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DIRECT AND INVERSE PROBLEMS FOR SYSTEMS OF
SINGULAR DIFFERENTIAL BOUNDARY-VALUE PROBLEMS

ANGELO FAVINI, ALFREDO LORENZI, HIROKI TANABE

ABSTRACT. Real interpolation spaces are used for solving some direct and
inverse linear evolution problems in Banach spaces, on the ground of space
regularity assumptions.

1. INTRODUCTION

Several articles are devoted to studying identification problems of the type
y'(t) +Ay(t) = f(H)z+h(t), 0<t<T,
y(0) = vo, (1.1)
ly®)] =g(t), 0<t<m

Here —A is a linear closed operator generating a Cp-semigroup in a Banach space
X or C*°-semigroup in X. Moreover, z is a fixed element in X, yp € X, ® € X*,
g € CY([0,7;C), h € C}([0,7]; X).

Roughly speaking, we look for solutions (y, f) in [C1([0, 7]; X)NC([0, 7]; D(A)] x
C(]0,7];C). More precisely, we recall that in [II, 2 B 13, 4, 10, 1T} 12| 18], all
concerned with the parabolic case, the scalar function f is sought for in the more
regular space C?([0,7]; C), for some 6§ € (0,1), so that known results of maximal
Hélder regularity in time can be applied. For this purpose, A is assumed (cfr. [16])
to satisfy the estimate

IO+ A) e < e+ )7 (1.2)
for all A in the sector
Yo:={AeC:ReA>—c(1+|ImA)*}, 0<pf<a<l. (1.3)
Taira [20] deals with the case a = 1 and introduces the power A7 for v > 1 — 3.
He proves that D(AY) D D(A)if 8> 1/2and 1 - G < v < S.
The results on the Cauchy problem
Yy +Ay=f(t), 0<t<m, (1.4)
y(0) = wo, (1.5)
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f € C(0,7]; X),yo € D(A), corresponding to the case a = 8 = 1 are by now
classical after the works by Da Prato, Lunardi, Sinestrari, and their followers,
concerning maximal in time and/or spatial regularity of the strict solutions.
Further, when 0 < 8 < 1, a = 1, the existence (and also time regularity) of the
solution was considered by Wild in [23].
In the case of a multi-valued operator A, for which takes the form of an
inclusion, in [16] the authors introduced the spaces

XZ’OO ={ue€ X :supt?|A°(t+ A)lullx < o0}, 0<O<1,
>0

where A°(t + A)~! is the linear section of A(t + A)~! defined in Theorem 2.7 of
the quoted monograph. If A is not multivalued and o = 8 = 1, then XZ’OO =
(X,D(A))g,00, the latter being a real interpolation space between X and D(A). In
general, the following inclusions hold true (cfr. [16, p .26])

XO4® C(X,D(A)poe, 0<O<1, (1.6)
(X, D(A))go0 C X571 1-B<h<1. (1.7)

Whence it follows that D(A) € X% provided 0 < 6 < . Therefore X% is not
intermediate between D(A) and X. However D(A2) C XZ’OO.
Restricting ourselves to the univalent case, if u € D(A?), t > 1,

tPAA+ ) u=t(A+1)TA T Au =t (A - (A+ 1)) A%, 0<f<1.
Consequently, for ¢ > 1, we obtain
I AA+ ) ullx <7 Auflx +ct? 0 A%
Since A is assumed to be invertible, the inclusion follows.

Let us introduce some spaces XZ’OO which are intermediate between X and D(A)
(and which reduce to Xfl’oo if « = 8 =1). Such spaces seem more appropriate to
solve , and to deduce the spatial regularity of the related solution. For the
sake of brevity, we drop out “co” from XZ’OO and write Xg and XZ, respectively.

Section 2 is devoted to the intermediate spaces, while in Section 3 the spatial and
temporal regularity of solutions to , is studied. Section 4 deals with the
identification problem , , under suitable spatial regularity assumptions.
Section 5 is devoted to the new identification problem

y'(t) + Ay(t) = fr(t)z1 + fa(t)22 + h(2),
@[y = g;(1), te[0,7], =01,

In Section 6 the results of Section 5 will be applied to solve an inverse problem for
systems of evolution differential equations. Section 7 is devoted to general weakly
coupled identification problems. Finally, in Sections 8 and 9 the previous abstract
results will be applied to a few systems of PDE’s, both regular and degenerate.

2. INTERPOLATION SPACES
Let A be a closed linear operator acting in the complex space X with
[+ A) e SCA+ADT, AeX,, (2.1)

for some
0<pB<a<l, a+p>1 (2.2)
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Denote now (cf. [16] p. 26])
X4 = {ue X : [alxs = supt”| A(t + A)Mullx < +oo},
>0

(2.3)
2]l xq, = llzll + [x]o-
It is known that [I6] Theorem 1.12, p. 26],
X4 C (X, D(A))p00, 0€(0,1), (2.4)
(X, D(A))goo € X571 0 (1-5,1). (2.5)
According to [I6], Proposition 3.4],if 1 — 8 < § < 1 we obtain
tE=Im0/ | Ae™ e x < Ollallxq. (2.6)
Moreover, from [16, Theorem 3.5] with § € (2 — o — 3, 1), we obtain
I(e™* = Dal|x < CHOFFHI=D/0 ]| . (2.7)

This implies that, for any € X9 and § € (2 —a — 3,1), e "2 — 2 in X as
t — 04. Grounding on (2.2)), let us now introduce the intermediate space

