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TRANSPORT EQUATION FOR GROWING BACTERIAL
POPULATIONS (I)

MOHAMED BOULANOUAR

Abstract. This work deals with a mathematical study for growing a bacterial

population. Each bacterium is distinguished by its degree of maturity and its

maturation velocity. Here we study the limit case corresponding to infinite
maturation velocities. We show that this model is governed by a strongly

continuous semigroup. We also study the lattice and spectral properties of the

generated semigroup and we compute its type.

1. Introduction

This article deals with a bacterial population in which each bacteria is distin-
guished by its own degree of maturity µ and its own maturation velocity v. At birth,
the degree of maturity of a daughter bacteria is µ = 0. At mitotic, the degree of ma-
turity of a mother bacteria becomes µ = 1. Between birth and division, the degree
of maturity of each bacterium is 0 < µ < 1. As each bacterium may not become less
mature, then its maturation velocity must be positive (0 ≤ a < v < b ≤ ∞). So, if
f = f(t, µ, v) denotes the bacterial density with respect to the degree of maturity
µ and the maturation velocity v, at time t, then

∂f

∂t
= −v ∂f

∂µ
− σf, (1.1)

where σ = σ(µ, v) denotes the rate of bacterial mortality or bacteria loss due to
causes other than division.

In most bacterial populations observed, there is often a correlation k = k(v, v′)
between the maturation velocity of a bacteria mother v′ and that of its bacte-
ria daughter v. The bacterial mitotic obeys then to the biological transition law
mathematically described by the following transition boundary condition

vf(t, 0, v) = p

∫ b

a

k(v, v′)f(t, 1, v′)v′ dv′, (1.2)

where p ≥ 0 denotes the average number of bacteria daughter viable per mitotic.
To ensure the continuity of the bacterial flux for p = 1, the kernel of correlation k
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must be positive and fulfils the normalization condition∫ b

a

k(v, v′)dv = 1 for all v ∈ (a, b). (1.3)

The model (1.1)-(1.2) was introduced in [12], where only a numerical study has
been made. The first theoretical studies of the model (1.1)-(1.2) were given in [5]
and [6], where we have proved that the model (1.1)-(1.2) is governed by a strongly
continuous semigroup provided that b < ∞. However, if b = ∞, all claims of [5]
and [6] become no suitable which leads to a serious mathematical difficulty.

To show the extent of this difficulty (i.e., b = ∞), we have studied the model
(1.1)-(1.2) in the particular case k(v, v′) = δv(v′) which corresponds to the perfect
memory law mathematically described by the following boundary condition

f(t, 0, v) = pf(t, 1, v) for all v ∈ (a, b). (1.4)

We then proved, in [7], that the model (1.1)-(1.4) is well-posed if and only if p ≤
1. In other words, there are no solutions for the most interesting case p > 1
corresponding to an increasing number of bacteria.

In this work we study the case b =∞. Furthermore, instead of using the biologi-
cal transition law given by (1.2), we consider a general biological law mathematically
described by the following boundary condition

f(t, 0, v) = [Kf(t, 1, ·)](v) for all v ∈ (a, b), (1.5)

where K denotes a linear operator on suitable spaces (see Section 3).
According to 0 < a < b = ∞, we have recently proved in [3] that the gen-

eral model (1.1), (1.5) is governed by a strongly continuous semigroup. However,
all claims and computations unfortunately depend on a > 0. Therefore, we are
naturally led to set the following question

What happens when a = 0 and b =∞?
The purpose of this work is to answer the question above as follows

(2) Mathematical preliminaries
(3) The unperturbed model (i.e., σ = 0)
(4) Explicit form of the unperturbed semigroup
(5) Generation Theorem for the model (1.1), (1.5)
(6) Lattice property of the generated semigroup
(7) Spectral properties of the generated semigroup
(8) Application and comments

In the third Section, we consider the natural framework of the general model (1.1),
(1.5) which is L1((0, 1)× (0,∞)) whose norm

‖f(t, ·, ·)‖1 =
∫ 1

0

∫ ∞
0

|f(t, µ, v)| dµ dv

denotes the bacteria number at time t. We show then that the unperturbed model
(1.1), (1.5) (i.e., without bacterial mortality (σ = 0)) is governed by a strongly
continuous semigroup whose explicit form is given in fourth Section. In fifth Section,
we prove that the general model (1.1), (1.5) is governed by a strongly continuous
semigroup whose Lattice and Spectral properties are studied in sixth and seventh
Sections. The last section deals with an application to the model (1.1)–(1.2).

Finally, note the novelty of this work and for the used mathematical background,
we refer the reader to [8] and [9].
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2. Mathematical preliminaries

In this section, we are going to recall some useful mathematical tools about
strongly continuous semigroups of linear operators in a Banach space X. So, the
first one deals with the following known result

Lemma 2.1 ([9, Theorem III.1.3]). Let T be the infinitesimal generator of a
strongly continuous semigroup U = (U(t))t≥0, on X, and let B be a bounded lin-
ear operator from X into itself. Then, the operator C := T + B on the domain
D(C) := D(T ) generates, on X, a strongly continuous semigroup (V (t))t≥0 given,
for all x ∈ X, by

V (t)x = lim
n→∞

[e−
t
nBU( tn )]nx t ≥ 0. (2.1)

Let U = (U(t))t≥0 be a strongly continuous semigroup, on X, whose generator
is T . Following [9, Chapter IV], the type ω0(U) is

ω0(U) = lim
t→∞

ln ‖U(t)‖L(X)

t
. (2.2)

The spectral bound s(T ) of the generator T is given by

s(T ) =

{
sup{Re(λ), λ ∈ σ(T )} if σ(T ) 6= ∅,
−∞ if σ(T ) = ∅.

(2.3)

Generally, we have ω0(U) 6= s(T ). However, if X is an L1 space then

ω0(U) = s(T ) (2.4)

because of [13]. Next, if X denotes a Banach lattice space then, the positivity and
the irreducibility of the semigroup U = (U(t))t≥0 are characterized as follows

Lemma 2.2 ([8, Proposition 7.1 and 7.6]). (1) The semigroup U = (U(t))t≥0

is positive if and only if the resolvent operator (λ − T )−1 is positive for
some great λ.

(2) Suppose that the semigroup U = (U(t))t≥0 is positive. It is irreducible if
and only if the resolvent operator (λ−T )−1 is irreducible for some great λ.

3. The unperturbed model (i.e., σ = 0)

In this section, we are concerned with the unperturbed model (1.1), (1.5) (i.e.,
without bacterial mortality (σ = 0)). So, we are going to prove that this model
is governed by a strongly continuous semigroup UK = (UK(t))t≥0 which will be
perturbed to infer the well posedness of the general model (1.1), (1.5) (see Section
5). Before we start, let us consider the functional framework L1(Ω) whose norm is

‖ϕ‖1 =
∫

Ω

|ϕ(µ, v)| dµ dv, (3.1)

where Ω = (0, 1)× (0,∞) := I × J . We also consider our regularity space

W1 =
{
ϕ ∈ L1(Ω) v

∂ϕ

∂µ
∈ L1(Ω) and vϕ ∈ L1(Ω)

}
and the trace space Y1 := L1(J, v dv) whose norms are

‖ϕ‖W1 = ‖v ∂ϕ
∂µ
‖1 + ‖vϕ‖1 and ‖ψ‖Y1 =

∫ ∞
0

|ψ(v)|v dv.

Applying now [4, Theorem 2.2] to Ω = (0, 1)× (0,∞) we infer that
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Lemma 3.1. The trace mappings γ0ϕ := ϕ(0, ·) and γ1ϕ := ϕ(1, ·) are linear
continuous from W1 into Y1.

Next, let T0 be the unbounded operator

T0ϕ = −v ∂ϕ
∂µ

on the domain,

D(T0) = {ϕ ∈W1 γ0ϕ = 0}
(3.2)

which makes sense because of Lemma 3.1. This operator corresponds to the model
(1.1), (1.5) without bacterial mortality (σ = 0) and without bacterial division
(K = 0). Some of its useful properties can be summarized as follows

Lemma 3.2.
(1) The operator T0 generates, on L1(Ω), a strongly continuous positif semi-

group U0 = (U0(t))t≥0 of contractions given by

U0(t)ϕ(µ, v) := χ(µ, v, t)ϕ(µ− tv, v) (3.3)

where

χ(µ, v, t) =

{
1 if µ ≥ tv;
0 if µ < tv.

(3.4)

(2) Let λ > 0. Then (λ − T0)−1 is a positive operator from L1(Ω) into itself.
Furthermore, for all g ∈ L1(Ω) we have

‖(λ− T0)−1g‖1 ≤
‖g‖1
λ

(3.5)

‖v(λ− T0)−1g‖1 ≤ ‖g‖1. (3.6)

(3) Let λ > 0. Then γ1(λ − T0)−1 is a strictly positive operator from L1(Ω)
into Y1.

