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TRANSPORT EQUATION FOR GROWING BACTERIAL
POPULATIONS (I)

MOHAMED BOULANOUAR

ABSTRACT. This work deals with a mathematical study for growing a bacterial
population. Each bacterium is distinguished by its degree of maturity and its
maturation velocity. Here we study the limit case corresponding to infinite
maturation velocities. We show that this model is governed by a strongly
continuous semigroup. We also study the lattice and spectral properties of the
generated semigroup and we compute its type.

1. INTRODUCTION

This article deals with a bacterial population in which each bacteria is distin-
guished by its own degree of maturity p and its own maturation velocity v. At birth,
the degree of maturity of a daughter bacteria is p = 0. At mitotic, the degree of ma-
turity of a mother bacteria becomes y = 1. Between birth and division, the degree
of maturity of each bacterium is 0 < pu < 1. As each bacterium may not become less
mature, then its maturation velocity must be positive (0 < a < v < b < 00). So, if
f = f(t, u,v) denotes the bacterial density with respect to the degree of maturity
1 and the maturation velocity v, at time ¢, then

% = fvg—i —of, (1.1)
where 0 = o(u,v) denotes the rate of bacterial mortality or bacteria loss due to
causes other than division.

In most bacterial populations observed, there is often a correlation k = k(v,v’)
between the maturation velocity of a bacteria mother v/ and that of its bacte-
ria daughter v. The bacterial mitotic obeys then to the biological transition law
mathematically described by the following transition boundary condition

b
vf(t,0,v) :p/ k(v,o") f(t, 1,0")0" dv, (1.2)

where p > 0 denotes the average number of bacteria daughter viable per mitotic.
To ensure the continuity of the bacterial flux for p = 1, the kernel of correlation k
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must be positive and fulfils the normalization condition
b
/ k(v,0")dv =1 for all v € (a,b). (1.3)
a

The model - was introduced in [I2], where only a numerical study has
been made. The first theoretical studies of the model (L.1)-(L.2) were given in [5]
and [6], where we have proved that the model (L.1)-(L.2) is governed by a strongly
continuous semigroup provided that b < co. However, if b = oo, all claims of [5]
and [6] become no suitable which leads to a serious mathematical difficulty.

To show the extent of this difficulty (i.e., b = 00), we have studied the model
(LI)-(T.2) in the particular case k(v,v") = &,(v’) which corresponds to the perfect
memory law mathematically described by the following boundary condition

f(t,0,v) =pf(t,1,v) forallv e (a,b). (1.4)

We then proved, in [7], that the model — is well-posed if and only if p <
1. In other words, there are no solutions for the most interesting case p > 1
corresponding to an increasing number of bacteria.

In this work we study the case b = co. Furthermore, instead of using the biologi-
cal transition law given by , we consider a general biological law mathematically
described by the following boundary condition

F(£,0,0) = [Kf(t,1,)](v) for all v € (a,b), (1.5)

where K denotes a linear operator on suitable spaces (see Section 3).

According to 0 < a < b = oo, we have recently proved in [3] that the gen-
eral model (L.1)), is governed by a strongly continuous semigroup. However,
all claims and computations unfortunately depend on a > 0. Therefore, we are
naturally led to set the following question

What happens when ¢ = 0 and b = 0co?
The purpose of this work is to answer the question above as follows

2) Mathematical preliminaries

) The unperturbed model (i.e., ¢ = 0)

) Explicit form of the unperturbed semigroup

) Generation Theorem for the model (L.1]),
) Lattice property of the generated semigroup

) Spectral properties of the generated semigroup
) Application and comments

In the third Section, we consider the natural framework of the general model (1.1),
(1.5) which is L((0,1) x (0,00)) whose norm

1 o0
1£(t ) = / / (b 1,0) | dpado

denotes the bacteria number at time ¢. We show then that the unperturbed model
, (i.e., without bacterial mortality (o = 0)) is governed by a strongly
continuous semigroup whose explicit form is given in fourth Section. In fifth Section,
we prove that the general model , is governed by a strongly continuous
semigroup whose Lattice and Spectral properties are studied in sixth and seventh
Sections. The last section deals with an application to the model 7.

Finally, note the novelty of this work and for the used mathematical background,
we refer the reader to [8] and [9].
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2. MATHEMATICAL PRELIMINARIES

In this section, we are going to recall some useful mathematical tools about
strongly continuous semigroups of linear operators in a Banach space X. So, the
first one deals with the following known result

Lemma 2.1 ([9, Theorem III.1.3]). Let T be the infinitesimal generator of a
strongly continuous semigroup U = (U(t))i>0, on X, and let B be a bounded lin-
ear operator from X into itself. Then, the operator C' := T + B on the domain
D(C) := D(T) generates, on X, a strongly continuous semigroup (V(t));>0 given,
forallz € X, by
V(t)z = lim [e"=PU(L)]"z ¢ >0. (2.1)
n—oo
Let U = (U(t))¢>0 be a strongly continuous semigroup, on X, whose generator
is T. Following [0, Chapter IV], the type wo(U) is

U@ 0
m ——.

CUQ(U) = th P (22)
The spectral bound s(T") of the generator T is given by
3 T if o(T
) - [splRe). A oD} i o(T) 20, 0
—00 if o(T) = 0.

Generally, we have wo(U) # s(T). However, if X is an Ly space then
wo(U) = s(T) (2.4)
because of [13]. Next, if X denotes a Banach lattice space then, the positivity and
the irreducibility of the semigroup U = (U(t));>0 are characterized as follows
Lemma 2.2 ([8, Proposition 7.1 and 7.6]). (1) The semigroup U = (U(t))t>0
is positive if and only if the resolvent operator (A — T)~1 is positive for
some great .
(2) Suppose that the semigroup U = (U(t))i>0 is positive. It is irreducible if
and only if the resolvent operator (\—T)~! is irreducible for some great \.

3. THE UNPERTURBED MODEL (i.e., 0 = 0)

In this section, we are concerned with the unperturbed model , (i.e.,
without bacterial mortality (¢ = 0)). So, we are going to prove that this model
is governed by a strongly continuous semigroup Ux = (Ug(t))¢>0 which will be
perturbed to infer the well posedness of the general model , (see Section
5). Before we start, let us consider the functional framework L!({2) whose norm is

el = / (1, )| dys o, (3.1)

where Q = (0,1) x (0,00) := I x J. We also consider our regularity space

Wy ={pel'(®) vg—z €L'(Q) and wvp e L'(Q)}

and the trace space Y7 := L(J,vdv) whose norms are

Op o
leliwy = llvg -l + llvell - and - [¢]ly, =/ [ (v)|v dv.
12 0

Applying now [4, Theorem 2.2] to Q = (0,1) x (0,00) we infer that
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Lemma 3.1. The trace mappings vop = ©(0,:) and y1¢ = ¢(1,-) are linear
continuous from Wy into Yi.