X% ={ue X :supt® PO/ Ae My x < 400}, 0<O<1,  (2.8)
t>0

endowed with the norm

lull g, = llullx + supt®=7=/% [ 4™ ulx < +oo. (2.9)

From the known semigroup estimate (cf. [15, Proposition 3.2])
A% x| x < CtP=0D/Yz|x, 6 € [0,400), (2.10)
in particular we deduce
|Ae Hullx < CtP=D/u|lx, we X, (2.11)
[Ae™ 4 ullx = lle™ Aullx < CHO=D/% Aul x

< Ct(ﬂ_l)/aHUHD(A), u € D(A), (212
where [|ul|p(a) = |lullx + [|Aul[x. By interpolation we obtain
| Ae~ | x < Ct(l“’)(ﬁ_m/at(’(ﬂ_l)/a||UH(X,D(A))e,m 213
=t/ ]| (x DAy '
This implies
iggt(zfﬁ%)/a“fkf“u”x < Cllullx,p(a))p.000 0 €(0,1). (2.14)
Therefore, we deduce the continuous embeddings
XY — (X,D(A))g.00 — X4, 0€(0,1). (2.15)

Lemma 2.1. Ifu € )?z and 8 € (2 —a—(,1), one has

lim e "y = u.
t——+0
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Proof. If u € )?fl and 0 < s < ¢, we have
¢ t
(e7 —e My = / D, (e ™M udr = / (—A)e "y dr
S S

t
= / p(2=A=0) ap(B+0=2)/a(_ Ay~ Ay dr,

S

(2.16)

so that
t
et — e Mullx < Ollul & / p(B0=2)/c gy
I Jullx < Cllull g, : (2.17)
< Cllullgo (t = )= C70=AVe g e (2—a—p,1).
It follows that there exists lim; oy e *Au =: & for all u € )?g. This implies
A ey — A7 1¢ as t — 0+.

Denote now by IT" the path parameterized by Rez = a—c¢(1+|Im z|)%, a > ¢ > 0,
oriented from Im z = —oo to Im z = 400. Note then that

A-le Ay = (27ri)_1/et/\A_1()\—|—A)_lud)\
r

_ (2m’)_1/Fet/\)\_1[A_1 — A+ A)ud (2.18)

= Ay — (2mi) ! / NI+ A)Trud).
r

As t — 0+ the last integral converges to [ A™'(A+ A)"'udX = 0. Therefore,
owing to the uniqueness of the limit, we obtain A~y = A7L¢, ie. € = u. O

We have thus proved that, if § € (2 — a — (,1), the mapping u — e *u,

t € [0, +00), maps X9 into C(]0, 400); X).
Let u € D(A) and A > 0. Then t — e e *4 belongs to L'(Ry; X) since
1 — 8 < a. Moreover,

+oo +oo
/ e et Ay dt = / Dt( — efw‘)efmu dt
0 0
“+ o0
— _[e—tz\e—tAu]goo o / e—t)\e—tAAu dt (2.19)
0

—+oo
=u-— / e et Ay dt,
0
implying
+oo
/ e e A+ Au)dt = u, Yu € D(A).
0

But this implies the equality

+oo
M+ A) ty = / e e tudt, Yue X. (2.20)
0

Indeed, if u € X, there exists v € D(A) such that u = (A + A)v. Then

+00 Foo
MN+A)u=v= / e e AN+ Adt = / e ety dt.
0 0
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Consequently, for all u € )?fl and t € Ry, for 8 > 2 — a — 8 we have
+o0
A+ A)Tul|x = ||/ e Ae My d)||
’ +o0
< C||u\|);z/0 e PINOFB=2) o g\ (2.21)

400
= C||u‘|)?zt—(9+a+ﬁ—2)/a /0 6—55(94-,3—2)/04 de.

Summing up, we have proved that the continuous embeddings
~ 0 B
Xf — XTI o (X, D(A)) (010t 5-2) o0 (2.22)

hold for any pair («, 8) € (0,1] x (0,1] satisfying 0 < 8 < a <1, a+ 8 > 1 and
2—a—-p<6<1. (Notethat (§ +a+ 8 —2) < aimplies § <2 —3.)

3. SPATIAL REGULARITY OF SOLUTIONS TO CAUCHY PROBLEMS
Consider the problem
y'(t) + Ay(t) = f(t), telo,7],
y(0) = yo.

We look for a strict solution to the Cauchy problem (1.4)), (1.5)), i.e. for a function
y € CL([0,7]; X) N C([0,7]; D(A)), related to spatial regular data. For this purpose
we assume

(3.1)

fec(o,7;X)NB([0,7]; X%), o € D(A), Ayo € X4, (3.2)
0<fB<a<l, a+08>3/2, 22—-a-p)<0<]1. (3.3)

We recall that, for any Banach space Y, B([0,7];Y) denotes the Banach space of
all bounded Y-valued functions f, when endowed with the norm || f|g(o,-;v) =

sup;eo,- 1 ()lly-
Necessarily the solution to ([1.4)), (1.5) (cf. [I6]) is given by

y(t) = eftAyo + /t ef(tfs)Af(s) ds, tel0,7]. (3.4)
0
Set now
yi(t) = e “yo,  walt) = / e A f(s)ds, te€0,7]. (3.5)
0

