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WEAK ROLEWICZ’S THEOREM IN HILBERT SPACES

CONSTANTIN BUŞE, GUL RAHMAT

Abstract. Let φ : R+ := [0,∞) → R+ be a nondecreasing function which is
positive on (0,∞) and let U = {U(t, s)}t≥s≥0 be a positive strongly continuous
periodic evolution family of bounded linear operators acting on a complex
Hilbert space H. We prove that U is uniformly exponentially stable if for each
unit vector x ∈ H, one hasZ ∞

0
φ(|〈U(t, 0)x, x〉|)dt < ∞.

The result seems to be new and it generalizes others of the same topic. More-
over, the proof is surprisingly simple.

1. Introduction

The classical theorem of Datko [9] states that a strongly continuous semigroup
T = {T (t)}t≥0, acting on a real or complex Banach space X, is uniformly expo-
nentially stable; i.e., there are two positive constants N and ν such that

‖T (t)‖ ≤ Ne−νt, ∀t ≥ 0,

if and only if ∫ ∞

0

‖T (t)x‖2dt < ∞, ∀x ∈ X. (1.1)

Obviously, for strongly continuous selfadjoint semigroups acting on a Hilbert space
H, the integral condition (1.1) is equivalent to∫ ∞

0

|〈T (t)x, x〉|dt < ∞, ∀x ∈ H. (1.2)

In this article we prove a result of this type for positive periodic evolution fami-
lies, in a more general form, that is related to a theorem of Rolewicz.

The history of the Rolewicz theorem is well known among experts in the field.
However, we recall, in the following, a few facts to help readers compare results.

The theorem of Datko has been extended by Pazy, who states that all trajectories
of a strongly continuous semigroup T = {T (t)}t≥0, of bounded linear operators
acting on a Banach space X, belongs to the space Lp(R+, X) (for some, and then
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for all p ≥ 1) if and only if the semigroup T is uniformly exponentially stable, or
equivalently, its growth bound

ω0(T) = lim
t→∞

ln ‖T (t)‖
t

,

is negative. See [19] and [20] for further details.
A real valued nondecreasing function φ, defined on R+, which is positive on

(0,∞), will be called (ad hoc) R-function.
An important generalization of Datko-Pazy’s theorem was given by Rolewicz,

[24]. He showed that a strongly continuous semigroup T = {T (t)}t≥0 of bounded
linear operators acting on a Banach space X is uniformly exponentially stable,
provided that for a given continuous, R-function φ, one has∫ ∞

0

φ(‖T (t)x‖)dt < ∞, ∀x ∈ X.

Earlier, special cases of this result were obtained by Zabczyk, [29] and Przyluski,
[23]. Zheng and Littman subsequently provided new proofs for theorem of Rolewicz
and, moreover, they removed the assumption of continuity of φ. See [13] and [30].

Jan van Neerven emphasized a new method of demonstration for Rolewicz’s
theorem using the theory of Orlicz spaces. See [16].

Recently, Storozhuk [25] has given a very short proof for a Rolewicz’s type the-
orem. See also [4, 5, 6] for different approaches of the Rolewicz theorem.

Next, we introduce the “weak” version (in the sense of the functional analysis)
of the Rolewicz theorem.

Let X be a Banach space, X∗ be its dual, and let p ≥ 1 be a given real number.
The semigroup T = {T (t)}t≥0 is called weak-Lp-stable if∫ ∞

0

|〈T (t)x, x∗〉|pdt < ∞, for all x ∈ X and all x∗ ∈ X∗.

The weak-Lp-stability of a semigroup T does not imply the uniform exponential
stability of T. See [11, 18] for counterexamples.

In 1983, Pritchard and Zabczyk [21] raised the following problem:
Is the uniform exponential stability of a semigroup T = {T (t)}t≥0,
acting on a Hilbert space, a consequence of its weak-Lp-stability?

The positive answer to the Pritchard and Zabczyk question was given by Falun
Huang. Further details could be found in [12]. The general case has been treated
independently by Weiss [27].

Also, it is known [16] that a bounded strongly continuous semigroup T =
{T (t)}t≥0, of bounded linear operators acting on a complex Hilbert space H, is
uniformly exponentially stable, if, for a given function ϕ as above, one has∫ ∞

0

ϕ(|〈T (t)x, y〉|)dt < ∞, for all x, y ∈ H. (1.3)

It is natural to ask whether the condition of boundedness of T can be removed?
A positive answer to this question was given recently by Storozhuk. In order to
describe the Storozhuk theorem we briefly resume some results targeting the same
problem, but on Banach spaces.