Next, let Ty be the unbounded operator
0
Top = —v—w on the domain,
op
D(Tp) = {p € W1 v =0}
which makes sense because of Lemma [3.1] This operator corresponds to the model

(1.1), (L.5) without bacterial mortality (¢ = 0) and without bacterial division
(K =0). Some of its useful properties can be summarized as follows

(3.2)

Lemma 3.2.

(1) The operator Ty generates, on L*()), a strongly continuous positif semi-
group Uy = (Up(t))i>0 of contractions given by

Uo(t)p(p, v) = x(p, v, t)p(p — tv, v) (3.3)
where
)1 >ty
X(psv,t) = {0 if < to. (3.4)

(2) Let A > 0. Then (A —Tp)~! is a positive operator from L(Q) into itself.
Furthermore, for all g € L*(Q) we have

” Hng

1~ 10) gl < 19 (35)
lv(A = To)""glls < llglh- (3.6)
(3) Let A > 0. Then v1(\ — To)~! is a strictly positive operator from L'(Q)
nto Y.
(4) For all p € Wy, the following mapping
t = 11(Uo(t)p) € Y1 (3.7)

s continuous with respect to t > 0.

Proof. For all A > 0 and all g € L(€), a simple computation shows that

n/v
(A —To) g (u.v) = / e g4 — sv,v)ds
0

which easily leads to the points (1) and (2) and (3).
(4) Let ¢t > 0. Firstly, for all ¢ € Wy, we have ¢ = f + g, where [ := e(yo¢) and
g := ¢ — f with s(u, ) = e~ v. Easy computations show that

HU ||1 = [I£l < loellys and flofll < [loely,
which leads to f € W1 because of Lemma [3.1] Furthermore

lgllw, < llellw, + Ifllw, <oo and Y09 =70 —v0f =0

and therefore g € D(Tp).
Next, as Uy = (Uy(t))i>0 is also a strongly continuous semigroup on the domain
D(T}) of its generator, then we can write

limn [[U (¢ + h)g — Uo(t)g b,y = 0. (3.8)
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By virtue of Lemma [3.1] together with the fact that D(Tj) is a closed subspace of
W, it follows that

IMmUo(t+h)g = nUo(B)glly, < [lllUo(t +h)g = Uo()gllp(ry)

for all A > 0 and therefore
t — mUo(t)g (3.9)

is a continuous mapping with respect to ¢t > 0, because of ([3.8).
On the other hand, due to (3.3]) and (3.4)), it is easy to check that

71U (t + h)f = 11Uo(t) flly,
- / (L, v,t + hye =5 e
0

7X(17v7t>67 v ||70<)0(v)|ydv
for all A > 0 and therefore

t— nUo(t)f (3.10)

is a continuous mapping with respect to ¢ > 0.
Finally, writing (3.7) as follows

t — 1Uo(t)p = nUo(t)f +1Uo(t)g
we infer its continuity from those of the mappings (3.9) and (3.10). O

In the sequel we are going to study the model (1.1), , without bacterial
mortality (o = 0), modeled by the following unbounded operator

0
Ty = 022 on the domain,
ou

D(Tk) = {p € Wi; vop = Kv1¢}

where K denotes a linear operator from Y7 into itself. Note that has a sense
because of Lemma So, in order to state the main goal of this section, we are
going to prove some preparative results. The first one deals with the following
operator

(3.11)

K\ := K(0)), where 05(v) =e M, veJ=(0,00) (3.12)
which is going to play an important role in the sequel. So we have
Lemma 3.3. Let K be a linear operator from Yy into itself satisfying one of the

following hypotheses

(Kb) K is bounded and || K||z(v;) < 1;
(Kc) K is compact and || K| zv,) > 1.

Then, for all X > 0, the operator Ky is bounded linear from Y7 into itself. Further-
more, there exists a constant

ox 0, zf( b) holds (3.13)
>0, if (Kc) holds,
such that
A>wrg(nk) = ||K,\||[;(y1) <1, (3.14)

where k = max{1, | K|}



6 M. BOULANOUAR EJDE-2012/221

Proof. Firstly, note that the boundedness of K (A > 0) obviously follows from
PNy, < [[K[[[¢]ly,  for all ¢ € V1.
Therefore, if (Kb) holds, then we clearly have
A> 0= |K,|| <1 (3.15)

Suppose now (Kc) holds and let w > 0 be given. So, the compactness of the
operator K obviously leads to that of the operator K1, where I, € £(Y7) is the
following characteristic operator

L) = {w(v) if v > w; (3.16)

0 otherwise.
Hence, there exists a finite sequence (1;)Y% < B(0,1) C Y3 such that
1
K1, (B(o, 1)) c UfiﬁB(Kﬂwwi, 5), (3.17)

where B(0, 1) is the closed unit ball into Y;.
Now, for all ¢ € {1,---, Nk}, we clearly have

KLl < 1K [ o)l do
which implies that
lim [|KLilly, < | K] lim /oo Loths(0) o do = 0
w00 w00 Jo
and therefore, there exists dx ; > 0 satisfying
| KT,y < % for all w > dk ;.

Furthermore, if we set

0k :=max{dx; i=1,---,Ng} (3.18)
it follows that
Sk >0 (3.19)
and )
KT, S forallw> ok 3.20
e KLy, < 5 forallw > ok (3.20)

Next, let w > dx. For all ¢p € B(0,1) C Y7, implies that there exists
ig € {1,---, Nk} satisfying
KL € B(KLs, %)
which implies that
KLYy, < [IKLot — KLt llvy + 1K Lotillva

IN

1
- KT1;
oAt W L

and therefore

1
KL, = sup [[KL¥lly, <5+ max [[KLilly, <1
YeB(0,1) 2 ie{l,- Nk}
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because of (3.20). Hence, we can say that
IKL,|| <1 foralw>dk. (3.21)
On the other hand, let w > & and let I, € £(Y;) be the following characteristic

operator

) (3.22)
0 otherwise

- : {1/}(11) if v <w;

for which we clearly have
Yp=I,0+1,¢ and I2¢ =T,. (3.23)
So, for all ¢ € Y7 we have
Kyt = Kl + Lovy) = Ky (150 + Lov) = KL (03¢) + KL, (0x¢)
which implies that
I3[y, < KL (Lobat) vy + KL (039) Iy,
<KL (L0 llvy + KL (02 12
<KLy, + e 2 [ K| Ty,
< max{ [ KT, e[| K| H Tl + [T}
= max{|[KL[|, ¢ % K[}y,
for all A > 0, and therefore
KAl < max {[[ KT, e 1K)}
Now, clearly leads to
A>wh|K|| = |K\| < 1. (3.24)

Let A > O In||K|| be given. There exists w such that m > w > 0k which
implies that A > wln ||K|| and therefore || K| < 1 because of (3.24]). Therefore,
we can say that if (Kc) holds, then

A> 0 In||K|| = || K\l < 1. (3.25)

Finally, by (3.19) we can set that

{0, if (Kb) holds;
WK ‘=

0k, if (Kc) holds,

which obviously leads to (3.13)). Furthermore, (3.14)) clearly holds because of (3.15)
and (3.25)). The proof is now achieved. O

Remark 3.4. In the sequel, any linear operator K from Y; into itself is said to be
admissible if one of the following hypotheses holds

(Kb) K is bounded and || K|[zv,) < 1;

(Kc) K is compact and ||K||zy,) > 1,

The constant wg, given by (3.13)), is called the abscissa of the admissible operator
K. So, Lemma means that (3.14)) holds for any admissible operator K whose
abscissa is wi.