(4) For all ϕ ∈W1, the following mapping

t→ γ1(U0(t)ϕ) ∈ Y1 (3.7)

is continuous with respect to t ≥ 0.

Proof. For all λ > 0 and all g ∈ L1(Ω), a simple computation shows that

(λ− T0)−1g(µ, v) =
∫ µ/v

0

e−λsg(µ− sv, v)ds

which easily leads to the points (1) and (2) and (3).
(4) Let t ≥ 0. Firstly, for all ϕ ∈W1, we have ϕ = f + g, where f := ε(γ0ϕ) and

g := ϕ− f with ε(µ, v) = e−
µ
v . Easy computations show that

‖v ∂f
∂µ
‖1 = ‖f‖1 ≤ ‖γ0ϕ‖Y1 and ‖vf‖1 ≤ ‖γ0ϕ‖Y1

which leads to f ∈W1 because of Lemma 3.1. Furthermore

‖g‖W1 ≤ ‖ϕ‖W1 + ‖f‖W1 <∞ and γ0g = γ0ϕ− γ0f = 0

and therefore g ∈ D(T0).
Next, as U0 = (U0(t))t≥0 is also a strongly continuous semigroup on the domain

D(T0) of its generator, then we can write

lim
h→0
‖U0(t+ h)g − U0(t)g‖D(T0) = 0. (3.8)
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By virtue of Lemma 3.1 together with the fact that D(T0) is a closed subspace of
W1, it follows that

‖γ1U0(t+ h)g − γ1U0(t)g‖Y1 ≤ ‖γ1‖‖U0(t+ h)g − U0(t)g‖D(T0)

for all h > 0 and therefore
t→ γ1U0(t)g (3.9)

is a continuous mapping with respect to t ≥ 0, because of (3.8).
On the other hand, due to (3.3) and (3.4), it is easy to check that

‖γ1U0(t+ h)f − γ1U0(t)f‖Y1

=
∫ ∞

0

|χ(1, v, t+ h)e−
(1−(t+h)v)

v − χ(1, v, t)e−
(1−tv)
v ||γ0ϕ(v)|v dv

for all h > 0 and therefore
t→ γ1U0(t)f (3.10)

is a continuous mapping with respect to t ≥ 0.
Finally, writing (3.7) as follows

t→ γ1U0(t)ϕ = γ1U0(t)f + γ1U0(t)g

we infer its continuity from those of the mappings (3.9) and (3.10). �

In the sequel we are going to study the model (1.1), (1.5), without bacterial
mortality (σ = 0), modeled by the following unbounded operator

TKϕ = −v ∂ϕ
∂µ

on the domain,

D(TK) = {ϕ ∈W1; γ0ϕ = Kγ1ϕ}
(3.11)

where K denotes a linear operator from Y1 into itself. Note that (3.11) has a sense
because of Lemma 3.1. So, in order to state the main goal of this section, we are
going to prove some preparative results. The first one deals with the following
operator

Kλψ := K(θλψ), where θλ(v) = e−λ/v, v ∈ J = (0,∞) (3.12)

which is going to play an important role in the sequel. So we have

Lemma 3.3. Let K be a linear operator from Y1 into itself satisfying one of the
following hypotheses

(Kb) K is bounded and ‖K‖L(Y1) < 1;
(Kc) K is compact and ‖K‖L(Y1) ≥ 1.

Then, for all λ ≥ 0, the operator Kλ is bounded linear from Y1 into itself. Further-
more, there exists a constant

ωK

{
= 0, if (Kb) holds
> 0, if (Kc) holds,

(3.13)

such that
λ > ωK(ln k) =⇒ ‖Kλ‖L(Y1) < 1, (3.14)

where k = max{1, ‖K‖}.
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Proof. Firstly, note that the boundedness of Kλ (λ ≥ 0) obviously follows from

‖Kλψ‖Y1 ≤ ‖K‖‖ψ‖Y1 for all ψ ∈ Y1.

Therefore, if (Kb) holds, then we clearly have

λ > 0 =⇒ ‖Kλ‖ < 1. (3.15)

Suppose now (Kc) holds and let ω ≥ 0 be given. So, the compactness of the
operator K obviously leads to that of the operator KIω, where Iω ∈ L(Y1) is the
following characteristic operator

Iωψ(v) =

{
ψ(v) if v > ω;
0 otherwise.

(3.16)

Hence, there exists a finite sequence (ψi)NKi=1 ⊂ B(0, 1) ⊂ Y1 such that

KIω
(
B(0, 1)

)
⊂ ∪NKi=1B

(
KIωψi,

1
2

)
, (3.17)

where B(0, 1) is the closed unit ball into Y1.
Now, for all i ∈ {1, · · · , NK}, we clearly have

‖KIωψi‖Y1 ≤ ‖K‖
∫ ∞

0

|Iωψi(v)|v dv

which implies that

lim
ω→∞

‖KIωψi‖Y1 ≤ ‖K‖ lim
ω→∞

∫ ∞
0

|Iωψi(v)|v dv = 0

and therefore, there exists δK,i > 0 satisfying

‖KIωψi‖Y1 <
1
2

for all ω > δK,i.

Furthermore, if we set

δK := max{δK,i; i = 1, · · · , NK} (3.18)

it follows that
δK > 0 (3.19)

and
max

i∈{1,··· ,NK}
‖KIωψi‖Y1 <

1
2

for all ω > δK . (3.20)

Next, let ω > δK . For all ψ ∈ B(0, 1) ⊂ Y1, (3.17) implies that there exists
i0 ∈ {1, · · · , NK} satisfying

KIωψ ∈ B
(
KIωψi0 ,

1
2

)
which implies that

‖KIωψ‖Y1 ≤ ‖KIωψ −KIωψi0‖Y1 + ‖KIωψi0‖Y1

≤ 1
2

+ max
i∈{1,··· ,NK}

‖KIωψi‖Y1

and therefore

‖KIω‖ = sup
ψ∈B(0,1)

‖KIωψ‖Y1 ≤
1
2

+ max
i∈{1,··· ,NK}

‖KIωψi‖Y1 < 1
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because of (3.20). Hence, we can say that

‖KIω‖ < 1 for all ω > δK . (3.21)

On the other hand, let ω > δK and let Iω ∈ L(Y1) be the following characteristic
operator

Iωψ(v) :=

{
ψ(v) if v ≤ ω;
0 otherwise

(3.22)

for which we clearly have

ψ = Iωψ + Iωψ and I2
ωψ = Iωψ. (3.23)

So, for all ψ ∈ Y1 we have

Kλψ = Kλ(Iωψ + Iωψ) = Kλ(I2
ωψ + Iωψ) = KIε(Iεθλψ) +KIω(θλψ)

which implies that

‖Kλψ‖Y1 ≤ ‖KIω(Iωθλψ)‖Y1 + ‖KIω(θλψ)‖Y1

≤ ‖KIω‖‖Iωθλψ‖Y1 + ‖K‖‖Iω(θλψ)‖Y1

≤ ‖KIω‖‖Iωψ‖Y1 + e−
λ
ω ‖K‖‖Iωψ‖Y1

≤ max{‖KIω‖, e−
λ
ω ‖K‖}{‖Iωψ‖+ ‖Iωψ‖}

= max{‖KIω‖, e−
λ
ω ‖K‖}‖ψ‖Y1

for all λ ≥ 0, and therefore

‖Kλ‖ ≤ max
{
‖KIω‖, e−

λ
ω ‖K‖

}
.

Now, (3.21) clearly leads to

λ > ω ln ‖K‖ =⇒ ‖Kλ‖ < 1. (3.24)

Let λ > δK ln ‖K‖ be given. There exists ω such that λ
ln ‖K‖ > ω > δK which

implies that λ > ω ln ‖K‖ and therefore ‖Kλ‖ < 1 because of (3.24). Therefore,
we can say that if (Kc) holds, then

λ > δK ln ‖K‖ =⇒ ‖Kλ‖ < 1. (3.25)

Finally, by (3.19) we can set that

ωK :=

{
0, if (Kb) holds;
δK , if (Kc) holds,

which obviously leads to (3.13). Furthermore, (3.14) clearly holds because of (3.15)
and (3.25). The proof is now achieved. �

Remark 3.4. In the sequel, any linear operator K from Y1 into itself is said to be
admissible if one of the following hypotheses holds

(Kb) K is bounded and ‖K‖L(Y1) < 1;
(Kc) K is compact and ‖K‖L(Y1) ≥ 1,

The constant ωK , given by (3.13), is called the abscissa of the admissible operator
K. So, Lemma 3.3 means that (3.14) holds for any admissible operator K whose
abscissa is ωK .

