim∪∞j=1N((I − µL)j),

where I is the identity map on E and N(A) denotes the null space of A. It is well
known that if µ ∈ R, a necessary condition for (µ, 0) to be a bifurcation point of
(1.6) with respect to R is that µ ∈ r(L). If µ is a simple characteristic value of L,
let v denote the eigenvector of L corresponding to µ normalized so ‖v‖ = 1. By S
we denote the closure of the set of nontrivial solutions of (1.6). A component of
S is a maximal closed connected subset. The following are global results for (1.6)
on bifurcation from the trivial solutions (see, Rabinowitz [18, Theorems 1.3, 1.25,
1.27]).

Lemma 1.3. If µ ∈ r(L) is of odd multiplicity, then S contains a component Cµ

which can be decomposed into two subcontinua C +
µ ,C−

µ such that each of C +
µ ,C−

µ

either
(i) meets infinity in S , or
(ii) meets (µ̂, 0) where µ 6= µ̂ ∈ σ(L), or
(iii) contains a pair of points (λ, u), (λ,−u), u 6= 0.
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Lemma 1.4. If µ ∈ r(L) is simple, then S contains a component Cµ which can
be decomposed into two subcontinua C +

µ ,C−
µ such that for some neighborhood N

of (µ, 0),
(λ, u) ∈ C +

µ (C−
µ ) ∩N , (λ, u) 6= (µ, 0)

implies (λ, u) = (λ, αv + w) where α > 0(α < 0) and |λ − µ| = o(1), ‖w‖ = o(|α|)
at α = 0.

Remark 1.5. We say a continuum C of S meets infinity if C is not bounded.

Remark 1.6. Lemmas 1.3 is the first important result on the existence of a sub-
continuum of solutions for nonlinear equations by degree theoretic method. When
using Lemmas 1.3 to study multiplicity of nodal solutions one needs to first study
the spectrum structure of the linear operator L corresponding to the nonlinear
eigenvalue problem. Fortunately, the spectrum structure of linear operators cor-
responding to most known nonlinear boundary value problems have been studied
systematically. However, for the case of multi-point boundary value problems, a
complete study of the spectrum structure is not available yet.

Rabinowitz showed in [19, Theorems 1.6, Corollary 1.8] that analogues of Lem-
mas 1.3 and 1.4 when one is dealing with ∞ rather than 0. Let L be as above
and K : R× E → E be continuous with K(λ, u) = o(‖u‖) at u = ∞ uniformly on
bounded λ intervals. Consider the equation

u = λLu + K(λ, u) (1.7)

Let T denote the closure of the set of nontrivial solutions of (1.7). The following
are global results for (1.7) on bifurcation from infinity.

Lemma 1.7. Suppose L is compact and linear, K(λ, u) is continuous on R × E,
K(λ, u) = o(‖u‖) at u = ∞ uniformly on bounded λ intervals, and ‖u‖2K(λ, u

‖u‖2 )
is compact. If µ ∈ r(L) is of odd multiplicity, then T possesses an unbounded
component Dµ which meets (µ,∞). Moreover if Λ ⊂ R is an interval such that
Λ ∩ r(L) = {µ} and M is a neighborhood of (µ,∞) whose projection on R lies in
Λ and whose projection on E is bounded away from 0, then either

(i) Dµ\M is bounded in R×E in which case Dµ\M meets R = {(λ, 0)|λ ∈ R}
or

(ii) Dµ\M is unbounded.
If (ii) occurs and Dµ\M has a bounded projection on R, then Dµ\M meets (µ̂,∞)
where µ 6= µ̂ ∈ σ(L).

Remark 1.8. A continuum Dµ ⊂ T of solution of (1.7) meets (λk,∞) which
means that there exists a sequence {(λn, un)} ⊂ Dµ such that ‖un‖ → ∞ and
λn → λk.

Lemma 1.9. Suppose the assumptions of Lemma 1.7 hold. If µ ∈ r(L) is simple,
then Dµ can be decomposed into two subcontinua D+

µ ,D−
µ and there exists a neigh-

borhood O ⊂ M of (µ,∞) such that (λ, u) ∈ D+
µ (D−

µ ) ∩ O and (λ, u) 6= (µ,∞)
implies (λ, u) = (λ, αv + w) where α > 0(α < 0) and |λ − µ| = o(1), ‖w‖ = o(|α|)
at α = ∞.