It is immediate to check that the properties of the semigroup {e~*4};~ established
previously guarantee that y; is differentiable in (0, 7]. Moreover, for 0 < s < ¢ < T,
we have

t
94 (t) = ¥4 ()l = w1 () — Ay (s) 1 = | / Ae~ A Agy dr|

t
—2)/a 3.6
< Cllmlgg [ rO2ear (56

S

< CIHAyOH)?Z (t — 5)l0-Cma=fl/e,
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Therefore, we have proved that v}, Ay, € Cl0~C—e=BAl/a([0,7]; X). Consider now
the relations

sup sup s2~7-0/%| 4e=*A Ae Ay | x

0<s<7 t>0
= sup sup 3(2*6*9)/0‘HAe*(SH)AAyOHX

0<s<7 t>0 .y (37)
= s suwp () (5-+ /2F=0)/a | A=+ gy |

0<s<t t>0 \S+1
< CllApollzs

Therefore, concerning the regularity of y;, we obtain
yy, Ay, € 0= C=a=Bl/e ([0, 7], X) N B([0, 7]; X5). (3.8)

Let us now consider y» and let us notice that, for 0 < s <t < 7, we have

Ayz(t) — Aya(s)

S t
= / [Ae= (=4 — Ae= (=) 4] f(0) do + / Ae= D41 (5) do (3.9)
0 s
=: Fi(s,t) + Fa(s,t).
As far as F5 is concerned we obtain
JAe 4 f(0)1x < (6 — )T/ 1)z, < (¢ = ) Fl o -
Hence

|Fa(s, B)lx < / (t = )2 s 0m 4O

(- 5)l0-2-a=pF)/a (3.10)

“o-G-a-pyalsensy

Further, since

1A% f(o) | x = [[Ae™ /DA [Aem /DA f (0] x

< Op(B=D/op(B+0-2)/a| (4| o,
< Cr2H2Cmem Dl £ o g,

we have

sl = [ (a0 [T i

t—o
< C/ da/ F2+0-2(2—a—p))/a 4l 1l 0.5, (3.11)
0 ThA A
9-2(2—a—B)]/a
< Ollfll p(jo,0). 59, (t = 8)0 7277
(recall that o+ 8 > 3/2). In other words, we have proved that
Yyg € 0[972(2704*5)]/04([07T];X).

Concerning space regularity, first we consider the identity

A= Ay (t) / A2et=s+OA £ () ds. (3.12)
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Recalling that f € B([0,7]; )?fl) we have

A% ) = | A0/ gel0m05 01214 £ |
<Ct—s+&P Dt —s+ 5)(5+9_2)/a||f(8)||>?g
< Ol fl oy (t — 5 + €020/,

Hence noting that

16— 2(2— B))/a = (0+20—4)/a < (28 —3)/a < -1,

we have
t
e A Aga(0)1x < Clfllomsy | (6= s+ 2D ds
—0o0
ag(a+26+0—4)/o¢
= Clflpom%4) f—a—-26-6°
Therefore,
sup sup EWTOT20=0/)| 484 Ay, (1) || x < +o0. (3.13)
0<t<7 £>0

Since (4—a—28—0)/a=[2-3— (a+B+0-2)]/a, (3.9), (.10), (.11), (B.13)
imply

Ays € C1=2C=e=01/2 ([0, 7]; X) 0 B([0, 7); X #7077,
”Ay?||B([0,r];)?3‘(2‘“‘5)) < Clif N pqo,mixs)-
It follows from ([3.2]) and that y5 = f — Ays € C([0,7]; X). Summing up, we

have proved the following theorem.

Theorem 3.1. Let the pairs (f,yo) and («, 8) satisfy (3.2)) and (3.3), respectively.
Then Problem (3.1) admits a unique strict solution y with the following regularity
properties:

y € C([0,7]; X) N B([0,7); X G777, (3.14)
Ay € Cl=2@=a=0lle ([0, ], X) n B([0, 7); X777, (3.15)

Taking into account the inclusions proved in Section 2, we can also establish the
following result concerning spaces Xf‘.

Theorem 3.2. Let2a+§ > 2,3-2a—03 <0 <1,y € D(A), Ayo € (X,D(A))g,00,
f e C(o,7]; X) N B([0,7]; (X, D(A))g,00). Then Problem (3.1) admits a unique
strict solution y such that

y' € C([0,7): X) n B([o,7); X727,
Ay e clP=6B=2a=8)1/a(10,7]; X) N B([()?T];Xf—(i%—?a—ﬂ)]/a).
Proof. We use the notation in the proof of Theorem One has Ayg € )?Z by

virtue of our assumption and (2.14). Hence, owing to the proof of Theorem
y1(t) = e Hyp satisfies

vi, Ayy € ClP-Cmemle([0,7):X) 0 B([0, 7): X)

(3.16)
c cl0=C=a=Bl/a ([0, 7]; X) N B([O,T];X}fi(ziaiﬁ)]/a).
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From (2.15) and (3.10) one deduces the estimate
1F2(s,D)lx < CllFllpgo,mexes (= )07 Ema Pl

P (3.17)
< ClIF Il (10,71:x, D( Ao, ) (E — 8)0 7T
Likewise, from the inequalities
|A%e™ A f(0) | x < CrO=340/|| ()| x, ()00 (3.18)
< CrB=3072 £l p((0,71:(X.D(A))o.0)
one obtains
S t—o
1FL (s, 8) | x = ||/ da/ A2 f(o)r]|
0 s—o
s t—o
_ o 3.19
SC/ dU/ r(A=8+6)/ £l B(jo,71:(x,D(A))p.00) AT (3.19)
0 s—o
< CllFllB(10,71:(x, D( Ao o) (E — 8)EOTAT3HO 2,
It follows from (3.17)) and (3.19)) that
Ay, € Cl0=6B=2a=B)/a([0, 7]; X). (3.20)