We refer to [16, Theorems 4.6.3(i), 4.6.4], for results concerning the exponential
stability (rather than the uniform exponential stability) of bounded linear semi-
groups acting on a Banach space. Recently Storozhuk [26] settled a more general
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problem. He stated that, if s0(T) ≥ 0, then there exist an R-function φ and two
vectors x0, y0 ∈ H, such that∫ ∞

0

φ(|〈T (t)x0, y0〉|)dt = ∞.

More details on strongly continuous semigroups of operators, including the precise
definitions and characterizations of the semigroups growth bounds ω0(T) and s0(T),
can be found, for example, in the monographs [20, 15, 1]. In [10] and [22] it is
shown that s0(T) = ω0(T) for all strongly continuous semigroups T of bounded
linear operators acting on complex Hilbert spaces.

2. Notation and preliminary results

We denote by R the set of real numbers and by C the set of complex numbers.
Also we denote by Z+ the set of nonnegative integer numbers. As usual, σ(L)
denotes the spectrum of the bounded linear operator acting on a Banach space X.
The spectral radius of L, denoted by r(L), is given by

r(L) := sup{|z| : z ∈ σ(L)} = lim
n→∞

‖Ln‖1/n.

By L(X) we denote the Banach algebra of all bounded linear operators acting on
X. As usual, 〈·, ·〉 denotes the scalar product on a Hilbert space H. The norms in
X, H,L(X),L(H) will be denoted by the same symbol, namely by ‖ · ‖.

We recall that a family U := {U(t, s)}t≥s≥0 ⊂ L(H) is called strongly continuous
q-periodic evolution family (for some q ≥ 1) if it satisfy the following conditions:

(i) U(t, t) = I for all t ≥ 0.
(ii) U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s ≥ 0.
(iii) U(t + q, s + q) = U(t, s) for all t ≥ s ≥ 0.
(iv) The map (t, s) → U(t, s)x : {(t, s) : t ≥ s} → H is continuous for all

t ≥ s ≥ 0 and every x ∈ H.
It is well known that any such evolution family U is exponentially bounded, that

is, there exist ω ∈ R and Mω ≥ 0 such that

‖U(t, s)‖ ≤ Mωeω(t−s) for t ≥ s ≥ 0. (2.1)

See [8]. Whenever the evolution family U is exponentially bounded its growth
bound is defined by

ω0(U) := inf{ω ∈ R : there is Mω ≥ 0 such that (2.1) holds}.

A bounded linear operator L, acting on a Hilbert space H, is positive if 〈Lx, x〉 ≥ 0
for every x ∈ H.

An evolution family {U(t, s) : t ≥ s ≥ 0} is called selfadjoint, (positive), if each
operator U(t, s), with t ≥ s ≥ 0, is selfadjoint and (respectively positive).

The family U is uniformly exponentially stable if its growth bound is negative.
In the following we use a deep result from the theory of operators, originally

given by Müller and Jan van Neerven. See [14] and [17], and also [2] for related
results in the framework of Hilbert spaces. For the reader convenience, we state
this result here.

Lemma 2.1. Let X be a complex Banach space and let V ∈ L(X). If the spectral
radius of V is greater or equal to 1, then for all 0 < ε < 1 and any sequence (an)
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with an → 0 (as n →∞) and ‖(an)‖∞ ≤ 1, there exists a unit vector u0 ∈ X, such
that

‖V nu0‖ ≥ (1− ε) · |an|, for all n ∈ Z+.

Throughout this article, (tn) will be a sequence of nonnegative real numbers,
such that 1 ≤ q ≤ tn+1 − tn ≤ α for every n ∈ Z+ and some positive real number
α.

Lemma 2.2. Let U = {U(t, s)}t≥s≥0 be a strongly continuous q-periodic (q ≥ 1)
evolution family of bounded linear operators acting on a Banach space X and let (tn)
be a sequence as given before. If the evolution family is not uniformly exponentially
stable, then there exists a positive constant C, having the properties: for every C-
valued sequence (bn) with bn → 0 (as n →∞) and ‖(bn)‖∞ ≤ 1, there exists a unit
vector u0 ∈ X, such that

‖U(tn, 0)u0‖ ≥ C · |bn+1|, for all n ∈ Z+. (2.2)

Proof. Let V := U(q, 0). Since U is not uniformly exponentially stable, r(U(q, 0)) ≥
1. From Lemma 2.1 follows that for every ε ∈ (0, 1) and every sequence (an) with
an → 0 (as n → ∞) and ‖(an)‖∞ = 1 there exists a unit vector y0 ∈ X such that
‖U(nq, 0)y0‖ ≥ (1− ε) · |an|, for any natural number n.