Remark 1.10. We say (µ,∞) is a bifurcation point for (1.7) if every neighborhood
of (µ,∞) contains solutions of (1.7); i.e., there exists a sequence (λn, un) of solutions
of (1.7) such that λn → µ and ‖un‖ → ∞.
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2. Preliminaries

Let X = C[0, 1] with the norm ‖u‖ = maxt∈[0,1] |u(t)|. Let

Y = {u ∈ C1[0, 1]|u(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi)},

Z = {u ∈ C2[0, 1]|u(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi)}

with the norm

‖u‖1 = max{‖u‖, ‖u′‖}, ‖u‖2 = max{‖u‖, ‖u′‖, ‖u′′‖},
respectively. Then X, Y and Z are Banach spaces.

For any C1 function u, if u(t0) = 0, then t0 is a simple zero of u if u′(t0) 6= 0.
For any integer k ∈ N and any ν ∈ {±}, as in [20], define sets Sν

k , T ν
k subsets of

C2[0, 1] consisting of of functions u ∈ C2[0, 1] satisfying the following conditions:
Sν

k : (i) u(0) = 0, νu′(0) > 0; (ii) u has only simple zeros in [0, 1] and has exactly
k − 1 zeros in (0, 1);

T ν
k : (i) u(0) = 0, νu′(0) > 0, and u′(1) 6= 0; (ii) u′ has only simple zeros in

(0, 1) and has exactly k zeros in (0, 1); (iii) u has a zero strictly between each two
consecutive zeros of u′.

Remark 2.1. (i) If u ∈ T ν
k , then u has exactly one zero between each two consec-

utive zeros of u′, and all zeros of u are simple. Thus, u has at least k − 1 zeros in
(0, 1), and at most k zeros in (0, 1]; i.e., u ∈ Sν

k or u ∈ Sν
k+1.

(ii) The sets T ν
k are open in Z and disjoint.

(iii) Note T−k = −T+
k and let Tk = T−k ∪ T+

k . It is easy to see that the sets T+
k

and T−k are disjoint and open in Z.

Remark 2.2. One could regard the sets Sν
k as counting zeros of u, while the sets

T ν
k count ’bumps’. The nodal properties of solutions of nonlinear Sturm-Liouville

problems with separated boundary conditions are usually described in terms of sets
similar to Sν

k (with an additional condition at x = 1 to incorporate the boundary
condition there); see [1, 3, 5, 9, 14]. However, Rynne [20] stated that T ν

k are in
fact more appropriate than Sν

k when the multi-point boundary condition (1.1) is
considered.

Let E = R × Y under the product topology. As in [19], we add the points
{(λ,∞)|λ ∈ R} to the space E. Let Φ+

k = R×T+
k ,Φ−k = R×T−k , and Φk = R×Tk.

We first convert (1.1) into another form. Notice that

u′′(t) + v(t) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi).

Thus u(t) can be written as

u(t) = Lv(t), (2.1)

where the operator L is defined by

Lv(t) =
∫ 1

0

G(t, s)v(s) ds,∀v ∈ Y, (2.2)
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where

G(t, s) = g(t, s) +
t

1−
∑m−2

i=1 aiηi

m−2∑
i=1

aig(ηi, s), (2.3)

g(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.
(2.4)

Let v(t) = −u(4)(t). Then we obtain the following equivalent form of (1.1)

v′′(t) + f((−L2v)(t), (Lv)(t),−v(t)) = 0, t ∈ (0, 1),

v(0) = 0, v(1) =
m−2∑
i=1

aiv(ηi).
(2.5)

For the rest of this paper we assume that the initial value problem

v′′(t) + f((−L2v)(t), (Lv)(t),−v(t)) = 0, t ∈ (0, 1),

v(t0) = 0, v′(t0) = 0,
(2.6)

has the unique trivial solution v ≡ 0 on [0, 1] for any t0 ∈ [0, 1]; in fact some suitable
conditions such as a Lipschitz assumption or f ∈ C1 guarantee this.

Define two operators on Y by

(Av)(t) := (LFv)(t), (2.7)

(Fv)(t) := f((−L2v)(t), (Lv)(t),−v(t)), t ∈ [0, 1], v ∈ Y. (2.8)

Then it is easy to see the following lemma holds.

Lemma 2.3. The linear operator L and operator A are both completely continuous
from Y to Y and

‖Lv‖1 ≤ M‖v‖ ≤ M‖v‖1, ∀v ∈ Y,

where

M = max
{

1,
1
2

+
∑m−2

i=1 ai

6(1−
∑m−2

i=1 aiηi)

}
.

Moreover, u ∈ C6[0, 1] is a solution of (1.1) if and only if v = −u(4) is a solution
of the operator equation v = Av. In fact, if u is a solution of (1.1), then v = −u(4)

is a solution of the operator equation v = Av. Conversely, if v is a solution of the
operator equation v = Av, then u = −L2v is a solution of (1.1)

Let the function Γ(s) be defined by

Γ(s) = sin s−
m−2∑
i=1

ai sin ηis, s ∈ R+.