Now, we compute the resolvent operator of TK as follows
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Proposition 3.5. Let K be an admissible operator whose abscissa is ωK . Then(
ωK ln k; ∞

)
⊂ ρ(TK). (3.26)

Furthermore, if λ > ωK(ln k) (k = max{1, ‖K‖}) then we have

(λ− TK)−1g = ελ(I −Kλ)−1Kγ1(λ− T0)−1g + (λ− T0)−1g (3.27)

for all g ∈ L1(Ω), where ελ(µ, v) = e−λ
µ
v .

Proof. Let λ > ωK(ln k) and let g ∈ L1(Ω). So, the general solution of the following
equation

λϕ = −v ∂ϕ
∂µ

+ g (3.28)

is given by
ϕ = ελψ + (λ− T0)−1g (3.29)

where ψ is any function of the variable v ∈ J = (0,∞). When ψ ∈ Y1, we claim
that ϕ belongs to W1. Indeed, integrating (3.29) and using (3.5) we infer that

‖ϕ‖1 ≤
1
λ
‖ψ‖Y1 +

1
λ
‖g‖1 <∞

which leads, by virtue of (3.28), to

‖v ∂ϕ
∂µ
‖1 = ‖ − λϕ+ g‖1 ≤ λ‖ϕ‖1 + ‖g‖1 <∞.

Once more, integrating (3.29) and using (3.6) we obtain that

‖vϕ‖1 = ‖vελψ‖1 + ‖v(λ− T0)−1g‖1
≤ ‖ψ‖Y1 + ‖g‖1 <∞.

Hence, ϕ ∈ W1. Furthermore, ϕ belongs to D(TK) if γ0ϕ = Kγ1ϕ. Namely, ψ
satisfies

ψ = Kλψ +Kγ1(λ− T0)−1g

which admits, by virtue of (3.14), the following unique solution

ψ = (I −Kλ)−1Kγ1(λ− T0)−1g ∈ Y1. (3.30)

In order to achieve the proof, it suffices to put (3.30) in (3.29). �

Now we are able to state the main result of this section as follows.

Theorem 3.6. Let K be an admissible operator whose abscissa is ωK . Then,
the operator TK generates, on L1(Ω), a strongly continuous semigroup UK =
(UK(t))t≥0 satisfying

‖UK(t)ϕ‖1 ≤ keωK(ln k)t‖ϕ‖1 t ≥ 0 (3.31)

for all ϕ ∈ L1(Ω), where k = max{1; ‖K‖}.

Remark 3.7. Actually, the admissibility concept that we have gave in Remark 3.4,
is a particular case of a general and theoretical concept already defined in [1].
Accordingly, Theorem 3.6 can be inferred from [1, Theorem 3.1]. However, taking
into account to the practical and biological aspect of this work, we prefer to give a
slightly different proof for the reader.
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Proof of Theorem 3.6. Firstly, let ω > ωK be given and let

|||ϕ|||1 =
∫ ∞

0

∫ 1

0

|ϕ(µ, v)|hω(µ, v) dµ dv (3.32)

be another norm on L1(Ω) where

hω(µ, v) = kmin{ω µv ; 1}.

The norms (3.1) and (3.32) are equivalent because, for all ϕ ∈ L1(Ω) we have

‖ϕ‖1 ≤ |||ϕ|||1 ≤ k‖ϕ‖1. (3.33)

Next, let λ > ω(ln k) and let g ∈ L1(Ω). Proposition 3.5 means that ϕ =
(λ− TK)−1g ∈ D(TK) is the unique solution of the following system

λϕ = −v ∂ϕ
∂µ

+ g (3.34)

γ0ϕ = Kγ1ϕ. (3.35)

So, multiplying (3.34) by (sgnϕ)hω and integrating it over Ω, we obtain that

λ|||ϕ|||1

= −
∫

Ω

(v
∂|ϕ|
∂µ

)(µ, v)hω(µ, v) dµ dv +
∫

Ω

sgnϕ(µ, v)(hωg)(µ, v) dµ dv

≤ −
∫

Ω

(v
∂|ϕ|
∂µ

)(µ, v)hω(µ, v) dµ dv + |||g|||1

:= A+ |||g|||1.

(3.36)

Integrating A by parts and using (3.35) we infer that

A =
∫ ∞

0

|γ0(hωϕ)(v)|v dv −
∫ ∞

0

|γ1(hωϕ)(v)|v dv

+
∫

Ω

(v
∂hω
∂µ

)(µ, v)|ϕ(µ, v)| dµ dv

=
∫ ∞

0

|γ0ϕ(v)|v dv −
∫ ∞

0

|γ1(hωϕ)(v)|v dv

+
∫

Ω

(v
∂hω
∂µ

)(µ, v)|ϕ(µ, v)| dµ dv

=
∫ ∞

0

|Kγ1ϕ(v)|v dv −
∫ ∞

0

|γ1(hωϕ)(v)|v dv

+
∫

Ω

(v
∂hω
∂µ

)(µ, v)|ϕ(µ, v)| dµ dv

:= A1 −A2 +A3.

(3.37)

Applying (3.23) together with (3.16) and (3.22) for ψ = γ1ϕ ∈ Y1, it follows that

A1 =
∫ ∞

0

|K
(
Iω(γ1ϕ) + Iω(γ1ϕ)

)
(v)|v dv

≤
∫ ∞

0

|K
(
Iω(γ1ϕ)

)
(v)|v dv +

∫ ∞
0

|K
(
Iω(γ1ϕ)

)
(v)|v dv

≤
∫ ∞

0

|K
(
Iω(γ1ϕ)

)
(v)|v dv + ‖K‖

∫ ∞
0

|
(
Iω(γ1ϕ)

)
(v)|v dv
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= ‖K
(
Iω
(
θλ′(γ1hω)

)
(γ1ϕ)

)
‖Y1 + ‖K‖‖Iω(γ1ϕ)‖Y1

because of
(
θλ′(γ1hω)

)
(v) = 1 for all v ∈ (ω,∞), where θλ′ is given by (3.12) for

λ′ = ω(ln k). Hence

A1 ≤ ‖Kθλ′
(
Iωγ1(hωϕ)

)
‖Y1 + ‖K‖‖Iω(γ1ϕ)‖Y1

= ‖Kλ′

(
Iωγ1(hωϕ)

)
‖Y1 + ‖K‖‖Iω(γ1ϕ)‖Y1

≤ ‖Kλ′‖‖Iωγ1(hωϕ)‖Y1 + ‖K‖‖Iω(γ1ϕ)‖Y1

and therefore
A1 ≤ ‖Iωγ1(hωϕ)‖Y1 + ‖K‖‖Iω(γ1ϕ)‖Y1 (3.38)

because of (3.14). Once more, applying (3.23) together with (3.16) and (3.22) for
ψ = |γ1(hωϕ)| ∈ Y1, we infer that

A2 =
∫ ∞

0

(
Iω|γ1(hωϕ)|+ Iω|γ1(hωϕ)|

)
(v)v dv

=
∫ ∞

0

|Iωγ1(hωϕ)(v)|v dv +
∫ ∞

0

|Iω(γ1hω)(γ1ϕ)(v)|v dv

=
∫ ∞

0

|Iωγ1(hωϕ)(v)|v dv + k

∫ ∞
0

|Iω(γ1ϕ)(v)|v dv

and therefore
A2 = ‖Iωγ1(hωϕ)‖Y1 + k‖Iω(γ1ϕ)‖Y1 . (3.39)

Next, for almost all (µ, v) ∈ Ω we have

(v
∂hω
∂µ

)(µ, v) = v
∂

∂µ
(

{
kω

µ
v if ω µv ≤ 1

k if ω µv > 1
)

=

{
ω(ln k)kω

µ
v if ω µv ≤ 1

0 if ω µv > 1

≤ ω(ln k)

{
kω

µ
v if ω µv ≤ 1

k if ω µv > 1

which leads to

(v
∂hω
∂µ

) ≤ ω(ln k)hω.

Hence
A3 ≤ ω(ln k)|||ϕ|||1. (3.40)

Replacing now (3.38) and (3.39) and (3.40) into (3.37) we infer that

A ≤ ω(ln k)|||ϕ|||1
which we put into (3.36) to finally get that

|||ϕ|||1 = |||(λ− TK)−1g|||1 ≤
|||g|||1

(λ− ω(ln k))
.