Now, we compute the resolvent operator of T as follows
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Proposition 3.5. Let K be an admissible operator whose abscissa is wx. Then

(wK In k; oo) C p(Tk). (3.26)
Furthermore, if A > wg(Ink) (k = max{1, |[K||}) then we have
A-Ti) lg=ex(I - Kn) 'K —To) lg+ (A= To) Yy (3.27)

for all g € LY(R), where ex(u,v) = e~ *v.

Proof. Let A > wi(Ink) and let g € L*(£2). So, the general solution of the following
equation

Ap=—v—+g (3.28)
is given by
o=exp+(N=Tp) g (3.29)
where 1 is any function of the variable v € J = (0,00). When ¢ € Y7, we claim
that ¢ belongs to Wi. Indeed, integrating (3.29)) and using (3.5)) we infer that
1 1
Il < 519l + 5 gl < oo

which leads, by virtue of (3.28)), to
dp
||v@||1 == Ae+gl < Alell + llglly < oo.

Once more, integrating (3.29)) and using (3.6) we obtain that
lveplly = [lvexyllx + lo(A = To) ™ gl
<19l + Mgl < o0

Hence, ¢ € W;. Furthermore, ¢ belongs to D(Tk) if y0 = K~vy1. Namely, ¢
satisfies

=K+ Evi(A-To) g
which admits, by virtue of (3.14)), the following unique solution

=T —-K\) 'Kyny(A\=Ty) lge. (3.30)
In order to achieve the proof, it suffices to put (3.30) in (3.29). |

Now we are able to state the main result of this section as follows.

Theorem 3.6. Let K be an admissible operator whose abscissa is wg. Then,
the operator Ty generates, on Ll(Q), a strongly continuous semigroup Uk =
(Uk()i=0 satisfying

[Uk (B¢l < ke< =B gl >0 (3.31)
for all o € L*(2), where k = max{1; ||K]||}.

Remark 3.7. Actually, the admissibility concept that we have gave in Remark[3.4]
is a particular case of a general and theoretical concept already defined in [IJ.
Accordingly, Theorem can be inferred from [I, Theorem 3.1]. However, taking
into account to the practical and biological aspect of this work, we prefer to give a
slightly different proof for the reader.
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Proof of Theorem[3.0. Firstly, let w > wg be given and let

lell|1 :/OOO/O lo(p, v) [ he (11, v) dpp do (3.32)

be another norm on L!(Q) where
hw(,u,v) — kmin{w%; 1}.
The norms (3.1)) and (3.32)) are equivalent because, for all ¢ € L'(Q) we have

el < Hllellls < Kllell- (3.33)

Next, let A > w(lnk) and let g € L'(2). Proposition means that ¢ =
(A —Tk)'g € D(Tk) is the unique solution of the following system

dyp
Ao = —v— 3.34
=g, +g (3.34)
Yoy = K1 (3.35)
So, multiplying (3.34) by (sgn ¢)h, and integrating it over €2, we obtain that
Alllel
_ ¢
== | (05 ) (1 0)ho(p,v) dpdv + | sgne(u, v)(hug)(p,v) dudv
Q 1 Q
ool (3.36)
< — [ ) vl ) diao + gl
o Ou
= A+|llglll
Integrating A by parts and using (3.35)) we infer that
A= [ hapiwlvd = [t lods
oh
+ [ 0500 )] dude
Q 12
— [ hovtlvdo = [ plhup@lvas
0 0
(3.37)

+ /Q (v%m,v)\w(u,v)\dﬂdv
- / K yo(o)wdv - / (o) ()]0 do
0 0

oh,
+ [ 0500l )] dude
o Ou
= A1 — A2 + A3.
Applying (3.23)) together with (3.16) and (3.22) for ¢ = y1¢ € Y7, it follows that

A= [ (1) + L) )(@)lodo
S/o \K(Hw(ylgp))(v)\vdv—i—/o |K(ﬁw(fyl<p))(v)|vdv
< [ 1K) lvdr 1) [ 1L @lvds
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= 115 (Lo (03 (150) ) (19)) Iy, + I s (1) Iy,

because of (0,\/ (’ylhw))(v) =1 for all v € (w,00), where 6/ is given by (3.12) for
N =w(Ink). Hence

Ay < B0y (L (ho)) Ivs + 1K NI (1) s

= 1K (T (ho) s + 1K a2,

< JEx Ty (ho@) vy + KT (i) llva
and therefore

Ap < [Ty (ho) vy + 1K (1) Iy, (3.38)
because of (3.14). Once more, applying (3.23) together with (3.16)) and (3.22)) for
¥ = |71 (hwp)| € Y1, we infer that

Ar= [ (L)l + L)) @udo
— [ ntupedo+ [ Lnbo) o) @lods
0 0

= [ el do+ k[l
0 0

and therefore

Az = [[Tom (o) vy + ElIT (v160) 134 - (3.39)
Next, for almost all (u,v) €  we have
dhe, 0 |k ifwh <1
(Uau)(mv)—vau({k ifw%>1)

_ Jwnk)kev  ifwl <1
o if wt > 1

v ifwl <1
<w(1nk){k ifw2>1

which leads to
oh,,

(UW

) <w(lnk)hy,.

Hence

Az < w(Ink)l||oll]1- (3.40)
Replacing now (3.38)) and (3.39) and (3.40) into (3.37) we infer that

A <w(nk)|[lellx
which we put into (3.36)) to finally get that
o gyt < gl
el = 1103 = )l < I

On the other hand, (3.26)) obviously leads to p(Tk) # 0 and therefore Tk is a closed
operator. Furthermore, Tk is densely defined because of C.(Q2) C D(Tx) C L*(Q).
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Now, thanks to Hille-Yosida Theorem, the operator Tx generates, on L(f2), a
strongly continuous semigroup Ux = (Uk (t))>0 satisfying

Uk @l < e™ el t>0 (3.41)

for all p € L'(). As w (w > wg) is arbitrary chosen, then passing at the limit
w — wg in (3.41)) we obtain that

11Uk el < e Bl ¢ > 0. (3.42)
Finally, in order to archives the proof, it suffices to infer (3.31)) from (3.42)) together
with (3-33). O

Now, let us infer some interesting Corollaries.