The following lemma can be found in [20].

Lemma 2.4. (i) For each k ≥ 1, Γ(s) has exactly one zero sk ∈ Ik := ((k −
1
2 )π, (k + 1

2 )π), so
s1 < s2 < · · · < sk →∞(k → +∞);

(ii) the characteristic value of L is exactly given by µk = s2
k, k = 1, 2, . . . , and

the eigenfunction φk corresponding to µk is φk(t) = sin skt;
(iii) the algebraic multiplicity of each characteristic value µk of L is 1;
(iv) φk ∈ T+

k for k = 1, 2, 3, . . . , and φ1 is strictly positive on (0, 1).
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Lemma 2.5. For d = (d1, d2, d3) ∈ R+ × R+ × R+\{(0, 0, 0)}, define a linear
operator

Ldv(t) = (d1L
3 + d2L

2 + d3L)v(t), ∀t ∈ [0, 1], v ∈ Y, (2.9)
where L is defined as in (2.2). Then the generalized eigenvalues of Ld are simple
and are given by

0 < λ1(Ld) < λ2(Ld) < · · · < λk(Ld) →∞ as k → +∞,

where

λk(Ld) =
µ3

k

d1 + d2µk + d3µ2
k

.

The generalized eigenfunction corresponding to λk(Ld)is

φk(t) = sin skt,

where µk, sk, φk are as in Lemma 2.4.

Proof. Suppose there exist λ and u 6= 0 such that u = λLdu. By (2.1)-(2.9), we
have

u(6)(t) = λ(−d1u(t) + d2u
′′(t)− d3u

(4)(t)), t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ηi),

u′′(0) = 0, u′′(1) =
m−2∑
i=1

aiu
′′(ηi),

u(4)(0) = 0, u(4)(1) =
m−2∑
i=1

aiu
(4)(ηi).

(2.10)

Denote D = d
dt , Then there exist three complex numbers r1, r2 and r3 such that

(D6 + λd1 − λd2D
2 + λd3D

4)u(t) = (D2 + r1)(D2 + r2)(D2 + r3)u(t)

By the properties of differential operators, if (2.10) has a nonzero solution, then
there exists ri(1 ≤ i ≤ 3) such that ri = µk = s2

k, k ∈ N. In this case, sin skt is a
nonzero solution of (2.10). On substituting this solution into (2.10), we have

−µ3
k = λ(−d1 − d2µk − d3µ

2
k).

Hence, {λk = µ3
k

d1+d2µk+d3µ2
k
, k = 1, 2, . . . } is the sequence of all eigenvalues of the

operator Ld. Then λ is one of the values λ1 < λ2 < · · · < λn < . . . , and the
eigenfunction corresponding to the eigenvalue λn is

un(t) = C sin snt,

where C is a nonzero constant. By the ordinary method, we can show that any
two eigenfunctions corresponding to the same eigenvalue λn are merely nonzero
constant multiples of each other. Consequently,

dim ker(I − λnLd) = 1.

Now we show that
ker(I − λnLd) = ker(I − λnLd)2. (2.11)

Obviously, we need to show only that

ker(I − λnLd)2 ⊂ ker(I − λnLd). (2.12)
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For any v ∈ ker(I − λnLd)2, (I − λnLd)v is an eigenfunction of the linear operator
Ld corresponding to the eigenvalue λn if (I−λnLd)v 6= θ. Then there exists nonzero
constant γ such that

(I − λnLd)v = γ sin snt, t ∈ [0, 1].

By direct computation, we have

v(6)(t) = λn(−d1v(t) + d2v
′′(t)− d3v

(4)(t))− γµ3
n sin snt,

v(0) = 0, v(1) =
m−2∑
i=1

aiv(ηi),

v′′(0) = 0, v′′(1) =
m−2∑
i=1

aiv
′′(ηi),

v(4)(0) = 0, v(4)(1) =
m−2∑
i=1

aiv
(4)(ηi).

(2.13)

The characteristic equation associated with (2.13) is

λ6 − µ3
n

d1 + d2µn + d3µ2
n

(−d1 + d2λ
2 − d3λ

4) = 0.

Case (i): If there exists two real number a > 0, b > 0 and a 6= b such that

(λ2 + µn)(λ2 − a)(λ2 − b)

= λ6 − µ3
n

d1 + d2µn + d3µ2
n

(−d1 + d2λ
2 − d3λ

4) = 0.

It is easy to see that the general solution of (2.13) is of the form

v(t) = C1e
√

at + C2e
−
√

at + C3e
√

bt + C4e
−
√

bt + C5 sin snt + C6 cos snt + Kt cos snt,

for t ∈ [0, 1], where C1, C2, C3, C4, C5, C6 are six nonzero constants, and

K =
γsn(d1 + d2µn + d3µ

2
n)

6d1 + 4d2µn + 2d3µ2
n

.