On the other hand, (3.26) obviously leads to ρ(TK) 6= ∅ and therefore TK is a closed
operator. Furthermore, TK is densely defined because of Cc(Ω) ⊂ D(TK) ⊂ L1(Ω).
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Now, thanks to Hille-Yosida Theorem, the operator TK generates, on L1(Ω), a
strongly continuous semigroup UK = (UK(t))t≥0 satisfying

|||UK(t)ϕ|||1 ≤ eω(ln k)t|||ϕ|||1 t ≥ 0 (3.41)

for all ϕ ∈ L1(Ω). As ω (ω > ωK) is arbitrary chosen, then passing at the limit
ω → ωK in (3.41) we obtain that

|||UK(t)ϕ|||1 ≤ eωK(ln k)t|||ϕ|||1 t ≥ 0. (3.42)

Finally, in order to archives the proof, it suffices to infer (3.31) from (3.42) together
with (3.33). �

Now, let us infer some interesting Corollaries.

Corollary 3.8. Let K be a bounded linear operator from Y1 into itself such that
‖K‖ < 1. Then the operator TK generates, on L1(Ω), a strongly continuous semi-
group UK = (UK(t))t≥0 of contractions; i.e.,

‖UK(t)ϕ‖1 ≤ ‖ϕ‖1 t ≥ 0

for all ϕ ∈ L1(Ω).

Proof. Thanks to Remark 3.4, the hypothesis (Kb) holds and therefore K is an
admissible operator whose abscissa ωK = 0 because of (3.13). Now, it suffices to
apply Theorem 3.6 for ωK = 0 and k = 1. �

Remark 3.9. According to Corollary 3.8 we infer that

‖UK(t)ϕ‖1 = ‖UK(t− s)UK(s)ϕ‖1 ≤ ‖UK(s)ϕ‖1
for all initial data ϕ ∈ L1(Ω), where t and s (t > s) are two arbitrary times.
Namely, the unperturbed model (1.1), (1.5) (without bacterial mortality (σ = 0)),
corresponding to Corollary 3.8 is biologically uninteresting because the bacteria
number is obviously decreasing.

In contrary to Remark 3.9, we can say that ‖K‖ > 1 corresponds to an increasing
bacteria number during each mitotic. Hence we have

Corollary 3.10. Let K be a linear compact operator from Y1 into itself such that
‖K‖ > 1. Then, the operator TK generates, on L1(Ω), a strongly continuous semi-
group UK = (UK(t))t≥0 satisfying

‖UK(t)ϕ‖1 ≤ ‖K‖‖K‖tωK‖ϕ‖1 t ≥ 0

for all ϕ ∈ L1(Ω), where ωK > 0 is abscissa of the operator K.

Proof. By virtue of Remark 3.4, we infer that the hypothesis (Kc) holds and there-
fore K is an admissible operator. Furthermore, its abscissa ωK > 0 because of
(3.13). Now, Theorem 3.6 together with k = ‖K‖ achieve the proof. �

4. Explicit form of the unperturbed semigroup

The purpose of this section is to find the explicit form of the semigroup UK =
(UK(t))t≥0 which will be very useful to describe the asynchronous exponential
growth related to the model (1.1), (1.5).
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Theorem 4.1. Let K be an admissible operator whose abscissa is ωK . Then, for
all ϕ ∈ L1(Ω), we have

UK(t)ϕ = U0(t)ϕ+AK(t)ϕ t ≥ 0, (4.1)

where the operator AK(t) is defined by

AK(t)ϕ(µ, v) := ξ(µ, v, t)K(γ1UK(t− µ

v
)ϕ)(v) (4.2)

with

ξ(µ, v, t) =

{
0 if µ ≥ tv;
1 if µ < tv.

(4.3)

Proof. Let λ > ωK(ln k) be fixed, where k = max{1, ‖K‖}. In the sequel, we are
going to divide the proof in several steps.

Step I. Let L1
λ := L1

(
∆, eλx/v

)
be the weighted Banach space whose norm is

‖f‖L1
λ

=
∫

∆

|f(x, v)|eλx/v dx dv,

where ∆ = (−∞, 0)× (0,∞). Let HK and VK be the following linear operators

HKf(x, v) := K
(
ξ(1, ·,−xv−1)f(1 + xv−1·, ·)

)
(v)

VKϕ(x, v) := K
(
γ1U0(−xv−1)ϕ

)
(v).

So, for all f ∈ L1
λ,

‖HKf‖L1
λ

=
∫ 0

−∞

∫ ∞
0

|K
(
ξ(1, ·,−xv−1)f(1 + xv−1·, ·)

)
(v)|eλx/v dx dv

=
∫ ∞

0

[ ∫ ∞
0

|K
(
ξ(1, ·, t)f(1− t·, ·)

)
(v)|v dv

]
e−λtdt

=
∫ ∞

0

[ ∫ ∞
0

|Kθλ
(
θ−λξ(1, ·, t)f(1− t·, ·)

)
(v)|v dv

]
e−λtdt

=
∫ ∞

0

[ ∫ ∞
0

|Kλ

(
θ−λξ(1, ·, t)f(1− t·, ·)

)
(v)|v dv

]
e−λtdt

because of (3.12). Due to the boundedness of the operator Kλ (see Lemma 3.3) we
infer that

‖HKf‖L1
λ
≤ ‖Kλ‖L(Y1)

∫ ∞
0

∫ ∞
0

e
λ
v ξ(1, v, t)|f(1− tv, v)|e−λtv dvdt

= ‖Kλ‖L(Y1)

∫ ∞
0

∫ 1

−∞
e
λ
v ξ(1, v, (1−x)

v )|f(x, v)|e−λ
(1−x)
v dx dv

= ‖Kλ‖L(Y1)

∫ ∞
0

∫ 0

−∞
|f(x, v)|eλx/vdxdv

= ‖Kλ‖L(Y1)‖f‖L1
λ

and therefore
‖HK‖L(L1

λ) ≤ ‖Kλ‖L(Y1). (4.4)
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On the other hand, for all ϕ ∈ L1(Ω) we have

‖VKϕ‖L1
λ

=
∫ ∞

0

∫ 0

−∞
|K
(
γ1U0(−xv−1)ϕ

)
(v)|eλx/v dx dv

≤
∫ ∞

0

[
∫ ∞

0

|K
(
γ1U0(t)ϕ

)
(v)|v dv]dt

≤ ‖K‖L(Y1)

∫ ∞
0

∫ ∞
0

|
(
γ1U0(t)ϕ

)
(v)|vdtdv

which leads, by virtue of (3.3) and (3.4), to

‖VKϕ‖L1
λ
≤ ‖K‖L(Y1)

∫ ∞
0

∫ ∞
0

|χ(1, v, t)ϕ(1− tv, v)|vdtdv

= ‖K‖L(Y1)

∫ ∞
0

∫ 1

−∞
|χ(1, v, (1−µ)

v )ϕ(µ, v)| dµ dv

= ‖K‖L(Y1)

∫ ∞
0

∫ 1

0

|ϕ(µ, v)| dµ dv

and therefore
‖VKϕ‖L1

λ
≤ ‖K‖L(Y1)‖ϕ‖1. (4.5)

Now, (3.14) together with (4.4) and (4.5) imply that the problem

f = HKf + VKϕ (4.6)

admits, for all ϕ ∈ L1(Ω), the unique solution

fKϕ = (I −HK)−1VKϕ ∈ L1
λ (4.7)

satisfying

‖fKϕ ‖L1
λ
≤

‖K‖L(Y1)

1− ‖Kλ‖L(Y1)
‖ϕ‖1. (4.8)

Furthermore
ϕ ∈ L1(Ω)→ fKϕ ∈ L1

λ (4.9)

is a linear mapping because of those of the operators HK and VK .
Now we can say that : If λ > ωK(ln k) then, for all ϕ ∈ L1(Ω) the problem

(4.6) admits the unique solution (4.7) satisfying (4.8). Moreover (4.9) is a linear
continuous mapping from L1(Ω) into L1

λ.
Step II. Thanks to the step I, we can define the following operator

BK(t)ϕ(µ, v) := ξ(µ, v, t)fKϕ (µ− tv, v) t ≥ 0.