Using
A% == F 04 ()| x < C(t — s+ P32 £(5)ll x,p(a))0
< C(t—s+&P3/% fll 5 0.77:x.D(4))0.0)

one obtains

t
||Ae*§AAy2(t)HX _ H/ Azei(tisj%)Af(s)dsHX
0

t
_ o 3.21
< Ol om0 ) / (t— 5166340/ gy (32D

< Ol f I B(lo.r1i(x.D(A)) g ) § T3/
Hence one obtains
Ay, € B([0,7]; X501 € B([0, 7); X 073720 Al/er), (3.22)
From (3.16)), (3.20) and (3.22)), it follows that

Ay e ClO=G=20ml/e((0, 7); X) 0 B((0, 7); X1y Oy, (3.23)
The hypothesis on f and (3.22)) imply
vy = f — Ays € B([0,7); X727y, (3.24)

By (3.16) and (3.24)), one concludes that
y € B(lo,7); X",
O

In view of embedding (|1.6)), Theorem leads to the following corollary, where
Y] stands for anyone of the spaces X or (X, D(A)),00-
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Corollary 3.3. Let2a+ 3 > 2,3 —-2a— 3 < 0 < 1, yo € D(A), Ayy € Y{,
feC(0,7); X)NB([0,7];YS). Then Problem (3.1) admits a unique strict solution
y such that

y € C([0,7]; X) N B([0, 7]; Y0~ G2a=Al/ay
Ay € Cl0E2emDle (0,73 X) 0 B([o, 7 YO,

4. A FIRST IDENTIFICATION PROBLEM

Consider the identification problem (|1.1)) in Section 1. We want to determine a
pair (y, f) € [CY([0,7]; X)NC([0,7]; D(A))] x C([0, 7]; C) satisfying (1.1 under the

following assumptions:

yo € D(A), Ayo,z € X4,

g€ CY([0,7];C), hec(0,7;X)nB(0,7]; X4); (1)
0<pf<a<l a+08>3/2, 1>0>22—-a—p); (4.2)
e X", Ply] =9(0), @[z]#0. (4.3)

If (y, f) is the solution sought for, we immediately deduce that (y, f) solves the
equation
g'(t) + [Ay(t)] = f(t)@[z] + ®[A(t)], te€[0,7]. (4.4)
Therefore, taking advantage of Theorem we obtain the integral equation for f
g'(t) — [h(t)] + P[Ay(?)]
(1) = o
g'(t) — ®[h(t)] + ®[Ae~ A yq] 1

= t e~ =942 f(s) ds .
" = L OP

+ ! /t ®[Ae = An(s)] ds =: b(t) + Sf(t), tel0,7].

2[] Jo

Note that t — Ae~*4yq is continuous in [0,7] by Lemma Since z € 5(217 we
obtain

|Ae=t=94%|| x < C(t — 5)~ A=/ < Ot — 5)~(1=00), (4.6)
where 6y = [0 — (2 — a — §)]/a. Whence we deduce the inequality

C t
S50 < ll@lxe gy [ (-9 polds, te o)
|©[z]] X5 Jo
Repeating the arguments and techniques in [2] we can deduce the following esti-
mates involving the iterates S™ of operator S:
3 nr(eo)nthO

ST )] < [C(@[2]) H@llx- 2]l g0 | =t o), te(0,7]. (4.7

5701 < [C@ED 7 10lx ol )" Fgage 1 leorer L€ 0.7 (@)
Since [['(nfy)]'/™ — +o0 as n — +oo, we conclude that the operator S has spectral
radius equal to 0. Therefore equation (4.5)) admits a unique solution f € C([0, 7]; C).

In view of Theorem we conclude that the solution y corresponding to such
an f has the regularity

y € C'([0,7]; X) N C([0,7]; D(A)),

y € C([0,7): X)  B([0, 7 K=o, 9
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Ay € Cl=2C=e=PI/o([0,7); X) 0 B((0,7); X3~ #777), (4.9)
Summing up, we have proved the following theorem.

Theorem 4.1. Under assumptions (4.1)) and (4.2)), the identification problem (1.1)
in Section 1 admits a unique strict solution (y, f) satisfying (4.8)), (4.9).

We change now a bit our assumptions on the data: (4.1)) is replaced with the
following, where we change the condition on the pair (yo, 2):

yo € D(A), Ayo,z € Xf‘, gE Cl([O,T];C)7
h e C([0,7); X) N B([0,7]; X4),

If (y, f) is the solution sought for, we deduce, as above, that f solves the integral
equation (4.5). Reasoning as above and taking advantage of Corollary we
obtain the following result.

Theorem 4.2. Let Y, be anyone of the spaces (X, D(A))y.0 or X . Let 2a+3 >
2,0>3—2a—0 and let

yo € D(A), Ayo,z€ Y™, geC'([0,7];C),
heC(0,7);YS®), ®[z] #0.
Then the identification problem
Y () + Ay(t) = f(O)z+ h(D), e 0,7),
y(0) = wo, (4.12)
Dly(t)] = g(t), tel0,7]

admits a unique strict solution (y, f) € [C1([0,7]; X)NC([0,7]; D(A))] x C([0, 7]; C)
such that

(4.10)

(4.11)

y € C([0,7); X) N B([0, 7]; YT T30 ey
Ay € ORI 0 ([0, 7] X) 1 B0, s YOI ),
Proof. When Y] = (X, D(A))~,, it suffices to observe that from (2.14) we deduce
estimate (4.6) and that the same argument in the proof of Theorem runs well,

since3—2a—f3=Q2-a—-pf)+1—a>2—-a—pF. When Y, = X, the assertion
follows from [I6], Corollary 3.3 and Proposition 3.4]. O