Applying the conditions v(0) = 0, v′′(0) = 0, v(4)(0) = 0, we obtain C1 + C2 =
0, C3 + C4 = 0, C6 = 0, Then

v(t) = C1(e
√

at − e−
√

at) + C3(e
√

bt − e−
√

bt) + C5 sin snt + Kt cos snt,

v′′(t) = C1a(e
√

at − e−
√

at) + C3b(e
√

bt − e−
√

bt)− C5s
2
n sin snt

+ K(−s2
nt cos snt− 2sn sin snt),

v(4)(t) = C1a
2(e

√
at − e−

√
at) + C3b

2(e
√

bt − e−
√

bt) + C5s
4
n sin snt

+ K(s4
nt cos snt + 4s3

n sin snt).

Applying the conditions

v(1) =
m−2∑
i=1

aiv(ηi), v′′(1) =
m−2∑
i=1

aiv
′′(ηi),

v(4)(1) =
m−2∑
i=1

aiv
(4)(ηi), sin sn =

m−2∑
i=1

ai sin ηisn,
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we have
C1F + C3G + KH = 0,

C1aF + C3bG− s2
nKH = 0,

C1a
2F + C3b

2G + s4
nKH = 0,

(2.14)

where

F = e
√

a − e−
√

a −
m−2∑
i=1

ai(e
√

aηi − e−
√

aηi),

G = e
√

b − e−
√

b −
m−2∑
i=1

ai(e
√

bηi − e−
√

bηi),

H = cos sn −
m−2∑
i=1

aiηi cos ηisn.

If H 6= 0, then the solution of (2.14) is C1 = C3 = K = 0, which is a contradiction
to γ 6= 0, and

v(t) = C5 sin snt ∈ ker(I − λnLd).

So, (2.12) holds. Hence, (2.11) holds. If H = 0, then

cos sn =
m−2∑
i=1

aiηi cos ηisn.

By the Schwarz inequality, we obtain

1− sin2 sn =
( m−2∑

i=1

aiηi cos ηisn

)2

≤
( m−2∑

i=1

η2
i

)( m−2∑
i=1

a2
i cos2 ηisn

)
=

( m−2∑
i=1

η2
i

)( m−2∑
i=1

a2
i

)
−

( m−2∑
i=1

η2
i

)( m−2∑
i=1

a2
i sin2 ηisn

)
.

Applying the condition sin sn =
∑m−2

i=1 ai sin ηisn, we obtain

1 ≤
( m−2∑

i=1

η2
i

)( m−2∑
i=1

a2
i

)
+

( m−2∑
i=1

ai sin ηisn

)2

−
( m−2∑

i=1

η2
i

)( m−2∑
i=1

a2
i sin2 ηisn

)
=

( m−2∑
i=1

η2
i

)( m−2∑
i=1

a2
i

)
+

(
1−

m−2∑
i=1

η2
i

)( m−2∑
i=1

a2
i sin2 ηisn

)
+

∑
i 6=j

aiaj sin ηisn sin ηjsn

≤
( m−2∑

i=1

η2
i

)( m−2∑
i=1

a2
i

)
+

(
1−

m−2∑
i=1

η2
i

)( m−2∑
i=1

a2
i

)
+

∑
i 6=j

aiaj

=
( m−2∑

i=1

ai

)2

.
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which is a contradiction to
∑m−2

i=1 ai < 1. Thus, (2.11) holds. It follows from (2.11)
and (2.12) that the algebraic multiplicity of the eigenvalue µn is 1.

Case (ii): There exists a real number a > 0 such that

(λ2 + µn)(λ2 − a)2 = λ6 − µ3
n

d1 + d2µn + d3µ2
n

(−d1 + d2λ
2 − d3λ

4) = 0.

It is easy to see that the general solution of (2.13) is of the form

v(t) = (C1 + C2t)e
√

at + (C3 + C4t)e−
√

at + C5 sin snt + C6 cos snt + Kt cos snt,

for t ∈ [0, 1], where C1, C2, C3, C4, C5, C6 are six nonzero constants, and K =
γsn(d1+d2µn+d3µ2

n)
6d1+4d2µn+2d3µ2

n
.

Applying the conditions v(0) = 0, v′′(0) = 0, v(4)(0) = 0, we obtain C1 +C3 = 0,
C2 − C4 = 0, C6 = 0, Then

v(t) = C1(e
√

at − e−
√

at) + C2t(e
√

at + e−
√

at) + C5 sin snt + Kt cos snt,

v′′(t) = C1a(e
√

at − e−
√

at) + 2C2

√
a(e

√
at − e−

√
at) + C2at(e

√
at + e−

√
at)

− C5s
2
n sin snt + K(−s2

nt cos snt− 2sn sin snt),

v(4)(t) = C1a
2(e

√
at − e−

√
at) + 4C2a

√
a(e

√
at − e−

√
at) + C2a

2t(e
√

at + e−
√

at)

+ C5s
4
n sin snt + K(s4

nt cos snt + 4s3
n sin snt).