Let k : Z+ → Z+ be the function defined by, k(n) = [ tn

q ]. Here [ tn

q ] denotes
the integer part of the real number tn

q . In view of the properties of the sequence
(tn), the function k(·) is increasing. Let (bn) be a sequence having the assumed
properties, and let us consider a sequence (an) defined by

an =

{
bk−1(n), for n ∈ k(Z+)
0, otherwise

Then, we have

‖U(qkn, 0)y0‖ ≥ (1− ε) · |ak(n)| ≥ (1− ε) · |bn|, n ∈ Z+. (2.3)

Choose u0 := y0. Using (2.1) and (2.3), we obtain

(1− ε) · |bn+1| ≤ ‖U(qkn+1, 0)u0‖
= ‖U(qkn+1, tn)U(tn, 0)u0‖
≤ Meω·α · ‖U(tn, 0)u0‖.

Hence, (2.2) holds with C := (1−ε)
Meω·α . �

A periodic evolution family U = {U(t, s)}t≥s≥0 satisfies the strong discrete
Rolewicz condition related to the R-function ϕ and the sequence (tn), if

∞∑
n=0

φ(‖U(tn, 0)x‖) < ∞, ∀x ∈ X, ‖x‖ = 1. (2.4)

Whenever the evolution family U satisfies the condition (2.4) we can highlight
new qualities of the function ϕ. Such qualities are listed in the following.

• The inequality (2.4) holds for all x ∈ X with ‖x‖ ≤ 1.
• ϕ(0) = 0. To justify, putting x = 0 in (2.4).
• We may suppose that φ(1) = 1. To justify, putting a suitable multiple (αϕ,

with α > 0), instead of ϕ.
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• Also, we can put a suitable multiple of the function ϕ, instead of ϕ. Here,
by ϕ we understand the function defined by:

ϕ(t) =

{∫ t

0
ϕ(s)ds, for t ∈ [0, 1)
at

at+1−a , for t ≥ 1,

where a =
∫ 1

0
ϕ(s)ds.

We remark that ϕ is continuous and increasing function on R+, and, moreover, it
is convex on the interval [0, 1]. In addition, the evolution family U satisfies the
condition (2.4) in respect to ϕ, because ϕ(t) ≤ ϕ(t), for all t ∈ R+.

Given the above, the following lemma proof becomes clear. We insert it for the
sake of completeness.

Lemma 2.3. Let ϕ be an R-function and let U = {U(t, s)}t≥s≥0 be a strongly
continuous q-periodic (q ≥ 1) evolution family acting on a Banach space X. If the
family U satisfies (2.4) then it is uniformly exponentially stable.

Proof. Assume that r(U(q, 0)) ≥ 1. We replace ϕ by ϕ. Let C be as in Lemma
2.2 and let |bn| = 1

C · ϕ−1( 1
n ), n ≥ 1. Obviously the sequence (bn) satisfies the

requirements in Lemma 2.2. As a consequence, there exists a unit vector u0 ∈ X
such that ‖U(tn, 0)u0‖ ≥ C · |bn+1| for any natural number n. Hence,

∞∑
n=0

ϕ(‖U(tn, 0)u0‖) ≥
∞∑

n=0

ϕ(C · |bn+1|) =
∞∑

n=0

1
n + 1

= ∞.

�

3. Weak integral conditions and exponential stability

Let T = {T (t)}t≥0 be a strongly continuous semigroup acting on a complex
Hilbert space H. When T is selfadjoint (i.e. T (t) = T (t)∗, for every t ≥ 0), then
〈T (t)x, x〉 ≥ 0, for each t ≥ 0 and every x ∈ H. Indeed, for any t ≥ 0, we have

〈T (t)x, x〉 = 〈T (t/2)T (t/2)x, x〉 = ‖T (t/2)x‖2 ≥ 0.

In the proof of the next theorem, we use the following inequality of the Cauchy-
Buniakovski-Schwartz type. Let A and B be two selfadjoint operators acting on the
complex Hilbert space H. Then,

|〈ABx, y〉|2 ≤ 〈A2y, y〉〈B2x, x〉, for all x, y ∈ H. (3.1)

In fact,

|〈ABx, y〉|2 = |〈Bx, Ay〉|2 ≤ ‖Bx‖2‖Ay‖2 = 〈A2y, y〉〈B2x, x〉.