5. A LATTER IDENTIFICATION PROBLEM

In this section we consider the problem consisting in recovering two unknown
scalar functions fi, fo € C([0,7];C) and a vector function y € C([0,7]; X) N
C(]0,7]; D(A)) such that

y'(t) + Ay(t) = f1(t)z1 + f2(t)z2 + h(t), te[0,7],
y(0) = wo, (5.1)
D;[y(t)] = g;(t), telo,7], j=1,2,
where ®; € X*, g; € C1([0,7);C), z; € X, j = 1,2, h € C([0,7]; X) N B([0, 7]; X%),
and yo € D(A) are given. Let

_ | ®1[1]  Pafee] o
A= [%[Zl] @2[22]} . det A£0.
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Then we obtain the following fixed-point integral system for (f1, f2),

] = [ e el
o [ [ [
e [ i) s el

_. {Z;E ﬂ LS Bﬁj ), telo,7.

We introduce in C([0, 7]; C?) the sup-norm

U £2)leqoren) = mas [F1(0)] + max [f2(0)],

(5.2)

For any pair (z1, 22) € ()?2)2 and (fl7 f2) € C([0,7]; C?) we obtain the bounds

Hsm =140 1||£c2/ > 184 ()

jkl

2
< 14~ e 2 1ol A Z e~z x ()] ds
< ClA e Zucb Ix- [ anknxe (t = ) #0200 ()] ds

t
< O e 3 19 - ma el [ a=see 2>/&Z|fk )l ds.
i=1 =

Proceeding by induction, we can prove the bounds for the iterates S” of operator
S (cf. Section 4):

0,)" nbo
HS” |:§;:| ( )||2 =~ C{LF((’IIO@);LHH |:§;:| HC([O,T];(C2)7

where we have set

= Cll A I e2) ZH‘I’ [P max, LR

j=1

Since [T'(n6y)]*/™ — 400 as n — +o0, we can conclude that operator S has spec-
tral radius equal to 0, so that problem (5.1) admits a unique solution (f1, f2) €
C([0, 7];C?). Using Theorem [3.1| we easily deduce the following result.

Theorem 5.1. Let a4 > 3/2 and 0 € (2(2—a—f),1). Let yo € D(A), Ayo € X5,
zj € X4, ®; € X*, g; € C1([0,7];C), j = 1,2 and h € C([0,7]; X) N B([0, 7]; X9)
such that

Dy [21] Po20] — Pof21]P1[22] # 0, Pj[yo] = g;(0), j=1,2. (5.3)
Then problem (5.1) admits a unique strict solution (y, f1, f2) € [C1([0,7]; X) N
C(]0,7]; D(A))] x C([0,7];C) x C([0,7];C) such that

Y € B([0,7); X5 ), Ay e cl0-2C-a=dV/a ([0, 7] X)nB([0, 7); X§ D).
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We conclude this section by two easy extensions of Problem ([5.1]) to the case of
n unknown functions f.

Corollary 5.2. Let a + 03 > 3/2 and 0 € (2(2 — a — 3),1). Let yo € D(A),
Ayo € X4, z; € X4, g; € CL([0,7];R), h € C([0,7]; X) N B([0,7); X%), ®; € X*,
®j[yo] = g;(0), j =1,...,n be such that

@1[21] e @1[2,1}
det | ... . ... | #0.
D,lz1] ... Dplzn]

Then the identification problem

t) + Ay(t) Z t)z; + h(t), tel0,7],

5.4
y(O) = Yo, (54)

(bj[y(t)]:gj(t)’ tE[O,T], j=1....n,

admits a unique strict solution (y, f1,..., f,) € [C([0,7]; X) N C([0,7]; D(A))] x
C([0,7]; R)™ such that

y' € B(0,7: X577,
Ay e Cl0=2@=a=B/a (0, 7]; X) N B([0,7); X4 7).

Corollary 5.3. Let Y, be anyone of the spaces (X, D(A))y,00 or X\, Let 2a+ >
2andf € (3—2a—0,1). Letyo € D(A), Ayo € Y9, 2; e YT, g; € C*([0,7];R),

hhe C([0,7]; X) N B([0,7]; Y ™), ®; € X*, ®,[yo] = g;(0), j = 1,...,n be such
that
@1[21] @1[,2"]
det | ... # 0.
D,z1] ... Dplzn]

Then the identification problem (5.4)) admits a unique strict solution (y, f1,..., fn)
in [C1([0,7]; X) N C([0,7]; D(A))] x C([0,7]; R)"™ such that
y € B([0,]; Ym0y,
Ay € OG0 00/e ([0, 7 X) 1 B((0, s YL~ 020 Do),

6. INVERSE PROBLEMS FOR SYSTEMS OF DIFFERENTIAL BOUNDARY VALUE
PROBLEMS

Let A, B, C, D be linear closed operators acting in the Banach space X satisfying
the following relations:

D(A) c D(C), D(D)cC D(B), (6.1)

I+ A oo <A™, IO+ D) Mg <A™, AeSa,  (62)

ICA+A) Tl < el AT 1B+ D) Mg <clA™2, A€ Da, (6.3)
with

v+ 72 € Ry (6.4)
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In the Banach space X x X we consider the problem consisting in determining a
quadruplet (yh Y2, fla f2)7 with