Corollary 3.8. Let K be a bounded linear operator from Yi into itself such that
|K|| < 1. Then the operator Ty generates, on L*(S), a strongly continuous semi-
group Ug = (Uk (t))t>0 of contractions; i.e.,

Uk @)l < lelli t=0
for all p € L*(Q).
Proof. Thanks to Remark the hypothesis (Kb) holds and therefore K is an

admissible operator whose abscissa wx = 0 because of (3.13]). Now, it suffices to
apply Theorem [3.6] for wx =0 and k = 1. a

Remark 3.9. According to Corollary [3.8 we infer that

Uk )pllh = Uk (t = s)Uk (s)pll1 < [[Uk(s)ellr

for all initial data ¢ € L(f), where t and s (t > s) are two arbitrary times.
Namely, the unperturbed model , (without bacterial mortality (o = 0)),
corresponding to Corollary [3.8] is biologically uninteresting because the bacteria
number is obviously decreasing.

In contrary to Remark [3.9] we can say that || K|| > 1 corresponds to an increasing
bacteria number during each mitotic. Hence we have

Corollary 3.10. Let K be a linear compact operator from Yy into itself such that
|K|| > 1. Then, the operator Ty generates, on L*(Q), a strongly continuous semi-
group Ux = (Uk (t))i>0 satisfying

1UK (&)l < KK [lplly ¢t =0
for all o € L*(), where wg > 0 is abscissa of the operator K.

Proof. By virtue of Remark we infer that the hypothesis (Kc) holds and there-
fore K is an admissible operator. Furthermore, its abscissa wx > 0 because of
(3.13). Now, Theorem [3.6| together with k = || K || achieve the proof. O

4. EXPLICIT FORM OF THE UNPERTURBED SEMIGROUP

The purpose of this section is to find the explicit form of the semigroup Uxg =
(Uk(t))e>o0 which will be very useful to describe the asynchronous exponential

growth related to the model (1.1)), (1.5]).
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Theorem 4.1. Let K be an admissible operator whose abscissa is wyg. Then, for
all p € LY(Q), we have

Uk(t)e =Uo(t)p + Ax(t)p t=0, (4.1)
where the operator Ak (t) is defined by
Are Bk, v) = &, 0. DK (Ut = £)0) () (4.2)
with
)0 ifp >t
€l 1) = {1 . (1)

Proof. Let A > wi(Ink) be fixed, where k = max{1, ||K||}. In the sequel, we are
going to divide the proof in several steps.

Step I. Let L} := L* (A, e’\x/”) be the weighted Banach space whose norm is

Iy = [ 10l dodo,
A
where A = (—00,0) x (0,00). Let Hg and Vi be the following linear operators
Hic f(w,0) o= K (€01, —av™ ) f(1+ 2070, ) ) (o)
Vikp(z,v) := K(’leo(—xv_l)ap> (v).

So, for all f € L3,
Sy = [ OOO / "I (80 —av ) w0 )) @) drdo
= /OOO [/Oo K (€01, 0 f(1 = 1)) ()| dv] et

0

— /O‘X’ [/ooo |K(9)\(97Af(l,.’t)f(l _t.7.)>(v)|vduj|€_>\tdt
— /Ooo [/OOO |K>\(9_>\£(17.7t)f(1 *t"')>(v)\vdv]eﬂtdt

because of (3.12)). Due to the boundedness of the operator K (see Lemma we
infer that

o0 o0 A B
1Hic oy < 1KAleon) / / e 0. t)|f (1 — tv,v)|e v dudt
0 0

(-a)

o 1
—alley [ [ e D) o)l M dods
0 —o0

oo 0
~Wlewy [ [ 1 o)l dade
0 —0o0

= [ ey 111y

and therefore
[1Hrkllzry < 1EKMen)- (4.4)
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On the other hand, for all ¢ € L'(Q) we have

o) 0
Vel :/o / |K(71Uo(—xv_1)<p) (v)[e /Y dx dv
— 00

< /OOO[/OOO |K(71U0(t)¢) (0)]v doldt
§\|KH£(Y1)/O /0 \(Von(t)ga)(v)lvdtdv

which leads, by virtue of (3.3] @ ) and (| @ to

IVicollz < 1K e / / (1 — to,0)|vdtdv

= HKHﬁ(Yl)/O / (1,0, S o, v) | dpe do
oo 1
:HKHaYn/O /0 o, 0)| dpa dv

IViellry < IKllzaallellh-
Now, together with and imply that the problem
J=Hkf+Vky
admits, for all ¢ € L'(Q), the unique solution
fE=U-Hg)'Vkpe Ly

and therefore

satisfying

1Kl 2va)
15 < ——=——loll1.
AT L= Kl ey

Furthermore
pel'(Q) — fKerL)

is a linear mapping because of those of the operators Hx and Vi.

13

(4.5)

(4.6)

(4.9)

Now we can say that : If A\ > wg(Ink) then, for all ¢ € L*(Q) the problem
(4.6) admits the unique solution (4.7) satisfying (4.8)). Moreover (4.9) is a linear

continuous mapping from L' () into L.

Step II. Thanks to the step I, we can define the following operator
Bic (D v) = (1, 0,8) fX (1 — to,v) £ 0.

Note that the linearity of the operator Bg (t) follows from that of (4.9)).

First, let ¢ > 0. For all ¢ € L1(Q) we have

IBx(t)gl = /st,v,mff (4 — tv,0)| dps

oo tv
<[ 1 e ) duas
// xv\e ) da do
—tv
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which implies that

s} 0
1Bl < [ [ 1Sl deds (4.10)
—tv
and therefore
Kl vy
B t g 6>\t fK 1 é e)\t”—l
Bk ()¢l 1f Izt T IIlelg(mH@”l

because of (4.8). Hence, B(t) is a bounded operator from L!(Q) into itself.
(¢-10]

Furthermore, (4.10]) obviously leads to

tli%l IBx(t)e|li =0 and Bg(0)=0. (4.11)
—04
Next. For all ¢ € W; we have
[ uBictoto) - K Be(®ote) — Knatioyelo)wdeo
O e e
= / / \ff(—tv, v) — HKff(—tvm) — Vip(—tv, v)|vdtdv
o Jo

= /A |f5 (,v) = Hi f5 (2,0) = Viep(x,v)| dadv = 0

because ff is the unique solution of the problem (4.6)) and therefore
0Bk ()¢ — KBk (t)p = EmUs(t)p ae t R, (4.12)

Due to the continuity of the mapping (3.7)), it follows that (4.12]) holds for all ¢ > 0;
ie.,
YoBk (t)p — Kv1 Bk (t)p = Ky Ug(t)p forall t € Ry. (4.13)

Now we can say that : for allt > 0, Bg/(t) is a bounded linear operator from L' (£2)

into itself satisfying (4.11)) and (4.13).
Step III. Thanks to the step II together with Lemma we can define the
following operator