Applying the conditions

v(1) =
m−2∑
i=1

aiv(ηi), v′′(1) =
m−2∑
i=1

aiv
′′(ηi),

v(4)(1) =
m−2∑
i=1

aiv
(4)(ηi), sin sn =

m−2∑
i=1

ai sin ηisn,

we have
C1F + C2G + KH = 0,

C1aF + C2(2
√

aF + aG)− s2
nKH = 0,

C1a
2F + C2(4a

√
aF + a2G) + s4

nKH = 0,

(2.15)

where

F = e
√

a − e−
√

a −
m−2∑
i=1

ai(e
√

aηi − e−
√

aηi),

G = e
√

a + e−
√

a −
m−2∑
i=1

aiηi(e
√

aηi + e−
√

aηi),

H = cos sn −
m−2∑
i=1

aiηi cos ηisn.

If H 6= 0, then the solution of (2.15) is C1 = C2 = K = 0, which is a contradiction
to γ 6= 0, and

v(t) = C5 sin snt ∈ ker(I − λnLd).
So, (2.12) holds. Hence, (2.11) holds.

If H = 0, in this case, the proof is similar to Case (i), we omit it.
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Case (iii): There exists a real number a, b > 0 such that

(λ2 + µn)[λ2 − (a2 − b2 + 2abi)][λ2 − (a2 − b2 − 2abi)]

= λ6 − µ3
n

d1 + d2µn + d3µ2
n

(−d1 + d2λ
2 − d3λ

4) = 0.

It is easy to see that the general solution of (2.13) is of the form

v(t) = (C1 cos bt + C2 sin bt)eat + (C3 cos bt + C4 sin bt)e−at

+ C5 sin snt + C6 cos snt + Kt cos snt, t ∈ [0, 1].

where C1, C2, C3, C4, C5, C6 are six nonzero constants, and

K =
γsn(d1 + d2µn + d3µ

2
n)

6d1 + 4d2µn + 2d3µ2
n

.

Applying the conditions v(0) = 0, v′′(0) = 0, v(4)(0) = 0, we obtain that C1 +C3 =
0, C2 − C4 = 0, C6 = 0, Then

v(t) = C1 cos bt(eat − e−at) + C2 sin bt(eat + e−at) + C5 sin snt + Kt cos snt,

v′′(t) = C1(a2 − b2) cos bt(eat − e−at)− 2C1ab sin bt(eat + e−at)

+ 2C2ab cos bt(eat − e−at) + C2(a2 − b2) sin bt(eat + e−at)

− C5s
2
n sin snt + K(−s2

nt cos snt− 2sn sin snt),

v(4)(t) = C1(a4 + b4 − 6a2b2) cos bt(eat − e−at)

+ 4C1(ab3 − a3b) sin bt(eat + e−at) + 4C2(a3b− ab3) cos bt(eat − e−at)

+ C2(a4 + b4 − 6a2b2) sin bt(eat + e−at) + C5s
4
n sin snt

+ K(s4
nt cos snt + 4s3

n sin snt).

Applying the conditions

v(1) =
m−2∑
i=1

aiv(ηi), v′′(1) =
m−2∑
i=1

aiv
′′(ηi),

v(4)(1) =
m−2∑
i=1

aiv
(4)(ηi), sin sn =

m−2∑
i=1

ai sin ηisn,

we have
C1F + C2G + KH = 0,

C1[(a2 − b2)F − 2abG] + C2[2abF + (a2 − b2)G]− s2
nKH = 0,

C1[(a4 + b4 − 6a2b2)F + 4(ab3 − a3b)G] + C2

[
4(a3b− ab3)F

+ (a4 + b4 − 6a2b2)G
]
+ s4

nKH = 0,

(2.16)

where

F = cos b(ea − e−a)−
m−2∑
i=1

ai cos bηi(eaηi − e−aηi),

G = sin b(ea + e−a)−
m−2∑
i=1

ai sin bηi(eaηi + e−aηi),
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H = cos sn −
m−2∑
i=1

aiηi cos ηisn.

If H 6= 0, then the solution of (2.16) is C1 = C2 = K = 0, which is a contradiction
to γ 6= 0, and

v(t) = C5 sin snt ∈ ker(I − λnLd).