(y1,92) € [C1([0,7]; X) N C([0, 7], D(A))] x [C*([0, 7] X) n C([0, 7]; D(D))], (6.5)
(f1, f2) € €([0,7};C) x C([0,7]; C),

solving the identification problem

AR

() (6.7)
21,1 21,2 1
= t ’ t ’ 5 te 07 )
0|2 no |22+ ] renn
y](o) =7Y0,5, j = 1a2a (68)
\I’j[yj(t)] = gj(t)7 te [077—}7 J=12,
with
\Ijj € X*7 \Ijj [Z/O,j} = gj(o)a ] = 172 (610)
Let us now introduce the linear operator A defined by
Ay + Byz}
D(A) = D(A) x D(D), A|¥| = .
W=Dl <o), A[n] = [dnt P
It is shown in [I4] that, for large positive R,
[A+A) e <A™ A e S, nB(0,R)°, (6.11)
where
B = min{B1, B2, B1 + 2, B2 + M1} (6.12)

Using the change of variables (y1(t),y2(t)) — (e *tyi(t),e *ya(t)) with a suffi-
ciently large positive constant k, we can assume that bound (6.11)) holds for all

A E X,
Set now
n 21,1 21,2
E=XxX, = , = + = 20
il 1 R EE 1
Then the direct problem (6.7]), takes the simpler form
Et)+ AE(t) = fi(t)z1 + fa(t)z2, t€[0,7], (6.13)
£(0) = [yo’l] =: {o. (6.14)
Yo,2

1/2

Define the norm in X x X by |[(y1,92)llxxx = (ly1ll% + [ly2[|%)"/? and introduce

the functionals ®1, &y € E* ~ X* x X* (cf. [I7, p. 164]) defined by
P;l¢] = @, L?jj =Wly), j=12
Applying ®;, j = 1,2, to both sides in , we easily obtain the following system,
for all ¢ € [0, 7],
91(t) + U1 [Ayi () + Bya(t)] = f1(8)P1[z1,1] + fo(t) Wa[1,2] + U1 [R(2)],
93(t) + 2 [Cyr(t) + Dy2(t)] = f1(t)Walz2,1] + f2(t) Palzo,2] + Wa[h(t)],
Now assume that

(1)1[21]@2[22] — @1[22]@2[21] = \111[2171]\112[2272] — \111[21)2]\:[/2[2:271} 74— 0. (615)
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Then it is easy to realize that Theorem [5.1] and Corollary [5.2] yield the following
results.

Theorem 6.1. Let operators A, B, C, D satisfy conditions 7 and let 3 be
defined by . Leta+3>3/2,0 € (2(2—a—03),1), g1,92 € C1([0,7];C) and h €
C([0,7]; X2) N B([0,7]; X4). Moreover, let [yo.1,v0.2] € D(A), Alyo.1,v02]T € X4,
[2171,2271]T, [2172,22,2]71 S )?z and let and be satisfied. Then problem
- admits a unique strict solution (y1,ye, f1, f2) in the space defined by
(6.5). (6.6}

) such that
TO0—(2—a—
Wi )" € B(lo,7); X)),
[Ay1 + Byz, Cyr + Dys]”
e olo=2@=a=A)l/a(o,7]; X x X)n B([0,7); X% *7*77).

We can conclude this section by stating the following corollaries that take into
account Corollary

Corollary 6.2. Let operators A, B, C, D satisfy conditions (6.1)—(6.4]) and let 5 be
defined by (6.12). Let 2a+3 > 2,0 € (3—2a—3,1), g1,92 € C([0,7];R) and h €
C([0,7); X2) N B([0,7]; X%). Moreover, let [yo.1,y0,2] € D(A), Alyo.1,Y0,2)" € X,
[2171,2271]7", [2172,2'272]T IS Xﬁl, and let (6.10) and (6.15)) be satisfied. Then problem
6.7)-(6.9) admits a unique strict solution (y1,ya2, f1, f2) in the space defined by
6.5), (6.6) such that

i v]™ € B([0,7); x O,

[Ay1 + Byz, Cyr + Dys]"

e ClO-G=2a=0l/a((0,7]; X x X) N B([0, 7]; X1y 727Dy,
Corollary 6.3. Let operators A, B, C, D satisfy conditions (6.1)—(6.4]) and let 3
be defined by (6.12)). Let 2a+ 3> 2, 0 € (3 —2a — 3,1) and g1, g2 € C*([0,7]; R).
Moreover let [yo,1,Y0,2) € D(A), .A[y071,y072]T 6 (X x X,D(A))p.c0s [71.1,221]7,

[21,2, 22,2]7 E X x X, D(A))o,00, and let and (6.15) be satisfied. Then
problem (6.7 admits a unique strict solutzon (Y1, Y2, f1, f2) in the space defined

by (6.5 ., | such that
[y17 yIQ} € B([07 T]; (X x X, D(A))[07(372a7ﬁ)]/a,oo)a
[Ay1 + Bys, Cy1 + Dya]"
€ Ol =@=2e=Bl/a ([0, 7]; X x X) N B([0,7]; (X x X, D(A)) s (3-20—p)]/a,00)-
Remark 6.4. The conclusions of Theorem and Corollaries 6.2 and 6.3 may be

true even in cases when the domain of the operator matrix A is not D(A) x D(D)
(cf. Problem 8.1 in Section 8).

Remark 6.5. In the optimal situation, when « = 8 = 1 and, e.g., the operators A
and D generate two analytic semigroups on X and B and C' are bounded operators,
the previous conditions reduce to the following for some 6 € (0,1):
(Ayo,1 + Byo2, Cyo,1 + Dyo2) € (X, D(A))g,00) x (X, D(D)),00)
211,212 € (X, D(A))o,00),  22,1,22,2 € (X, D(D)s,00),
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Then (y1,y2, f1, f2) also satisfies
Y1, Ay1 + Byz € B([0,7]; (X, D(A))g,00);
Y2, Cy1 + Dy2 € B([0,7]; (X, D(A))0,00),
Ay1 + By, € C%([0,7]; X), Cuy1 + Dys € C%([0,7]; X).