Sw(t) = Up(t) + Bx(t) t>0 (4.14)

which is clearly linear and bounded from L!() into itself.
First, let ¢ € LY(Q). By virtue Lemma|3.2[1) together with (4.11)) we infer that

Sk (0) = Up(0) + Bk (0) = Up(0) = 1, (4.15)
where I is the identity operator into L'(2), and
lim [|Sk (t)p —¢lly < lim [Us(t)¢ — ¢lls + lim [[Bk(H)els =0.  (4.16)
t—04 t—04 t—04
Next, let t > 0 and let ¢ € Wi. Due to (4.14) we obtain
W
(0,070 (Siclt = £)p) (v)
_ _HK _K
= (0070 (Uolt = £)0) (v) + (v, 170 (Bie (= B)) (v)
for almost all (u,v) € Q. However, (3.3) together with (3.4) and (4.3) lead to
_H -
& vt (Uolt =)o) () = 0

(4.17)
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for almost all (i1,v) € Q, and therefore becomes
& vt (Sx(t = £)p) (0) = &l v. 70 (Bt = By (v)
= (.0, )Be(t = £)p(0,0)
- E(M, U, t)f;((,u' — v, v)'

Hence
(v 170 (St = £)0) (v) = Bre(®)p(n.v) (4.18)
for almost all (u,v) € Q.
On the other hand, and imply that
Y05k (1) — K71 Sk(t)p = 10Uo(t) + 0Bk (t)p — KmUo(t)p — KmBk(t)e
=Bk (t)p — KmUo(t)p — K71 Bk (t)p =0
for ¢ > 0 and therefore

E(u v, )70 (Sk(t — £)¢) (v) = &(n, v, 8) (K11 Sk (t — £)¢) (v) (4.19)
for almost all (i, v) € Q. Hence
Br(t)e(p,v) = &(u, v,1) (K11 Sk (t = £)p) (v) t=0 (4.20)

because of and . Moreover, the density of Wy in L'(Q2) implies that
holds too for all p € LY(Q).
Now we can say that : for all t > 0, Sk (t) given by (4.14), is a bounded linear

operator from LY(QQ) into itself satisfying [A.15) and . Furthermore, (4.20)
holds for all p € L'(Q).

Step IV. In order to prove that (Sk(t)):>0 is a strongly continuous semigroup it
remains, by virtue of the step III, to show only that

G(t,s) == Sk(t)Sk(s) = Sk(t+s) =0 forallt>0andall s> 0.
So, let t > 0 and s > 0 and let p € L'(Q). By virtue of (3.3)) and (4.14) and (4.20)),

a simple computation leads to

G(tv S)@(N’a ”U) = 5(/17 v, t) (KVIG(t - %’ 8)90) (’U) (421)
for almost all (u,v) € Q.
First, applying the trace mapping 1 to (4.21) and integrating it, we obtain that

/OO /°° AT NG (L, 5)p(v)|vdtdy

0 0

= /OO /Oo e/\(%—t)ﬁ(l,v,t”(K’YlG(t — %73)90) (v)|odtdu
0 _Jo .

/0 e*/\l’[/o |K<71G(x,s)<p) (v)|v dv]dm

_ /Ooo oo [/OOO | K (H_XylG(z, s)<p) (v)|v dv] dz

because of (3.12)). Due to the boundedness of the operator K (see Lemma , it
follows that

IN

[e.e] oo i
/ / D Gt 5)p(v)|odtdu
0 0
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<l [ e / " Jo-s (G, s)o) @) o] de
= ||K>\H/ / x)h1G(m,s)<p(v)|vd:cdv

which leads, by virtue of - to
71G(t,s) =0 forallt>0andall s>0. (4.22)
On the other hand, integrating (4.21]) we obtain that

[ 16 et vl dunde = [ v, 01K (1t~ ,9)0) )] e

= [T [ 16t - 900 duae
_ /OOO /Ot 1K (G, 9)) ()l dz do
=0

because of and therefore G(t,s) = 0 for all £ > 0 and all s > 0.

Now we can say that: the family operators (S (t))i>0 is a strongly continuous
semigroup on L*(Q).
Step V. To achieve the proof, it suffices to show that the semigroups (Sk(t))¢>0
and (Uk(t))i>0 are equal. So, let us suppose that B denotes the generator of the
semigroup (S (t))i>o0-

First, let ¢ € L(Q). Due to (4.14)) and (4.20) we infer that
o0
| e Scttetnvyar
0

= [ e e e + / My, 1) [KnSiclt — 2] (v)dt

0

= [ ety e [N o Sicloye] ()
0 0

- / e’AtUO(t)ga(u,fu)dt+5A(u,v)K71[ / e’MSK(t)gpdt](v)
0 0

for all almost (u,v) € €2, and therefore
A=B)lo=a k(A -B) o+ (A =Ty e (4.23)
Applying 9;171 to both hand side of we obtain
05 (A —B) e =61"m (exK%(A - B)‘lw) +O (A —To) e
=05 0K (A = B) o+ 05 (A - To) e
=Kvi(A=B) lo+ 0 (A -To) 'y
= K0\0,'v1(A — B) to + 0, (A —To) e
which leads, by , to
05 (A= B) o = Kab (A = B) o+ 07 (A = To) e
and therefore

A= B) Tl =0\ — Kx) 705 (A= To) o (4.24)



EJDE-2012/221 TRANSPORT EQUATION 17

because of (3.14). Putting now (4.24) into (4.23) we infer that
A =B) lo=exKO\(I — K\)7'0, ' (A = To) Lo+ (A = To) Lo
= Ko(I - K\) 7' A —To) to+ (A —To) '
=ex(I — K\) 'K\ (A = To) to + (A —To) .

Hence
(A= B) o= ex(— Kn) KO -To) ot (- To) Np. (425)
Finally, (3.27) and ([4.25)) obviously imply that (A—Tx)~! = (A—B)~! and therefore

Uk(t)p=Sk(t)p t>0 (4.26)

because of the uniqueness of the generated semigroup. Now, in order to achieves

the proof, it suffices to infer (4.1)) and (4.2) from (4.14) and (4.20) together with
(4.26)). O

5. GENERATION THEOREM FOR THE MODEL ([L.1)), (1.5

The main goal of this section is to prove that the general model (1.1), is
governed by a strongly continuous semigroup Vi = (Vi (t))i>0 as a linear pertur-
bation of the unperturbed semigroup Ux = (Uk(t))i>0 already studied. To this
end, we suppose that the rate of bacterial mortality fulfills the hypothesis

(Hy) o€ (L=())

and we denote

+

o =essinf(, yeqo(p,v) and T :=esssup(, ,)cq (K, ). (5.1)
Thanks to the hypothesis (H, ), the perturbation operator

Se(p,v) == —o(p,v)e(p,v)  (1,v) € Q

is obviously linear and bounded from L' (2) into itself. So, let Lx be the unbounded
operator

Ly :=Tg+ S
D(Lkg)=D(Tk)
closely related to the model (1.1}, (1.5)), and for which we finally have

Theorem 5.1. Let K be an admissible operator whose abscissa is wg. If the
hypothesis (H,) holds, then the operator Ly generates, on L*(Q), a strongly con-
tinuous semigroup Vg = (Vi (t))i>0 satisfying

IVic (D)l < ket x5 o]l ¢ >0
for all p € L*(), where k = max{1; ||K||}.