Theorem 3.1. Let φ be an R-function and let T = {T (t)}t≥0 be a selfadjoint,
strongly continuous semigroup of bounded linear operators acting on a complex
Hilbert space H. If

I(x) :=
∫ ∞

0

φ(〈T (t)x, x〉)dt < ∞, for all x ∈ H with ‖x‖ = 1, (3.2)

then the semigroup T is uniformly exponentially stable.
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Proof. Having in mind that φ may be considered a continuous function and by ap-
plying the Mean-Value Theorem to the function t 7→ φ(〈T (2t)x, x〉) on the interval
[n, n + 1], we find a real number tn(x) ∈ [n, n + 1], such that

1
2
I(x) =

∫ ∞

0

φ(〈T (2t)x, x〉)dt

=
∞∑

n=0

φ(〈T (2tn(x)x, x〉)

≥
∞∑

n=0

φ(〈T (2t4n(x)x, x〉).

Set sn ∈ [2n+1, 2n+2] and let y be a unit vector in H. In view of (3.1), successively
one has

|〈T (2sn)x, y〉|2 = |〈T (2sn − t4n(x))T (t4n(x))x, y〉|2

≤ 〈T (4sn − 2t4n(x))y, y〉〈T (2t4n(x))x, x〉
≤ Me8ω〈T (2t4n(x))x, x〉.

Hence, for any unit vector x ∈ H, one has
∞∑

n=0

φ
( 1

Me8ω
‖T (sn)x‖4

)
≤

∞∑
n=0

φ(〈T (2t4n(x))x, x〉). (3.3)

Clearly 1 ≤ sn+1 − sn ≤ 3. By assumption and relation (3.3), we obtain
∞∑

n=0

φ
( 1

Me8ω
‖T (sn)x‖4

)
< ∞.

Now replacing φ( 1
Me8ω t4) by ϕ(t). Obviously, the map ϕ is an R-function. The

assertion follows by Lemma 2.3. �

In the following we recall a concrete example of semigroup verifying (3.2). That
the Dirichlet semigroup is exponentially stable is more quite standard. There are
several possible ways of showing this. The following is yet another demonstration
in addition to this well known fact.

The state space is H := L2([0, π], C), endowed with the usual inner product and
norm, becomes a complex Hilbert space. In addition, the one parameter family
{T (t)}t≥0, given by

(T (t)x) (ξ) =
2
π

∞∑
n=1

e−tn2
sinnξ

( ∫ π

0

x(s) sinnsds
)
, ξ ∈ [0, π], t ≥ 0,

is a strongly continuous semigroup on H. Moreover, this semigroup solves the
following Cauchy Problem with boundary conditions

∂u(t, ξ)
∂t

=
∂2u(t, ξ)

∂2ξ
, t > 0, ξ ∈ [0, π]

u(t, 0) = u(t, π) = 0, t ≥ 0

u(0, ξ) = x(ξ),

where x(·) is a given function in H.
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More exactly, the unique solution of this Cauchy Problem is given by

u(t, ξ, x(·)) = (T (t)x)(ξ). (3.4)

The semigroup T = {T (t)}t≥0 is generated by the linear operator A given by
Ax = ẍ. The maximal domain of A is the set D(A) of all x ∈ H such that x
and ẋ are absolutely continuous, ẍ ∈ H and x(0) = x(π) = 0. Moreover, T (t) is
selfadjoint for all t ≥ 0. [28, Example 1.3, pp. 178, 198]. Based on Theorem 3.1,
we prove that the solution given in (3.4) is exponentially stable; i.e., there exist the
positive constants N and ν such that for each x(·) ∈ H, one has

‖u(t, ·, x(·))‖2 ≤ Ne−νt‖x(·)‖2 ∀t ≥ 0.

For this to be completed, we remark that for each x(·) ∈ H, one has∫ ∞

0

〈T (t)x(·), x(·)〉dt =
2
π

∞∑
n=1

1
n2
‖

∫ π

0

x(s) sin(ns)ds‖2

≤
∞∑

n=1

‖
∫ π

0

x(s) sin(ns)ds‖2 < ∞

The latter estimate is obtained in the view of Bessel inequality.
Next, we comment on the relationship between the integral conditions (1.3) and

(3.2). Clearly, (1.3) implies (3.2), but it is not clear whether (3.2) implies (1.3).
However, this happens if we admit that (3.2) holds for all x ∈ H and the map
φ is subadditive. This latter fact is a consequence of the well-known formula of
polarization.