7. WEAKLY COUPLED IDENTIFICATION PROBLEMS

In this section we deal with the following weakly coupled identification problem
- A1+ B B2 B,

i yi(t) N By Ao+ Bay ... B2:n y1(t)
Lom Bn,l Bn,2 oo An,n + Bn,n " (71)
_hl (t) n 21,5
=| [+ @] telo],
_hn(t) =1 Zn.j
y](o) :yO,jv ]: 17"'7”7 (72)

Uily; (O] = g;(t), tel0,7],j=1,....n,
with

;e X7, Yyl =9;00), j=1....n, (7.4)
where A; ;, B; ; are closed linear operators acting in the Banach space X. Now we
introduce the operator matrices A and B defined by

Ai; O ... O Bi1 Bia ... Bin
e O Ay ... O . B= Bs1 Bzs ... Bay
0 0 ... A, Bui Buz ... Bun
Assume now that p(A4; ;) D X4, j=1,...,n, and
IO+ A3) M lego < CO+ )P, A€ S, (7.5)
Then A — A is invertible for all A € ¥, and
(AT + Ay )7t 0 @)
T+ A) = 0] (AT + Az0)7t .. 0
0 0 M+ A
Further, let the linear closed operators B; j : D(B; ;) C X — X, D(B; ;) D D(4;,;),
i,7 =1,...,n, satisfy, for some o > 0, the estimates
IBij ML+ A1) Hieox) SCA+ANTT, A€ S, (7.6)
Observe now that
D(A+B) =D(A) = [[D(4;;), M+ A+B=[I+B\ +A) "M + A).
j=1
Since
Bii ... Bin| [OM+A10)7F ... 0

Bni ... Bun 0 o M+ Ayt
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—1 —1
Bia(M+A11)"" ... Bia(M+A,)

Bn,l()\l —+ A171)71 e Bm,L(AI + An,n)il
assumption (7.6)) implies that I + B(AI + A)~! has a bounded inverse for each
A € X, with a large enough modulus, satisfying

1[I+ B+ A e <2, A€ T, N BO,C),

where X is the product space X x --- x X (n times).

On the other hand, the change of the vector unknown defined by y(t) = eFw(t),
where y(t) = [y1(t),...,yn(t)]" and w(t) = [wi(t),...,w,(t)]T, transforms our
equation into

w'(t) = —(kI + A+ B)w( _kthJ )zj +e Mh(t), telo,7],
j=1

where h(t) = [h1(t), ..., h,(t)]T. Observe now that
(M+kI+A+B)™" = (A +k)[+A+B) " = (A+k)I+A) " [I+B((A+k)I+A)7"].

Therefore, we conclude that AI + kI + A + B is invertible for large enough k and
(M + kI +A+ B)~!' € £(X") for A € 8,. Then set

A=A+B, DA =][PA) v=1 v,

zi= (2150 zmy) s @€ (XM = (X", Bl =Y,ly], j=1,....n
Consider the equality
(I)l[Zl] Ce (I)l[Zn] \111[2171] Ce \Ill[zl,n}
D,(z1] ... Dplzn] U lzna]l -0 Uplznal
Thus we need to assume that

\111[2’171] e \Ill[zl,n]
det | ... ... ... | #0. (7.7)

Then we characterize the space Xfi‘ in the following Lemma.

Lemma 7.1. The following relations hold for all 6 € (0,0):

n
0+1— 0 0+1— 6 6 )
X e xh, X e X XA =T x4, (7.8)
j=1
We postpone the proof of this lemma to the end of this section and state our
conclusive theorem.

Theorem 7.2. Let o, € (0,1], a+2ﬁ+a/6’ >3and3—a—0—af <0 <p.
Let zj = [z14,...,%n,j] € XQJrl (C XA) =1,....n, yo = (Yo,1,---:Y0n) €

D(A), (A+B)yo € X477, h e C([o, 7'] ) B([o, } XOT1PY satisfy condition
(7.7). Then the zdentzﬁcatzon problem (19.40) - admzts a unique strict solution
(y, f1,---, fn) € C([0,7]; X) N C([0, 7]; (C)” such that

y' € B(0,7]; X O,
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(A+ B)y € C1P=G20=00/e ([0, 7, X7) 0 B([0, 7); X[~ 02077 metmale),

The proof of the above theorem follows easily from our assumptions and Corol-
lary [5:3] We conclude this section with the proof of Lemma [7.1]

Proof of Lemma[7.1] To show the first embedding in (7.8) we recall that 7+ A+ B
admits a continuous inverse for 7 > tg, tg being positive and large enough. Then
we make use of the following identity, with ¢ > 0:

(to+ A+B)(t+to+A+B) ' —(to+ A+ B)(t+ A)~*
—(to+A+B)(t+to+A+B) Hto+B)(t+A)!
Whence we deduce

sup(1+t)%||(to + A+ B)(t + to + A+ B) " lu|
t>0

< |[(to + A+ B)A™ | £(xy sup(1 + ) A(t + A) " ul|
t>0

(7.9)

+sup C(L+ )" P||(to + B)A™ | .y (L + 1) A(t + A) M
t>0

< C'sup(1 + )PP At + A) "t

t>0

These inequalities imply the embedding
0+1—
X4 f e Xto+A+B
Interchanging the roles of tg + A + B and A, we obtain the embedding
0 .
XoHhlp = X4, if0€(0,5).