Proof. As L = Tk + S is a bounded linear perturbation of the generator Tk, it
follows by virtue of Lemma that Lx is a generator of a strongly continuous
semigroup denoted Vi = (Vi (t))t>0 satisfying

Vi(t)p = lim [e 7" Uk (=)]"¢ t>0

t
n—00 n
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for all ¢ € LY(€). Using the norm (3.32) together with (3.42) and the hypothesis
(H,) we infer

A n .
Vi @llly < Tim [e=mnebonmB]7 g = etlexmk=a)|jjg|),.
Now ({3.33]) completes the proof. O

Let us end this section with some interesting Corollaries.

Corollary 5.2. Let K be a bounded linear operator from Yi into itself such that
| K|l < 1. If the hypothesis (H,) holds, then the operator Ly generates, on L'(€2),
a strongly continuous semigroup Vi = (Vi (t))i>0 satisfying
Ve (@®)ellr < e el t=0
for all p € L1(Q).
The proof of the above corollary is similar to that of Corollary[3.8] and is omitted.

Remark 5.3. Corollary means that the general model (1.1)), (1.5 correspond-
ing to the case ||K|| < 1 is biologically uninteresting because the bacteria number
is decreasing. Indeed, if ¢ and s (¢t > s) are two arbitrary times, then we have

IVie(t)elh = Vi (t = s)Vie(s) el < e 2| Vi ()l < Vi ()l
for all initial data ¢ € L1(€).
In contrary to Remark we understand that ||K|| > 1 is closely related to

an increasing bacteria number during each mitotic. This is the most observed and
biologically interesting case for which we have

Corollary 5.4. Let K be a linear compact operator from Yy into itself such that
| K| > 1. If the hypothesis (H,) holds, then the operator Ly generates, on L'(€2),
a strongly continuous semigroup Vi = (Vi (t))i>0 satisfying

Vi (@)@l < IKNIK[I“<=Dplli ¢>0
for all o € L*(Q2), where wr > 0 is abscissa of the operator K.

The proof of the above is similar to that of Corollary and it is omitted.
PAGE 18

6. LATTICE PROPERTY OF THE GENERATED SEMIGROUP

In this section we are concerned with the lattice properties of the generated
semigroup Vi = (Vi (t))i>0. These properties can be inferred from those of the
linear operator

K\ := 05K, where 05(v) =e ", wveJ=(0,00) (6.1)

which is going to play an important role in the sequel. So, before we start, let us
note that K (A > 0) is clearly a bounded operator from Y; into itself because, for
all ¥ € Y we have
KAy < K[y, < K]y, -
Despite the obvious difference between and , both operators are re-
lated by the following result.

Lemma 6.1. Let K be an admissible operator whose abscissa is wg. If K is
positive, then
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(1) Kx (A >0) is positive too. Moreover, if A\ > wi (Ink) then
(I —Ky)"'K >Ky for all integers n > 1, (6.2)

where k = max{1, | K|}
(2) Furthermore, if K is irreducible, then K is also irreducible.

Proof. (1). Let A > 0. Firstly, it is easy to see that the positivity of K follows
from that K. Furthermore, we obviously have

K > K. (6.3)
Next, as we clearly have K\ K = KK, it follows by induction that
KUK = KK, for all integers n > 1. (6.4)
Therefore, if A > wg (Ink), then (3.14), and lead to
(I-K\"'K=Y Ki'k=Y KK\ >KK >EK,
m>0 m>0

for all integers n > 1.
(2). Firstly, let M be a closed ideal in Y7 such that

K\(M) c M. (6.5)

By virtue of the characterization of closed ideals in L;-spaces (see [0, pp.309]), there
exists A C J such that

M={¢y eYy;¥(w)=0ae veA}
So, for all ¢ € K (M), there exists ¢ € M such that ¢ = K. This implies that
(9)\@ = 9,\K’(/) :F,\’gb eM

which leads to ¢ € M and therefore K(M) C M. Now, by virtue of the irreducibil-
ity of K, we obviously infer that

M=0 oo M=Y; (6.6)
and therefore, Ky is irreducible because (6.5) holds only for . (I
Now, the lattice properties of the semigroup Ux = (Uk(t))i>0 are given as

follows.

Proposition 6.2. Let K be an admissible operator whose abscissa is wg . If K is
positive, then

(1) The semigroup Ux = (Uk(t))i>0 is also positive.

(2) Furthermore, if K is irreducible then Ux = (Uk (t))i>0 is also irreducible.

Proof. (1) Let A > wi(Ink) and let ¢ € (L'(Q2))4. Thanks to the second and the

third point of Lemma we infer that (A — 7o) "1 > 0 and v (A — Tp) "te > 0.
This together with (3.27) and (6.2) imply

(A —=Tg) Yo > exKayi(A—Tp)"t¢ for all integers n > 1 (6.7)
and therefore (A — Tk ) ¢ > 0 because of the positivity of the operator Ky (see
Lemma . Now, the positivity of Ux = (Uk(t))i>0 follows from the first point
of Lemma

(2) Let A > wi(Ink) and let » € (L*(Q2))+ be such that ¢ # 0. Thanks to
the third point of Lemma we infer that v (A — Tp) "ty is a strictly positive
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function. As K is an irreducible operator (see Lemma [6.1]) then, there exists an
integer m > 1 such that

KX =To) Yp(v) >0 ae ve (0,00). (6.8)
Putting now n = m into we infer that
(A= Tk) ™ o(u,0) > ex(p, ) By n(A = To) 'o(v)  ae. (u,0) €Q
which leads, by virtue of (6.8]), to
A —Tx) o(u,v) >0 ae. (u,v)€Q

and therefore the irreducibility of (A — Tk )~! follows. Finally, the second point of
Lemma [2.2|leads to the irreducibility of Ux = (U ())s>0- O

Now, the main resutl of this section is as follows.

Theorem 6.3. Let K be an admissible operator whose abscissa is wg and suppose
that (Hy) holds. If K is positive, then

(1) The semigroup Vi = (Vi (t))i>0 is positive satisfying
e UKt < Vk(t), t>0 (6.9)
where T is given by (5.1]).

(2) Furthermore, if K is irreducible, then Vi = (Vi (t))i>0 is also irreducible.