Our approach in the semigroup case allow us to extend this result to the nonau-
tonomous case of positive and periodic evolution families acting on complex Hilbert
spaces. The next result could be known. See for example [3, 7] for its different coun-
terparts. Here we present a new proof.

Theorem 3.2. Let φ be an R-function and let U = {U(t, s)}t≥s≥0 be a selfadjoint
strongly continuous and q-periodic (q ≥ 1) evolution family acting on a complex
Hilbert space H. If

J(x) :=
∫ ∞

0

φ(‖U(t, 0)x‖)dt < ∞, for all x ∈ H with ‖x‖ = 1,

then U is uniformly exponentially stable.

Proof. Adopting the technique used in Theorem 3.1, we find some txn ∈ [nq, (n+1)q]
such that

J(x) = q

∞∑
n=0

φ(‖U(txn, 0)x‖)

≥
∞∑

n=0

φ(‖U(tx2n, 0)x‖).

Set sn = (2n+2)q and let x and y be two unit vectors. In view of (3.1), successively
one has

|〈U(sn, 0)x, y〉|2 = |〈U(sn, tx2n)U(tx2n, 0)x, y〉|2

≤ 〈U2(sn, tx2n)y, y〉〈U2(tx2n, 0)x, x〉
≤ M2e4qω‖U(tx2n, 0)x‖2.
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Hence, for any unit vector x ∈ H, one has
∞∑

n=0

φ(‖U(tx2n, 0)x‖) ≥
∞∑

n=0

φ(
1

Me2qω
|〈U(sn, 0)x, x〉|)

=
∞∑

n=0

φ(
1

Me2qω
‖U((n + 1)q, 0)x‖2).

(3.5)

By the assumption and relation (3.5), we obtain
∞∑

n=0

φ
( 1

Me2qω
‖U((n + 1)q, 0)x‖2

)
< ∞,

for all unit vectors x ∈ H. Now replace φ( 1
Me2qω t2) by ϕ(t). The assertion follows

by Lemma 2.3. �

For positive evolution families we can give even a weak version of the Rolewicz’s
theorem.

Theorem 3.3. Let φ be an R-function and let U = {U(t, s)}t≥s≥0 be a positive
strongly continuous and q-periodic (q ≥ 1) evolution family acting on a complex
Hilbert space H. If

J(x) :=
∫ ∞

0

φ(〈U(t, 0)x, x〉)dt < ∞, for all x ∈ H with ‖x‖ = 1,

then U is uniformly exponentially stable.

Proof. Again using the technique used in Theorem 3.1, we find some txn ∈ [nq, (n +
1)q] such that

J(x) = q

∞∑
n=0

φ(〈U(txn, 0)x, x〉) ≥
∞∑

n=0

φ(〈U(tx2n, 0)x, x〉)).

Set sn = (2n + 2)q. In view of (3.1), successively one has

|〈U1/2(sn, 0)x, y〉|2 = |〈U1/2(sn, tx2n)U1/2(tx2n, 0)x, y〉|2

≤ 〈U(sn, tx2n)y, y〉〈U(tx2n, 0)x, x〉
≤ Me2qω〈U(tx2n, 0)x, x〉.

Hence, for any unit vector x ∈ H, one has
∞∑

n=0

φ(〈U(tx2n, 0)x, x〉) ≥
∞∑

n=0

φ(
1

Me2qω
|〈U1/2(sn, 0)x, x〉|2)

=
∞∑

n=0

φ
( 1

Me2qω
|〈U((n + 1)q, 0)x, x〉|2

)
.

(3.6)

By the assumption and relation (3.6), we obtain
∞∑

n=0

φ
( 1

Me2qω
|〈U((n + 1)q, 0)x, x〉|2

)
< ∞,

for all unit vectors x ∈ H. In particular for n + 1 = 2m, we have
∞∑

m=0

φ
( 1

Me2qω
‖U(mq, 0)x‖4

)
< ∞,
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Now replace φ( 1
M2e4qω t4) by ϕ(t) and apply Lemma 2.3. �

We leave open the question whether Theorem 3.3 remains valid for periodic
(selfadjoint) evolution families.

Acknowledgements. The authors want to thank the anonymous referees for their
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E-mail address: buse@math.uvt.ro

Gul Rahmat
Government College University, Abdus Salam School of Mathematical Sciences, La-
hore, Pakistan

E-mail address: gulassms@gmail.com


	1. Introduction
	2. Notation and preliminary results
	3. Weak integral conditions and exponential stability
	Acknowledgements

	References