Note that the linearity of the operator BK(t) follows from that of (4.9).
First, let t ≥ 0. For all ϕ ∈ L1(Ω) we have

‖BK(t)ϕ‖1 =
∫

Ω

ξ(µ, v, t)|fKϕ (µ− tv, v)| dµ dv

≤
∫ ∞

0

∫ tv

0

|fKϕ (µ− tv, v)|eλ
µ
v dµ dv

=
∫ ∞

0

∫ 0

−tv
|fKϕ (x, v)|eλ( xv+t) dx dv
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which implies that

‖BK(t)ϕ‖1 ≤ eλt
∫ ∞

0

∫ 0

−tv
|fKϕ (x, v)|eλx/v dx dv (4.10)

and therefore

‖BK(t)ϕ‖1 ≤ eλt‖fKϕ ‖L1
λ
≤ eλt

‖K‖L(Y1)

1− ‖Kλ‖L(Y1)
‖ϕ‖1

because of (4.8). Hence, BK(t) is a bounded operator from L1(Ω) into itself.
Furthermore, (4.10) obviously leads to

lim
t→0+

‖BK(t)ϕ‖1 = 0 and BK(0) = 0. (4.11)

Next. For all ϕ ∈W1 we have∫ ∞
0

∫ ∞
0

|γ0BK(t)ϕ(v)−Kγ1BK(t)ϕ(v)−Kγ1U0(t)ϕ(v)|vdtdv

=
∫ ∞

0

∫ ∞
0

|fKϕ (−tv, v)−HKf
K
ϕ (−tv, v)− VKϕ(−tv, v)|vdtdv

=
∫

∆

|fKϕ (x, v)−HKf
K
ϕ (x, v)− VKϕ(x, v)| dx dv = 0

because fKϕ is the unique solution of the problem (4.6) and therefore

γ0BK(t)ϕ−Kγ1BK(t)ϕ = Kγ1U0(t)ϕ a.e. t ∈ R+. (4.12)

Due to the continuity of the mapping (3.7), it follows that (4.12) holds for all t ≥ 0;
i.e.,

γ0BK(t)ϕ−Kγ1BK(t)ϕ = Kγ1U0(t)ϕ for all t ∈ R+. (4.13)

Now we can say that : for all t ≥ 0, BK(t) is a bounded linear operator from L1(Ω)
into itself satisfying (4.11) and (4.13).
Step III. Thanks to the step II together with Lemma 3.2, we can define the
following operator

SK(t) := U0(t) +BK(t) t ≥ 0 (4.14)

which is clearly linear and bounded from L1(Ω) into itself.
First, let ϕ ∈ L1(Ω). By virtue Lemma 3.2(1) together with (4.11) we infer that

SK(0) = U0(0) +BK(0) = U0(0) = I, (4.15)

where I is the identity operator into L1(Ω), and

lim
t→0+

‖SK(t)ϕ− ϕ‖1 ≤ lim
t→0+

‖U0(t)ϕ− ϕ‖1 + lim
t→0+

‖BK(t)ϕ‖1 = 0. (4.16)

Next, let t ≥ 0 and let ϕ ∈W1. Due to (4.14) we obtain

ξ(µ, v, t)γ0

(
SK(t− µ

v
)ϕ
)

(v)

= ξ(µ, v, t)γ0

(
U0(t− µ

v
)ϕ
)

(v) + ξ(µ, v, t)γ0

(
BK(t− µ

v
)ϕ
)

(v)
(4.17)

for almost all (µ, v) ∈ Ω. However, (3.3) together with (3.4) and (4.3) lead to

ξ(µ, v, t)γ0

(
U0(t− µ

v
)ϕ
)

(v) = 0
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for almost all (µ, v) ∈ Ω, and therefore (4.17) becomes

ξ(µ, v, t)γ0

(
SK(t− µ

v
)ϕ
)

(v) = ξ(µ, v, t)γ0

(
BK(t− µ

v
)ϕ
)

(v)

= ξ(µ, v, t)BK(t− µ

v
)ϕ(0, v)

= ξ(µ, v, t)fKϕ (µ− tv, v).

Hence
ξ(µ, v, t)γ0

(
SK(t− µ

v
)ϕ
)

(v) = BK(t)ϕ(µ, v) (4.18)

for almost all (µ, v) ∈ Ω.
On the other hand, (4.13) and (4.14) imply that

γ0SK(t)ϕ−Kγ1SK(t)ϕ = γ0U0(t)ϕ+ γ0BK(t)ϕ−Kγ1U0(t)ϕ−Kγ1BK(t)ϕ

= γ0BK(t)ϕ−Kγ1U0(t)ϕ−Kγ1BK(t)ϕ = 0

for t ≥ 0 and therefore

ξ(µ, v, t)γ0

(
SK(t− µ

v )ϕ
)

(v) = ξ(µ, v, t)
(
Kγ1SK(t− µ

v )ϕ
)

(v) (4.19)

for almost all (µ, v) ∈ Ω. Hence

BK(t)ϕ(µ, v) = ξ(µ, v, t)
(
Kγ1SK(t− µ

v )ϕ
)

(v) t ≥ 0 (4.20)

because of (4.18) and (4.19). Moreover, the density of W1 in L1(Ω) implies that
(4.20) holds too for all ϕ ∈ L1(Ω).

Now we can say that : for all t ≥ 0, SK(t) given by (4.14), is a bounded linear
operator from L1(Ω) into itself satisfying (4.15) and (4.16). Furthermore, (4.20)
holds for all ϕ ∈ L1(Ω).
Step IV. In order to prove that (SK(t))t≥0 is a strongly continuous semigroup it
remains, by virtue of the step III, to show only that

G(t, s) := SK(t)SK(s)− SK(t+ s) = 0 for all t ≥ 0 and all s ≥ 0.

So, let t ≥ 0 and s ≥ 0 and let ϕ ∈ L1(Ω). By virtue of (3.3) and (4.14) and (4.20),
a simple computation leads to

G(t, s)ϕ(µ, v) = ξ(µ, v, t)
(
Kγ1G(t− µ

v , s)ϕ
)

(v) (4.21)

for almost all (µ, v) ∈ Ω.
First, applying the trace mapping γ1 to (4.21) and integrating it, we obtain that∫ ∞

0

∫ ∞
0

eλ( 1
v−t)|γ1G(t, s)ϕ(v)|vdtdv

=
∫ ∞

0

∫ ∞
0

eλ( 1
v−t)ξ(1, v, t)|

(
Kγ1G(t− 1

v , s)ϕ
)

(v)|vdtdv

≤
∫ ∞

0

e−λx
[ ∫ ∞

0

|K
(
γ1G(x, s)ϕ

)
(v)|v dv

]
dx

=
∫ ∞

0

e−λx
[ ∫ ∞

0

|Kλ

(
θ−λγ1G(x, s)ϕ

)
(v)|v dv

]
dx

because of (3.12). Due to the boundedness of the operator Kλ (see Lemma 3.3), it
follows that ∫ ∞

0

∫ ∞
0

eλ( 1
v−t)|γ1G(t, s)ϕ(v)|vdtdv
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≤ ‖Kλ‖
∫ ∞

0

e−λx
[ ∫ ∞

0

∣∣θ−λ(γ1G(x, s)ϕ
)
(v)
∣∣v dv]dx

= ‖Kλ‖
∫ ∞

0

∫ ∞
0

eλ( 1
v−x)

∣∣γ1G(x, s)ϕ(v)
∣∣v dx dv

which leads, by virtue of (3.14), to

γ1G(t, s) = 0 for all t ≥ 0 and all s ≥ 0. (4.22)

On the other hand, integrating (4.21) we obtain that∫
Ω

|G(t, s)ϕ(µ, v)| dµ dv =
∫

Ω

ξ(µ, v, t)|K
(
γ1G(t− µ

v , s)ϕ
)

(v)| dµ dv

=
∫ ∞

0

∫ tv

0

|K
(
γ1G(t− µ

v , s)ϕ
)

(v)| dµ dv

=
∫ ∞

0

∫ t

0

|K
(
γ1G(x, s)ϕ

)
(v)|v dx dv

= 0

because of (4.22) and therefore G(t, s) = 0 for all t ≥ 0 and all s ≥ 0.
Now we can say that: the family operators (SK(t))t≥0 is a strongly continuous

semigroup on L1(Ω).
Step V. To achieve the proof, it suffices to show that the semigroups (SK(t))t≥0

and (UK(t))t≥0 are equal. So, let us suppose that B denotes the generator of the
semigroup (SK(t))t≥0.