Proof. (1) Let t > 0 and let ¢ € (L'(2)). By the first point of Propositionwe
obtain the positivity of the semigroup Ux = (Uk (t));>0 which leads to

[eiﬁaUK(t)]ngp € (LY(Q))y for all integers n € N,
and therefore
e UK () < {6_%UUK(%)F<,0 for all integers n € N.
Passing at the limit n — oo and using , we infer that

e UK (t)p < Vi (t)g

and therefore the positivity Vi = (Vk (¢))i>0 and follow.
(2) The irreducibility of the semigroup Vi = (Vi (t))i>0 obviously follows from

that of the semigroup Ux = (Uk(t))i>0 (Proposition together with . O

7. SPECTRAL PROPERTIES OF THE GENERATED SEMIGROUP

The purpose of this section is to compute the type wo(Vk) of the semigroup
Vi = (Vi (t))e>0. This will be obtained through spectral properties of the operator
K given by .

In the sequel, we suppose that the operator K is compact from Y7 into itself.
Thanks to Remark K is then an admissible operator whose abscissa is denoted
by wg. Therefore, all results of this work hold. So, let us start by the following
preparative result.

Lemma 7.1. Let K be a compact operator from Y7 into itself and let A € C be
such that Re A > 0. Then we have

)\EO’(TK):>1€UP(F)\).
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Proof. Let A € C be such that ReA > 0 and let g € L*(2). If 1 € p(K ), then the
equation

v=Kxp+mn(A-To) g (7.1)
admits a unique solution ¥ € Y;. So, let ¢ be the function
p=axKy+(\-To) g (7.2)
On one hand, simple computations together with (3.5) and (3.6) infer that
1 1
llelle < SIE N llya + 1 llgll < oo (7.3)
and )
ol = K¢y, + lv(A = To) " gllx (7.4)
< [#llvy +llgll < oo.
Moreover, we have
A —&—va—(p = +v£(e K¢+ (\=Ty) ')
¥ EN =A@ EW A o) 9
=Xp =Ky = AA-Tp)lg+g=g
and therefore 5
¥
IIU%IM = =2 +gl < Mell +llglh < oo (7.5)
So, we have ¢ € W; because of (7.3)), (7.4) and (7.5).
On the other hand, (|7.1)) and (7.2)) lead to
Yop = Ktp = K [K ¢ + 71 (A—Tp) g
= Ky [exKv + (A = To) "'y
= Ky
which implies that ¢ € D(Tk) and therefore (A — Tk ) is an operator with bounded
inverse. Hence, we have A € p(Tk). O

Now we are ready to state the main result of this section.

Theorem 7.2. Let K be a positive, irreducible and compact operator from Y7 into
itself such that

’I"(Fﬁfg) > 1. (76)
If (H,) holds, then the type wo(Vi) of the semigroup Vi = (Vi (t))i>0 satisfies to

where ¢ and & are given by (5.1]).

Proof. We divide this proof into several steps.

Step I. Let A > 0. Due to Lemmal6.1] we infer the positivity and the irreducibility
of the operator K . Furthermore, its compactness follows from that of the operator
K. So, thanks to [10] we infer that (K ) > 0 and there exists a quasi-interior vector
¥y of (Y1) and a strictly positive functional 4§ € (Y7*)4 such that

Ky =r(Kx)¢n and Ky} = r(K)v (7.8)

with [[¥ally, = [¥3]ly, = 1, where K, is the adjoint operator of K. Now, we
claim that -
A>0—r(Ky) (7.9)
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is a continuous and strictly decreasing mapping. So, let A > n > 0. First, for all
¥ € (Y1)4+ we have

Kot = 0\Kvp = 0x 0, Ko < 0, K¢p = K¢
and therefore

K, — Ky > 0. (7.10)
Using ([7.8) for A and for n we obtain that

(K n)

rr(K"']) - T(F)\) = <¢* w}\> - T(K)\>
?77
o <¢;,F,7’(/),\> (K
W)Y

(p, Kabn) (5, (Ky — Kx)iha) —

N < ;;777[1>\> " < 7*77w>\> _T(K/\)
L (B R
r(Ky) + e r(Ky)
which leads, by 7 to
W) —r(y) = L = BV (7.11)

< 7,#%\)

because vy is a strictly positive functional on (Y1) and therefore (7.9) is a strictly
decreasing mapping. In particular, we infer that 7(Ko) > r(Kz_,) which leads to

r(Ko) > 1 (7.12)
because (7.6). On the other hand, (|7.11)) implies that
= = 1sllyy = =
[r(Ky) —r(K))| < 75 1K — Kx)vally
< 777w>\>
1 _ _
< sup |[(K, — K))y
< ;';,’l/},\> wEBH( n )\) ||Y1
1
= sup |[(6, — 0x) K
< ;§,¢,\> b H( n A) ||Y1
1
< sup |[(0 — Ox)elly
(5, 0A) per(B) !
1
< 7——— sup_[[(fy = Ox)¢llvi,
( 77’1/’/\> 0eK(B)

where B is the unit ball into Y;. Since K(B) is a compact set, then there exists

o € K(B) such that
1

Ir(Ky,) —r(Ky)| < m

1(0 — 6x)ollvy
which leads to

lim |[r(K,) —r(Ky)| < lim

1
—— lim ||(6,, — 0 =0
g #_))\< - w}\> #_))\”( n >\)<p0HY1

n’



EJDE-2012/221 TRANSPORT EQUATION 23

and therefore ([7.9)) is a continuous mapping. Note that a similar computation leads
to

r(Kx) < |Kalleony £ sup [10x¢llvy = [10x00llvs
peK(B)

and therefore
)\lim r(Ky) =0. (7.13)
Finally, as (7.9)) is a continuous and strictly decreasing mapping, then by ([7.12)
and (7.13)), there exists a unique \g such that
Ao >0 and T(FAO) =1. (714)

Step II. In this step we prove that Ag = wo(Uk ), where wo(Uk) is the type of the
semigroup Ug = (Uk(t))t>0. So, let A € 0(Tk) such that Re(A\) > 0. By virtue of
Lemma there exists 1) # 0 such that Kt = 1. This clearly leads to

W] = [Ka| < 0AK Y] = 0 K[| = Kreal?)|
which implies that (Kgex)"[%| > || for all integers n and therefore r(Kgey) > 1.