So, (2.12) holds. Hence, (2.11) holds.
If H = 0, the proof is similar to Case (i), we omit it.
To sum up, the generalized eigenvalues of Ld are simple, and the proof of this

lemma is complete. �

3. Main Results

We now list the following hypotheses for convenience.
(H1) There exists a = (a1, a2, a3) ∈ R+ × R+ × R+\{(0, 0, 0)} such that

f(x, y, z) = −a1x + a2y − a3z + o(|(x, y, z)|), as |(x, y, z)| → 0,

where (x, y, z) ∈ R× R× R, and |(x, y, z)| := max{|x|, |y|, |z|}.
(H2) There exists b = (b1, b2, b3) ∈ R+ × R+ × R+\{(0, 0, 0)} such that

f(x, y, z) = −b1x + b2y − b3z + o(|(x, y, z)|), as |(x, y, z)| → ∞.

(H3) There exists R > 0 such that

|f(x, y, z)| < R

M
, for (x, y, z) ∈ {(x, y, z) : |x| ≤ M2R, |y| ≤ MR, |z| ≤ R},

where M is defined as in Lemma 2.3.
(H4) There exist two constants r1 < 0 < r2 such that f(x, y,−r1) ≥ 0 and

f(x, y,−r2) ≤ 0 for (x, y) ∈ [−Mr2,Mr2]×[−Mr,Mr], and f(x, y,−z) sat-
isfies a Lipschitz condition in z for (x, y, z) ∈ [−Mr2,Mr2]× [−Mr,Mr]×
[r1, r2], where r = max{|r1|, r2}.

Now we are ready to give our main results. To set it up we first consider global
results for the equation

v = λAv, (3.1)

on Y , where λ ∈ R, and the operator A is defined as in (2.7). Under the condition
(H1), Equation (3.1) can be rewritten as

v = λLav + Ha(λ, v), (3.2)

here Ha(λ, v) = λAv − λLav, La is defined as in (2.9) (replacing d with a). Ob-
viously, by (H1) and Lemma 2.3-2.5, it can be seen that Ha(λ, v) is o(‖v‖1) for v
near 0 uniformly on bounded λ intervals and La is a compact linear map on Y .
A solution of (3.1)) is a pair (λ, v) ∈ E. By (H1), the known curve of solutions
{(λ, 0)|λ ∈ R} will henceforth be referred to as the trivial solutions. The closure of
the set on nontrivial solutions of (3.1)) will be denoted by S as in Lemma 1.3.

If Ha(λ, v) ≡ 0, then (3.2) becomes a linear system

v = λLav, (3.3)

By Lemma 2.5, (3.3) possesses an increasing sequence of simple eigenvalues

0 < λ1 < λ2 < · · · < λk →∞, as k → +∞,
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where

λk =
µ3

k

a1 + a2µk + a3µ2
k

. (3.4)

Any eigenfunction φk(t) = sin skt corresponding to λk is in T+
k .

A similar analysis as in [8, Lemma 3.4, 3.5] and [20, Proposition 4.1] yield the
following results.

Lemma 3.1. Suppose that (λ, v) is a solution of (3.1) and v 6= 0. Then v ∈ ∪∞i=1Ti.

Lemma 3.2. Assume that (H1) holds and λk is defined by (3.4). Then for each
integer k > 0 and each ν = +, or −, there exists a continua C ν

k of solutions of
(3.1)) in Φν

k ∪ {(λk, 0)}, which meets {(λk, 0)} and ∞ in S .

Under condition (H2), (3.1) can be rewritten as

v = λLbv + Kb(λ, v), (3.5)

here Kb(λ, v) = λAv − λLbv, Lb is defined as in (2.9) (replacing d with b). Here
h(x, y, z) = f(x, y, z) + b1x− b2y + b3z. Then from (H2) it follows that

lim
|(x,y,z)|→∞

h(x, y, z)
|(x, y, z)|

= 0.

Define a function

ĥ(r) := max{|h(x, y, z)| : |(x, y, z)| ≤ r}.

Then ĥ(r) is nondecreasing and

lim
r→∞

ĥ(r)
r

= 0. (3.6)

Obviously, by (3.6) and Lemma 2.3, it can be seen that Kb(λ, v) is o(‖v‖1) for v
near ∞ uniformly on bounded λ intervals and Lb is a compact linear map on Y .

Similar to (3.3), by Lemma 2.5, Lb possesses an increasing sequence of simple
eigenvalues

0 < λ1 < λ2 < · · · < λk →∞, as k → +∞,

where

λk =
µ3

k

b1 + b2µk + b3µ2
k

. (3.7)

Note φk(t) = sin skt is an eigenfunction corresponding to λk. Obviously, it is in
T+

k .