First, let ϕ ∈ L1(Ω). Due to (4.14) and (4.20) we infer that∫ ∞
0

e−λtSK(t)ϕ(µ, v)dt

=
∫ ∞

0

e−λtU0(t)ϕ(µ, v)dt+
∫ ∞

0

e−λtξ(µ, v, t)
[
Kγ1SK(t− µ

v )ϕ
]

(v)dt

=
∫ ∞

0

e−λtU0(t)ϕ(µ, v)dt+ e−λ
µ
v

∫ ∞
0

e−λt [Kγ1SK(t)ϕ] (v)dt

=
∫ ∞

0

e−λtU0(t)ϕ(µ, v)dt+ ελ(µ, v)Kγ1

[ ∫ ∞
0

e−λtSK(t)ϕdt
]
(v)

for all almost (µ, v) ∈ Ω, and therefore

(λ−B)−1ϕ = ελKγ1(λ−B)−1ϕ+ (λ− T0)−1ϕ. (4.23)

Applying θ−1
λ γ1 to both hand side of (4.23) we obtain

θ−1
λ γ1(λ−B)−1ϕ = θ−1

λ γ1

(
ελKγ1(λ−B)−1ϕ

)
+ θ−1

λ γ1(λ− T0)−1ϕ

= θ−1
λ θλKγ1(λ−B)−1ϕ+ θ−1

λ γ1(λ− T0)−1ϕ

= Kγ1(λ−B)−1ϕ+ θ−1
λ γ1(λ− T0)−1ϕ

= Kθλθ
−1
λ γ1(λ−B)−1ϕ+ θ−1

λ γ1(λ− T0)−1ϕ

which leads, by (3.12), to

θ−1
λ γ1(λ−B)−1ϕ = Kλθ

−1
λ γ1(λ−B)−1ϕ+ θ−1

λ γ1(λ− T0)−1ϕ

and therefore

γ1(λ−B)−1ϕ = θλ(I −Kλ)−1θ−1
λ γ1(λ− T0)−1ϕ (4.24)
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because of (3.14). Putting now (4.24) into (4.23) we infer that

(λ−B)−1ϕ = ελKθλ(I −Kλ)−1θ−1
λ γ1(λ− T0)−1ϕ+ (λ− T0)−1ϕ

= ελKλ(I −Kλ)−1θ−1
λ γ1(λ− T0)−1ϕ+ (λ− T0)−1ϕ

= ελ(I −Kλ)−1Kλθ
−1
λ γ1(λ− T0)−1ϕ+ (λ− T0)−1ϕ.

Hence

(λ−B)−1ϕ = ελ(I −Kλ)−1Kγ1(λ− T0)−1ϕ+ (λ− T0)−1ϕ. (4.25)

Finally, (3.27) and (4.25) obviously imply that (λ−TK)−1 = (λ−B)−1 and therefore

UK(t)ϕ = SK(t)ϕ t ≥ 0 (4.26)

because of the uniqueness of the generated semigroup. Now, in order to achieves
the proof, it suffices to infer (4.1) and (4.2) from (4.14) and (4.20) together with
(4.26). �

5. Generation theorem for the model (1.1), (1.5)

The main goal of this section is to prove that the general model (1.1), (1.5) is
governed by a strongly continuous semigroup VK = (VK(t))t≥0 as a linear pertur-
bation of the unperturbed semigroup UK = (UK(t))t≥0 already studied. To this
end, we suppose that the rate of bacterial mortality fulfills the hypothesis

(Hσ) σ ∈
(
L∞(Ω)

)
+

and we denote

σ := ess inf(µ,v)∈Ω σ(µ, v) and σ := ess sup(µ,v)∈Ω σ(µ, v). (5.1)

Thanks to the hypothesis (Hσ), the perturbation operator

Sϕ(µ, v) := −σ(µ, v)ϕ(µ, v) (µ, v) ∈ Ω

is obviously linear and bounded from L1(Ω) into itself. So, let LK be the unbounded
operator

LK := TK + S

D(LK) = D(TK)

closely related to the model (1.1), (1.5), and for which we finally have

Theorem 5.1. Let K be an admissible operator whose abscissa is ωK . If the
hypothesis (Hσ) holds, then the operator LK generates, on L1(Ω), a strongly con-
tinuous semigroup VK = (VK(t))t≥0 satisfying

‖VK(t)ϕ‖1 ≤ ket(ωK ln k−σ)‖ϕ‖1 t ≥ 0

for all ϕ ∈ L1(Ω), where k = max{1; ‖K‖}.

Proof. As LK = TK + S is a bounded linear perturbation of the generator TK , it
follows by virtue of Lemma 2.1 that LK is a generator of a strongly continuous
semigroup denoted VK = (VK(t))t≥0 satisfying

VK(t)ϕ = lim
n→∞

[e−σ
t
nUK(

t

n
)]nϕ t ≥ 0
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for all ϕ ∈ L1(Ω). Using the norm (3.32) together with (3.42) and the hypothesis
(Hσ) we infer

|||VK(t)ϕ|||1 ≤ lim
n→∞

[
e−σ

t
n e

t
nωK(ln k)

]n
|||ϕ|||1 = et(ωK ln k−σ)|||ϕ|||1.

Now (3.33) completes the proof. �

Let us end this section with some interesting Corollaries.

Corollary 5.2. Let K be a bounded linear operator from Y1 into itself such that
‖K‖ < 1. If the hypothesis (Hσ) holds, then the operator LK generates, on L1(Ω),
a strongly continuous semigroup VK = (VK(t))t≥0 satisfying

‖VK(t)ϕ‖1 ≤ e−tσ‖ϕ‖1 t ≥ 0

for all ϕ ∈ L1(Ω).

The proof of the above corollary is similar to that of Corollary 3.8, and is omitted.

Remark 5.3. Corollary 5.2 means that the general model (1.1), (1.5) correspond-
ing to the case ‖K‖ < 1 is biologically uninteresting because the bacteria number
is decreasing. Indeed, if t and s (t > s) are two arbitrary times, then we have

‖VK(t)ϕ‖1 = ‖VK(t− s)VK(s)ϕ‖1 ≤ e−(t−s)σ‖VK(s)ϕ‖1 < ‖VK(s)ϕ‖1
for all initial data ϕ ∈ L1(Ω).

In contrary to Remark 5.3, we understand that ‖K‖ > 1 is closely related to
an increasing bacteria number during each mitotic. This is the most observed and
biologically interesting case for which we have

Corollary 5.4. Let K be a linear compact operator from Y1 into itself such that
‖K‖ > 1. If the hypothesis (Hσ) holds, then the operator LK generates, on L1(Ω),
a strongly continuous semigroup VK = (VK(t))t≥0 satisfying

‖VK(t)ϕ‖1 ≤ ‖K‖‖K‖t(ωK−σ)‖ϕ‖1 t ≥ 0

for all ϕ ∈ L1(Ω), where ωK > 0 is abscissa of the operator K.

The proof of the above is similar to that of Corollary 3.10, and it is omitted.
PAGE 18

6. Lattice property of the generated semigroup

In this section we are concerned with the lattice properties of the generated
semigroup VK = (VK(t))t≥0. These properties can be inferred from those of the
linear operator

Kλψ := θλKψ, where θλ(v) = e−λ/v, v ∈ J = (0,∞) (6.1)

which is going to play an important role in the sequel. So, before we start, let us
note that Kλ (λ ≥ 0) is clearly a bounded operator from Y1 into itself because, for
all ψ ∈ Y1 we have

‖Kλψ‖Y1 ≤ ‖Kψ‖Y1 ≤ ‖K‖‖ψ‖Y1 .

Despite the obvious difference between (6.1) and (3.12), both operators are re-
lated by the following result.

Lemma 6.1. Let K be an admissible operator whose abscissa is ωK . If K is
positive, then
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(1) Kλ (λ ≥ 0) is positive too. Moreover, if λ > ωK(ln k) then

(I −Kλ)−1K ≥ Kn

λ for all integers n ≥ 1, (6.2)

where k = max{1, ‖K‖}.
(2) Furthermore, if K is irreducible, then Kλ is also irreducible.

Proof. (1). Let λ ≥ 0. Firstly, it is easy to see that the positivity of Kλ follows
from that K. Furthermore, we obviously have

K ≥ Kλ. (6.3)

Next, as we clearly have KλK = KKλ, it follows by induction that

Kn
λK = KK

n

λ for all integers n ≥ 1. (6.4)

Therefore, if λ > ωK(ln k), then (3.14), (6.4) and (6.3) lead to

(I −Kλ)−1K =
∑
m≥0

Km
λ K =

∑
m≥0

KK
m

λ ≥ KK
n−1

λ ≥ Kn

λ

for all integers n ≥ 1.
(2). Firstly, let M be a closed ideal in Y1 such that

Kλ(M) ⊂M. (6.5)

By virtue of the characterization of closed ideals in L1-spaces (see [9, pp.309]), there
exists ∆ ⊂ J such that

M = {ψ ∈ Y1; ψ(v) = 0 a.e. v ∈ ∆}.
So, for all ϕ ∈ K(M), there exists ψ ∈M such that ϕ = Kψ. This implies that

θλϕ = θλKψ = Kλψ ∈M
which leads to ϕ ∈M and therefore K(M) ⊂M . Now, by virtue of the irreducibil-
ity of K, we obviously infer that

M = ∅ or M = Y1 (6.6)

and therefore, Kλ is irreducible because (6.5) holds only for (6.6). �

Now, the lattice properties of the semigroup UK = (UK(t))t≥0 are given as
follows.