This together with ([7.14]) lead to Re A < Ag because ([7.9) is a strictly decreasing
(2.3

mapping and therefore (2.3)) leads to
s(Tk) < Ao (7.15)

Conversely. Applying (7.8) to Ao, it follows that K1, = ¥, with ¥y, # 0.
Following the proof of Lemma [7.1] (put g = 0 in (7.1 and (7.2)) we easily infer that
@ 1= ex, K1y, satisfies to

0
peW; and - v% =Xy and vy =K
which implies that Tk = Agp and therefore A\g € 0,(Tk) C 0(Tk). Now, (2.3)

leads to

)\0 S S(TK). (716)
Finally, (7.14) together with (7.15)) and (7.16]) and (2.4]) imply that
wo(Ug) =X >0 and r(K,,)=1. (7.17)

Step III. On one hand, (7.6)) and (7.17) lead to

7 —a <wy(Uk) (7.18)
because (7.9)) is a strictly decreasing mapping. On the other hand, Proposition
and Theorem imply the positivity of the semigroups Ux = (Uk(t))i>0 and
Vi = (Vi (t))i>0 which leads, by virtue of (6.9), to

e UK )l e ) < IV @)lle @)

for all t > 0 and therefore
In || Ugk (¢ 1 In ||V (¢ 1
n || Uk ( 1||L:(L ) < im n [V ()l e(r @)

T t—oo t

-0+ tlim

Hence, we have
—E-I-WO(UK) < WQ(VK) (719)
because of (2.2]). Now, (7.18) and ([7.19) achieve the proof. O
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Remark 7.3. Note that the choice of the functional framework L*(£2) was natural
because ||Vk (t)pl|l1 denotes the bacteria number at time ¢; nevertheless, according
to a lot of modification, all the results of this work still hold into LP(£2) (p > 1).

8. APPLICATION AND COMMENTS

Taking now the particular model (1.1)-(1.2) that is

of  of
i fv% —of t>0
of (£,0,0) = p / T b, o) f( L) >0 ®.1)
0
.f(07 ) ) =pc Ll(Q)a

where p > 1 denotes the average number of daughter bacteria viable per mitotic.
T ensure the continuity of the bacterial flux for p = 1, the kernel of correlation k
must be positive and fulfils the normalization condition

/ k(v,v")dv =1 for all v € (0,00).
0

If K denotes the transition operator

Ky(v) = b /000 k(v,v") (v )0 do’

v

then for all ¢ € (Y1)1 we have

1Ky, = / WK p(v)dv = p / </0 kv, )do)p (0 ) do’ = pll¢lw;

which leads to || K|z(y,) = p and therefore K is a bounded linear operator from Y}
into itself. Furthermore, if k is a continuous kernel, then K becomes compact which
leads to its admissibility because of Remark [3.4. Now, thanks to Theorems and
we can say that the model (R) is well posed and admits, for all initial data
¢ € (L*(92))4, the following positive solution

ft,)=Vk@t)p t>0.

Remark 8.1. In [I1] p. 475], there is an incorrect study of the model . Indeed,
the authors claim that there exists a unique solution f belonging to L'((0,1) x
(0,00)) when 1 < p < 2 and they have proceeded as follows:

In order to use the easy case 0 < p < 1, the authors consider the change

f=d"f
and say that the model (8.1) becomes
of  of =
—_— = =) — — 1

6,00 = ;;U /OOO k(v, o) f(t, 1,0 )’ dv/ (8.2)

f(O, * ) =q"p € L1<Q)’
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where g > p is fixed. So, after some computations, the authors infer that the well
posedness of the model (8.2) follows from the boundedness of the multiplicative
operator

f—(ng)f

from L'(Q) into itself. Actually, the previous model (8.2)) is incorrectly computed
and the correct model is

83{ vg—af—i—(vlnq)f

f(t,0,0) = /kvv f(t, 1,070 do’

f(0.- ‘)—q € L'((0,1) x (0,00)).

Unfortunately, the operator

(8.3)

f—(ving)f
is obviously not bounded or dissipative into L'((0,1) x (0,00)) and therefore we
cannot, by this way, infer any well posedness of the model (8.1)).

REFERENCES

[1] M. Boulanouar; New Results in Abstract Time Dependent Transport Equations. Trans. Theor.
Stat. Phys., 40, 85-125, 2011.
[2] M. Boulanouar; New results for neutronic equations (II). C.R.A.S. Tome 348, Série I, 348,
549-552, 2010.
[3] M. Boulanouar; Transport equation in cell population dynamics (I). Elec. J. Diff. Equa.,
N.144, 1-20, 2010.
[4] M. Boulanouar; New trace theorem for neutronic function spaces. Trans. Theor. Stat. Phys.,
Vol., 38, 228-242, 2009.
[5] M. Boulanouar; A transport equation in cell population dynamics. Diff. Inte. Equa. Vol. 13.,
125-144, 2000.
[6] M. Boulanouar; Asymptotic behavior of transport equation in cell population dynamics with
a null maturation velocity. J. Math. Anal. Appl. N. 243.; 47-63, 2000.
[7] M. Boulanouar; Un modéle de Rotenberg avec la loi & mémoire parfaite. C.R.A.S. Tome 327.
Série I, 955-958, 1998.
[8] Ph. Clement, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn, B. de Pagter; One-
parameter semigroups. CWI Monographs, 5. North-Holland Publishing Co., Amsterdam,
1987.
K. Engel, R. Nagel; One-Parameter Semigroups for Linear Evolution Equations. Graduate
texts in mathematics, 194. Springer-Verlag, New York, Berlin, Heidelberg, 1999.
[10] B. Pagter; Irreducible Compact Operators. Math. Z. 192, 149-153. 1986.
[11] W. Greenberg, C. V. M. van der Mee; V. Protopopescu; Bondary Value Problem in Abstract
Kinetic Theory. Birkhauser. Basel. 1987.
[12] M. Rotenberg; Transport theory for growing cell populations, J. theor. Biol. 103., 181-199,
1983.
[13] L. Weis; The Stability of Positive Semigroups on Li-spaces. J. Proc. Amer. Soci., 123,
pp.3089-3094, 1995.

9

ADDENDUM POSTED ON JUNE 24, 2013.

The author would like to make the following changes:
(1) Lemma 3.3 and Remark 3.4: (Kc) must be replaced by: ”||KL,| < 1 for some
w >0 and ||K|| > 1. L, denotes the characteristic operator of the set (w,00).”
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(2) Relation (3.13) must be replaced by

o {o | if (Kb) holds (313)
dr = inf{w > 0: ||KL,|| <1} if (Kc) holds.

(3) Proof of Lemma 3.3: from “So, the compactness...” (Page 6 line 5) to “because

of (3.20) (Page 7 line 1) and from “Finally, by (3.19)...” (Page 7 line 24) to the

end the proof, must be deleted.

(4) Corollaries 3.10 and 5.4: “Let K be a linear compact” must be replaced by

“Let K be a linear admissible”. The proof must be replaced by : “Proof: Obvious.”

(5) Page 20: from “In the sequel...to...result 7 (Lines -7 to -4) must be deleted.

(6) Theorem 7.2: “K admissible” must be inserted in the preamble.

(7) Page 24: “T ensure...v € (0,00)” (Lines 10 to 12) must be deleted. “Further-

more...Ramark 3.4” (Lines 18 and 19) must be replaced by

“If psup, >, IS [k(v,0")|dv < 1 for somew > 0, then K is an admissible operator.”
End of addendum.
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