Lemma 3.3. Assume that (H1)-(H2) hold. Then for each integer k > 0 and each
ν = +, or−, there exists a continua Dν

k of T in Φν
k ∪ {(λk,∞)} coming from

{(λk,∞)}, which meets {(λk, 0)} or has an unbounded projection on R.

Theorem 3.4. Assume that (H1)–(H2) hold. Suppose there exists two integers
i0 ≥ 0 and k > 0 such that either

µ3
i0+k

a1 + a2µi0+k + a3µ2
i0+k

< 1 <
µ3

i0+1

b1 + b2µi0+1 + b3µ2
i0+1

(3.8)

or
µ3

i0+k

b1 + b2µi0+k + b3µ2
i0+k

< 1 <
µ3

i0+1

a1 + a2µi0+1 + a3µ2
i0+1

(3.9)

holds. Then (1.1) has at least 2k nontrivial solutions.
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Proof. First suppose that (3.8) holds. Using the notation of (3.4) and (3.7), this
means λi0+k < 1 < λi0+1 and so from Lemma 2.5 we know that

λi0+1 < λi0+2 < · · · < λi0+k < 1 < λi0+1 < λi0+2 < · · · < λi0+k.

Consider (3.2) as a bifurcation problem from the trivial solution. We need only
show that

C ν
i0+j ∩ ({1} × Y ) 6= ∅, j = 1, 2, . . . , k; ν = +, or− . (3.10)

Suppose, on the contrary and without loss of generality, that

C +
i0+i ∩ ({1} × Y ) = ∅, for some i, 1 ≤ i ≤ k. (3.11)

By Lemma 3.2 we know that C +
i0+i joins (λi0+i, 0) to infinity in S and (λ, v) = (0, 0)

is the unique solution of (3.1) (in which λ = 0) in E. This together with λi0+i < 1
guarantee that there exists a sequence {(ξm, ym)} ⊂ C +

i0+i such that ξm ∈ (0, 1)
and ‖ym‖1 →∞ as m →∞. We may assume that ξm → ξ ∈ [0, 1] as m →∞. Let
xm := ym

‖ym‖1 ,m ≥ 1. From the fact that

ym = ξmLbym + Kb(ξm, ym),

it follows that

xm = ξmLbxm +
Kb(ξm, ym)
‖ym‖1

. (3.12)

Notice that Lb : Y → Y is completely continuous. We may assume that there exists
ω ∈ Y with ‖ω‖1 = 1 such that ‖xm − ω‖1 → 0 as m →∞.

Letting m →∞ in (3.12) and noticing Kb(ξm,ym)
‖ym‖1 → 0 as m →∞ one obtains

ω = ξLbω.

Since ω 6= 0, then ξ 6= 0 is an eigenvalue of Lb; that is, ξ = λi0+i, which contradicts
λi0+i > 1. Thus (3.11) is not true, which means (3.10) holds.

Next suppose that (3.9) holds. This means

λi0+1 < λi0+2 < · · · < λi0+k < 1 < λi0+1 < λi0+2 < · · · < λi0+k.

Consider (3.5) as a bifurcation problem from infinity. As above we need only to
prove that

Dν
i0+j ∩ ({1} × Y ) 6= ∅, j = 1, 2, . . . , k; ν = +, or− . (3.13)

From Lemma 3.3, we know that Dν
i0+j comes from {(λi0+j ,∞)}, meets {(λi0+j , 0)}

or has an unbounded projection on R. If it meets {(λi0+j , 0)}, then the connected-
ness of Dν

i0+j and λi0+j > 1 guarantees that (3.13) is satisfied. On the other hand,
if Dν

i0+j has an unbounded projection on R, notice that (λ, v) = (0, 0) is the unique
solution of (3.1) (in which λ = 0) in E, so (3.13) also holds. �

Theorem 3.5. Assume that (H1), (H2) hold and one of (H3) or (H4) hold. Suppose
there exists two integers i0 and j0 such that

µ3
i0

a1 + a2µi0 + a3µ2
i0

< 1,
µ3

j0

b1 + b2µj0 + b3µ2
j0

< 1. (3.14)

Then (1.1) has at least 2(i0 + j0) nontrivial solutions.
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Proof. First suppose that (H3) holds. Then there exists ε > 0 such that

(1 + ε)|f(x, y, z)| < R

M
, (x, y, z) ∈ {(x, y, z) : |x| ≤ M2R, |y| ≤ MR, |z| ≤ R},

(3.15)
Let (λ, v) be a solution of (3.1) such that 0 ≤ λ < 1 + ε and ‖v‖1 ≤ R. Then by
(2.7), (2.8), (3.1), (3.15) and Lemma 2.3 it is easy to see

‖v‖1 = λ‖Av‖1 = λ‖LFv‖
≤ λM‖Fv‖ = M max

t∈[0,1]
|λf((−L2v)(t), (Lv)(t),−v(t))|

< M
R

M
= R,

(3.16)