Proposition 6.2. Let K be an admissible operator whose abscissa is ωK . If K is
positive, then

(1) The semigroup UK = (UK(t))t≥0 is also positive.
(2) Furthermore, if K is irreducible then UK = (UK(t))t≥0 is also irreducible.

Proof. (1) Let λ > ωK(ln k) and let ϕ ∈ (L1(Ω))+. Thanks to the second and the
third point of Lemma 3.2, we infer that (λ − T0)−1ϕ ≥ 0 and γ1(λ − T0)−1ϕ ≥ 0.
This together with (3.27) and (6.2) imply

(λ− TK)−1ϕ ≥ ελK
n

λγ1(λ− T0)−1ϕ for all integers n ≥ 1 (6.7)

and therefore (λ − TK)−1ϕ ≥ 0 because of the positivity of the operator Kλ (see
Lemma 6.1). Now, the positivity of UK = (UK(t))t≥0 follows from the first point
of Lemma 2.2.

(2) Let λ > ωK(ln k) and let ϕ ∈ (L1(Ω))+ be such that ϕ 6= 0. Thanks to
the third point of Lemma 3.2, we infer that γ1(λ − T0)−1ϕ is a strictly positive
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function. As Kλ is an irreducible operator (see Lemma 6.1) then, there exists an
integer m ≥ 1 such that

K
m

λ γ1(λ− T0)−1ϕ(v) > 0 a.e. v ∈ (0,∞). (6.8)

Putting now n = m into (6.7) we infer that

(λ− TK)−1ϕ(µ, v) ≥ ελ(µ, v)K
m

λ γ1(λ− T0)−1ϕ(v) a.e. (µ, v) ∈ Ω

which leads, by virtue of (6.8), to

(λ− TK)−1ϕ(µ, v) > 0 a.e. (µ, v) ∈ Ω

and therefore the irreducibility of (λ− TK)−1 follows. Finally, the second point of
Lemma 2.2 leads to the irreducibility of UK = (UK(t))t≥0. �

Now, the main resutl of this section is as follows.

Theorem 6.3. Let K be an admissible operator whose abscissa is ωK and suppose
that (Hσ) holds. If K is positive, then

(1) The semigroup VK = (VK(t))t≥0 is positive satisfying

e−tσUK(t) ≤ VK(t), t ≥ 0 (6.9)

where σ is given by (5.1).
(2) Furthermore, if K is irreducible, then VK = (VK(t))t≥0 is also irreducible.

Proof. (1) Let t > 0 and let ϕ ∈ (L1(Ω))+. By the first point of Proposition 6.2 we
obtain the positivity of the semigroup UK = (UK(t))t≥0 which leads to[

e−
t
nσUK(t)

]n
ϕ ∈ (L1(Ω))+ for all integers n ∈ N,

and therefore

e−tσUK(t)ϕ ≤
[
e−

t
nσUK( tn )

]n
ϕ for all integers n ∈ N.

Passing at the limit n→∞ and using (2.1), we infer that

e−tσUK(t)ϕ ≤ VK(t)ϕ

and therefore the positivity VK = (VK(t))t≥0 and (6.9) follow.
(2) The irreducibility of the semigroup VK = (VK(t))t≥0 obviously follows from

that of the semigroup UK = (UK(t))t≥0 (Proposition 6.2) together with (6.9). �

7. Spectral properties of the generated semigroup

The purpose of this section is to compute the type ω0(VK) of the semigroup
VK = (VK(t))t≥0. This will be obtained through spectral properties of the operator
Kλ given by (6.1).

In the sequel, we suppose that the operator K is compact from Y1 into itself.
Thanks to Remark 3.4, K is then an admissible operator whose abscissa is denoted
by ωK . Therefore, all results of this work hold. So, let us start by the following
preparative result.

Lemma 7.1. Let K be a compact operator from Y1 into itself and let λ ∈ C be
such that Reλ ≥ 0. Then we have

λ ∈ σ(TK) =⇒ 1 ∈ σp
(
Kλ

)
.
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Proof. Let λ ∈ C be such that Reλ ≥ 0 and let g ∈ L1(Ω). If 1 ∈ ρ(Kλ), then the
equation

ψ = Kλψ + γ1(λ− T0)−1g (7.1)
admits a unique solution ψ ∈ Y1. So, let ϕ be the function

ϕ = ελKψ + (λ− T0)−1g. (7.2)

On one hand, simple computations together with (3.5) and (3.6) infer that

‖ϕ‖1 ≤
1
λ
‖K‖‖ψ‖Y1 +

1
λ
‖g‖1 <∞ (7.3)

and
‖vϕ‖1 = ‖K‖‖ψ‖Y1 + ‖v(λ− T0)−1g‖1

≤ ‖ψ‖Y1 + ‖g‖1 <∞.
(7.4)

Moreover, we have

λϕ+ v
∂ϕ

∂µ
= λϕ+ v

∂

∂µ
(ελKψ + (λ− T0)−1g)

= λϕ− λελKψ − λ(λ− T0)−1g + g = g

and therefore
‖v ∂ϕ
∂µ
‖1 = ‖ − λϕ+ g‖1 ≤ λ‖ϕ‖1 + ‖g‖1 <∞. (7.5)

So, we have ϕ ∈W1 because of (7.3), (7.4) and (7.5).
On the other hand, (7.1) and (7.2) lead to

γ0ϕ = Kψ = K
[
Kλψ + γ1(λ− T0)−1g

]
= Kγ1

[
ελKψ + (λ− T0)−1g

]
= Kγ1ϕ

which implies that ϕ ∈ D(TK) and therefore (λ−TK) is an operator with bounded
inverse. Hence, we have λ ∈ ρ(TK). �

Now we are ready to state the main result of this section.

Theorem 7.2. Let K be a positive, irreducible and compact operator from Y1 into
itself such that

r(Kσ−σ) > 1. (7.6)
If (Hσ) holds, then the type ω0(VK) of the semigroup VK = (VK(t))t≥0 satisfies to

ω0(VK) > −σ, (7.7)

where σ and σ are given by (5.1).

Proof. We divide this proof into several steps.
Step I. Let λ ≥ 0. Due to Lemma 6.1, we infer the positivity and the irreducibility
of the operator Kλ. Furthermore, its compactness follows from that of the operator
K. So, thanks to [10] we infer that r(Kλ) > 0 and there exists a quasi-interior vector
ψλ of (Y1)+ and a strictly positive functional ψ∗λ ∈ (Y ∗1 )+ such that

Kλψλ = r(Kλ)ψλ and K
∗
λψ
∗
λ = r(Kλ)ψ∗λ (7.8)

with ‖ψλ‖Y1 = ‖ψ∗λ‖Y ∗1 = 1, where K
∗
λ is the adjoint operator of Kλ. Now, we

claim that
λ ≥ 0→ r(Kλ) (7.9)



22 M. BOULANOUAR EJDE-2012/221

is a continuous and strictly decreasing mapping. So, let λ > η ≥ 0. First, for all
ψ ∈ (Y1)+ we have

Kλψ = θλKψ = θλ−ηθηKψ < θηKψ = Kηψ

and therefore
Kηψ −Kλψ > 0. (7.10)

Using (7.8) for λ and for η we obtain that

r(Kη)− r(Kλ) =
〈K∗ηψ∗η , ψλ〉
〈ψ∗η , ψλ〉

− r(Kλ)

=
〈ψ∗η ,Kηψλ〉
〈ψ∗η , ψλ〉

− r(Kλ)

=
〈ψ∗η ,Kλψλ〉
〈ψ∗η , ψλ〉

+
〈ψ∗η , (Kη −Kλ)ψλ〉

〈ψ∗η , ψλ〉
− r(Kλ)

= r(Kλ) +
〈ψ∗η , (Kη −Kλ)ψλ〉

〈ψ∗η , ψλ〉
− r(Kλ)

which leads, by (7.10), to

r(Kη)− r(Kλ) =
〈ψ∗η , (Kη −Kλ)ψλ〉

〈ψ∗η , ψλ〉
> 0 (7.11)

because ψ∗η is a strictly positive functional on (Y1)+ and therefore (7.9) is a strictly
decreasing mapping. In particular, we infer that r(K0) ≥ r(Kσ−σ) which leads to

r(K0) > 1 (7.12)

because (7.6). On the other hand, (7.11) implies that

|r(Kη)− r(Kλ)| ≤
‖ψ∗η‖Y ∗1
〈ψ∗η , ψλ〉

‖(Kη −Kλ)ψλ‖Y1

≤ 1
〈ψ∗η , ψλ〉

sup
ψ∈B
‖(Kη −Kλ)ψ‖Y1

=
1

〈ψ∗η , ψλ〉
sup
ψ∈B
‖(θη − θλ)Kψ‖Y1

≤ 1
〈ψ∗η , ψλ〉

sup
ϕ∈K(B)

‖(θη − θλ)ϕ‖Y1

≤ 1
〈ψ∗η , ψλ〉

sup
ϕ∈K(B)

‖(θη − θλ)ϕ‖Y1 ,

where B is the unit ball into Y1. Since K(B) is a compact set, then there exists
ϕ0 ∈ K(B) such that∣∣r(Kη)− r(Kλ)

∣∣ ≤ 1
〈ψ∗η , ψλ〉

‖(θη − θλ)ϕ0‖Y1

which leads to

lim
µ→λ

∣∣r(Kµ)− r(Kλ)
∣∣ ≤ lim

µ→λ

1
〈ψ∗η , ψλ〉

lim
µ→λ
‖(θη − θλ)ϕ0‖Y1 = 0
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and therefore (7.9) is a continuous mapping. Note that a similar computation leads
to

r(Kλ) ≤ ‖Kλ‖L(Y1) ≤ sup
ϕ∈K(B)

‖θλϕ‖Y1 = ‖θλϕ0‖Y1

and therefore
lim
λ→∞

r(Kλ) = 0. (7.13)

Finally, as (7.9) is a continuous and strictly decreasing mapping, then by (7.12)
and (7.13), there exists a unique λ0 such that

λ0 > 0 and r(Kλ0) = 1. (7.14)

Step II. In this step we prove that λ0 = ω0(UK), where ω0(UK) is the type of the
semigroup UK = (UK(t))t≥0. So, let λ ∈ σ(TK) such that Re(λ) ≥ 0. By virtue of
Lemma 7.1, there exists ψ 6= 0 such that Kλψ = ψ. This clearly leads to

|ψ| = |Kλψ| ≤ |θλ|K|ψ| = θReλK|ψ| = KReλ|ψ|

which implies that (KReλ)n|ψ| ≥ |ψ| for all integers n and therefore r(KReλ) ≥ 1.
This together with (7.14) lead to Reλ ≤ λ0 because (7.9) is a strictly decreasing
mapping and therefore (2.3) leads to

s(TK) ≤ λ0. (7.15)

Conversely. Applying (7.8) to λ0, it follows that Kλ0ψλ0 = ψλ0 with ψλ0 6= 0.
Following the proof of Lemma 7.1 (put g = 0 in (7.1) and (7.2)) we easily infer that
ϕ := ελ0Kψλ0 satisfies to

ϕ ∈W1 and − v ∂ϕ
∂µ

= λ0ϕ and γ0ϕ = Kγ1ϕ

which implies that TKϕ = λ0ϕ and therefore λ0 ∈ σp(TK) ⊂ σ(TK). Now, (2.3)
leads to

λ0 ≤ s(TK). (7.16)
Finally, (7.14) together with (7.15) and (7.16) and (2.4) imply that

ω0(UK) = λ0 > 0 and r(Kλ0) = 1. (7.17)

Step III. On one hand, (7.6) and (7.17) lead to

σ − σ < ω0(UK) (7.18)

because (7.9) is a strictly decreasing mapping. On the other hand, Proposition 6.2
and Theorem 6.3 imply the positivity of the semigroups UK = (UK(t))t≥0 and
VK = (VK(t))t≥0 which leads, by virtue of (6.9), to

e−tσ‖UK(t)‖L(L1(Ω)) ≤ ‖VK(t)‖L(L1(Ω))

for all t ≥ 0 and therefore

−σ + lim
t→∞

ln ‖UK(t)‖L(L1(Ω))

t
≤ lim
t→∞

ln ‖VK(t)‖L(L1(Ω))

t
.

Hence, we have
− σ + ω0(UK) ≤ ω0(VK) (7.19)

because of (2.2). Now, (7.18) and (7.19) achieve the proof. �
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Remark 7.3. Note that the choice of the functional framework L1(Ω) was natural
because ‖VK(t)ϕ‖1 denotes the bacteria number at time t; nevertheless, according
to a lot of modification, all the results of this work still hold into Lp(Ω) (p > 1).

8. Application and comments

Taking now the particular model (1.1)-(1.2) that is

∂f

∂t
= −v ∂f

∂µ
− σf t ≥ 0

vf(t, 0, v) = p

∫ ∞
0

k(v, v′)f(t, 1, v′)v′dv′ t ≥ 0

f(0, ·, ·) = ϕ ∈ L1(Ω),

(8.1)

where p ≥ 1 denotes the average number of daughter bacteria viable per mitotic.
T ensure the continuity of the bacterial flux for p = 1, the kernel of correlation k
must be positive and fulfils the normalization condition∫ ∞

0

k(v, v′)dv = 1 for all v ∈ (0,∞).

If K denotes the transition operator

Kψ(v) =
p

v

∫ ∞
0

k(v, v′)ψ(v′)v′dv′

then for all ψ ∈ (Y1)+ we have

‖Kψ‖Y1 =
∫ ∞

0

vKψ(v)dv = p

∫ ∞
0

(
∫ ∞

0

k(v, v′)dv)ψ(v′)v′dv′ = p‖ψ‖Y1

which leads to ‖K‖L(Y1) = p and therefore K is a bounded linear operator from Y1

into itself. Furthermore, if k is a continuous kernel, then K becomes compact which
leads to its admissibility because of Remark 3.4. Now, thanks to Theorems 5.1 and
6.3, we can say that the model (R) is well posed and admits, for all initial data
ϕ ∈ (L1(Ω))+, the following positive solution

f(t, ·, ·) = VK(t)ϕ t ≥ 0.

Remark 8.1. In [11, p. 475], there is an incorrect study of the model (8.1). Indeed,
the authors claim that there exists a unique solution f belonging to L1((0, 1) ×
(0,∞)) when 1 < p < 2 and they have proceeded as follows:

In order to use the easy case 0 < p < 1, the authors consider the change

f̃ = qµf

and say that the model (8.1) becomes

∂f̃

∂t
= −v ∂f̃

∂µ
− σf + (ln q)f̃

f̃(t, 0, v) =
p

qv

∫ ∞
0

k(v, v′)f̃(t, 1, v′)v′dv′

f̃(0, ·, ·) = qµϕ ∈ L1(Ω),

(8.2)
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where q > p is fixed. So, after some computations, the authors infer that the well
posedness of the model (8.2) follows from the boundedness of the multiplicative
operator

f̃ → (ln q)f̃

from L1(Ω) into itself. Actually, the previous model (8.2) is incorrectly computed
and the correct model is

∂f̃

∂t
= −v ∂f̃

∂µ
− σf + (v ln q)f̃

f̃(t, 0, v) =
p

qv

∫ ∞
0

k(v, v′)f̃(t, 1, v′)v′dv′

f̃(0, ·, ·) = qµϕ ∈ L1((0, 1)× (0,∞)).

(8.3)

Unfortunately, the operator

f̃ → (v ln q)f̃

is obviously not bounded or dissipative into L1((0, 1) × (0,∞)) and therefore we
cannot, by this way, infer any well posedness of the model (8.1).
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Addendum posted on June 24, 2013.

The author would like to make the following changes:
(1) Lemma 3.3 and Remark 3.4: (Kc) must be replaced by: ”‖KIω‖ < 1 for some
ω > 0 and ‖K‖ ≥ 1. Iω denotes the characteristic operator of the set (ω,∞).”
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(2) Relation (3.13) must be replaced by

ωK =

{
0 if (Kb) holds;
δK := inf{ω > 0 : ‖KIω‖ < 1} if (Kc) holds.

(3.13)

(3) Proof of Lemma 3.3: from “So, the compactness...”(Page 6 line 5) to “because
of (3.20)” (Page 7 line 1) and from “Finally, by (3.19)...” (Page 7 line 24) to the
end the proof, must be deleted.
(4) Corollaries 3.10 and 5.4: “Let K be a linear compact” must be replaced by
“Let K be a linear admissible”. The proof must be replaced by : “Proof: Obvious.”
(5) Page 20: from “In the sequel...to...result ” (Lines -7 to -4) must be deleted.
(6) Theorem 7.2: “K admissible” must be inserted in the preamble.
(7) Page 24: “T ensure...v ∈ (0,∞)” (Lines 10 to 12) must be deleted. “Further-
more...Ramark 3.4” (Lines 18 and 19) must be replaced by
“If p supv′≥ω

∫∞
0
|k(v, v′)|dv < 1 for some ω > 0, then K is an admissible operator.”

End of addendum.
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