Therefore,
S ∩ ([0, 1 + ε]× ∂BR) = ∅. (3.17)

This together with (3.16) and Lemma 3.2 and Lemma 3.3 implies that

C ν
k ∩ ([0, 1 + ε]×BR) ⊂ [0, 1 + ε]×BR, k = 1, 2, . . . , i0; (3.18)

Dν
j ∩ ([0, 1 + ε]× ∂BR) = ∅, j = 1, 2, . . . , j0; (3.19)

where BR = {v ∈ Y |‖v‖1 < R} and BR = {v ∈ Y |‖v‖1 ≤ R}, C ν
k and Dν

j are
obtained from Lemma 3.2 and Lemma 3.3, respectively.

Since C ν
k is a unbounded component of solutions of (3.1) joining (λk, 0) in E, it

follows from (3.17) and (3.18) that C ν
k crosses the hyperplane {1} × Y with (1, vν)

such that ‖vν‖1 < R, (ν = + or −, k = 1, 2, . . . , i0). This implies that (2.5) has
2i0 nontrivial solutions {vν

i }
i0
i=1 in which {v+

i } and {v−i } are positive and negative
solutions, respectively.

On the other hand, by (3.17), (3.19), and Lemma 3.3 one can obtain

Dν
j ∩ ({1} × (Y \BR)) 6= ∅, j = 1, 2, . . . , j0.

This implies that (2.5) has 2j0 nontrivial solutions {ων
i }

j0
i=1 in which {ω+

i } and
{ω−i } are positive and negative solutions, respectively.

Now it remains to show this theorem holds when the condition (H4) is satisfied.
From the above we need only to prove that (i) for (λ, v) ∈ C ν

k (ν = + or −,
k = 1, 2, . . . , i0),

r1 < v(t) < r2, t ∈ [0, 1].

(ii) for (λ, v) ∈ Dν
j (ν = + or −, j = 1, 2, . . . , j0), we have that either

max
t∈[0,1]

v(t) > r2, t ∈ [0, 1]

or
min

t∈[0,1]
v(t) < r1, t ∈ [0, 1].

In fact, like in [1], suppose on the contrary that there exists (λ, v) ∈ C ν
k ∩Dν

j such
that either

max{v(t) : t ∈ [0, 1]} = r2

or
min{v(t) : t ∈ [0, 1]} = r1

for some i, j.
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First consider the case max{v(t) : t ∈ [0, 1]} = r2. Then there exists t ∈ [0, 1]
such that v(t) = r2. Let

τ0 := inf{t ∈ [0, t] : v(s) ≥ 0 for s ∈ [t, t]},
τ1 := sup{t ∈ [t, 1] : v(s) ≥ 0 for s ∈ [t, t]}.

Then

max{v(t) : t ∈ [τ0, τ1]} = r2, (3.20)

0 ≤ v(t) ≤ r2, t ∈ [τ0, τ1]. (3.21)

Therefore, v(t) is a solution of the following equation

−v′′(t) = λf((−L2v)(t), (Lv)(t),−v(t)), t ∈ (τ0, τ1)

with v(τ0) = v(τ1) = 0 if 0 ≤ τ0 < τ1 < 1.
By (H4), there exists M ≥ 0 such that f(x, y,−z) + Mz is strictly increasing

in z for (x, y, z) ∈ [−Mr2,Mr2] × [−Mr,Mr] × [r1, r2], where r = max{|r1|, r2}.
Then

−v′′(t) + λMv = λ(f((−L2v)(t), (Lv)(t),−v(t)) + Mv), t ∈ (τ0, τ1)

Using (H4) and Lemma 2.3 again, we can obtain

− (r2 − v(t))′′ + λM(r2 − v(t))

= −λ[f((−L2v)(t), (Lv)(t),−v(t)) + Mv(t)−Mr2]

= −λ[f((−L2v)(t), (Lv)(t),−v(t)) + Mv(t)− (f((−L2v)(t), (Lv)(t),−r2) + Mr2)]

− λf((−L2v)(t), (Lv)(t),−r2)

≥ 0, t ∈ (τ0, τ1).
(3.22)

and if τ1 = 1, by (1.2) we know v(1) < r2. Therefore,

r2 − v(τ0) > 0, r2 − v(τ1) > 0 if 0 ≤ τ0 < τ1 < 1;

r2 − v(τ1) > 0 if τ1 = 1.

This together with (3.22) and the maximum principle [12] imply that r2− v(t) > 0
in [τ0, τ1], which contradicts (3.20).

The proof in the case min{v(t) : t ∈ [0, 1]} = r1 is similar, so we omit it. �
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