We have thus shown the ﬁrst two relations in

Now we show that X4 = X! _, for all 0 € (O 1) and tg € R. For this purpose
first we consider the following 1dent1t1es

(to+ A)(t+to+A) =A@t +A)!

= [(to+ A)(t +to+A) " (t+A)AT —TJAE+ A~

=[(to+ A)(t+to+ A (t+to+ A—to) A" —IJA(t+ A)~!

= [toA™" + 1 — T —to(toA™ + I)(t+to+ A) ' [A+ A) ']
Observe that

M
m§M7 t€[07+m).

1t +to+ A) e <
Therefore we easily get the estimate
sup(1+1)°(fo + A)(¢ +to + A) " ull < Clto, A) sup(1 +1)° At + 4)~ul,
where
Clto, A) < 1+to||A™ o) + toM [tol| A 2ex) + 1.
This inequality implies, for all ¢, > 0, the embedding
X4 = X) a
Interchanging the roles of A and ¢y + A, we obtain the identities
At + A — (to + A)(t +to + A)
= [A(t+A) Mt + A+to)(to+ A) " = I](to + A)(t +to + A)
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= [A(to+A) " +toA(to+ A) Tt + AT = I](to+ A)(t+to + A)T!
Recalling that
1+ A ex) Se(l+1)77 <
1A(to + A) " Mlzex) < I —tolto + A) ey <1+t
we deduce the estimate
A+ A) Ml < [(1+ eth ™) (1 + cto) + 1]|[(to + A) (t + to + A) " u]
Whence we deduce the following inequality holding for all 6 € (0, 1):
sup(1 +1)?||A(t + A) " u
>0

< (1 + ety )+ eto) + 1] sup(1 + )| (to + A)(t + to + A) " ul.
t>0

Whence we deduce the following inequality holding for all 6 € (0, 1):
sup(1 +1)?(|A(t + A) " ul| < C"sup(1+t)%||(to + A)(t + to + A) " 'ul.
t>0 t>0

We have thus proved the reverse embedding, holding for all g > 0 and all 8 € (0,1):
XP 4 — X4
Finally, we have shown the first two relations in (7.8).

The third equality follows from the fact that A is a diagonal operator-matrix
operator, so that, for all ¢ > 0, we have

(t1 + Ay)~? o o
-1
(T4 4) = 0 (t1 4+ Ag)~1 ... o
) O N (7 W

If we define the norm in X™ by

n
s, en)llxn = Nyl
j=1

then

sup(1 +)° | A(t + A) " el xn = sup(1+ 1) Y At + Aj) Malx <D llllxs -
t>0 t>0 J=1 =1 J
Therefore,

j=1
Conversely, if sup,- (1 +t)?||A(t + A)~1z| x» < 400, then

Sup(1 4+ 3 1451+ 4) "1 e < sup(1+ 1) [A(t+ 4) e < +oc,
j=1

for all j =1,...,n, so that the embedding
(xMh = [Tx4,
j=1

follows immediately.
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Now we show that X4 = X{ | ,. For this purpose first we consider the following
identity obtained from (7.9)) setting B = O:

(to+A)t+tg+ A —(to+ A)(t+A) = —to(to + At +to+ At +A)!
Whence we deduce

sup(1 +1)?||(to + A)(t + to + A)"u|
t>0

< l(to + 447" ey sup(1+ ) At + 4)7'u

+sup M(1+1)%(1+t+to) Ptoll(to + A)A™ | o) | At + A) " |
t>0

< Csup(14t)°| At + A)"tul.
t>0

So, we have proved the embedding Xfl — Xfo 4 4- Interchanging the roles of o + A
and A, we obtain the set equality X¢ = Xfo 1 4 With equivalence of the correspond-
ing norms.

Finally, the third embedding in (7.8) is obvious. ([

Remark 7.3. Corollary applies if the regularity assumptions on the data con-
cern the spaces (X, D(A))s,c0 = (X,D(Ao + A+ B))g,00. Notice that, if operator
B, with D(A) C D(B) satisfies the following estimate, similar to the ones satisfied

by A (cf.(1 ., .
[A+Xo+A+B) e <@+ A)~7° (7.10)
for all A in the sector
Yo :={A€C:Rer> -1+ |Im\)*}, 0<B<a<l, (7.11)

then (X, D(A))s,00 = (X,D(Ao + A+ B))g,00 with the equivalence of their norms.

8. IDENTIFICATION PROBLEMS FOR SINGULAR NON-CLASSICAL FIRST-ORDER IN
TIME SYSTEMS OF PDE’S CORRESPONDING TO (=1

In this section some applications related to the regular and singular parabolic
equations will be given.

Problem 8.1. We will consider a problem related to a reaction diffusion model
describing a man-environment epidemic system investigated in [6]. Such a model
consists in a parabolic equation coupled with an ordinary differential equation via
a boundary feedback operator (cf. also [9]). To obtain stability results in [6] the
authors linearize the model and arrive at the following evolution system, where
u(t,x) and v(t,z) stand, respectively, for the concentration of the infection agent
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and the density of the infective population at time ¢ and point x:
Dyu(t, z) = Au(t, z) — a(z)u(t, z) + f1(t)z1,1(x) + f2(t) 21 2(2),
(t,z) € (0,7) x Q,
Dw(t,z) = c(z)u(t,z) — d(z)v(t, x) + f1(t)z2,1(x) + fo(t)z2,2(x),
(t,z) € (0,7) x 9,
u(0,2) = uo(x), v(0,2) =vo(x), =z€Q,

(8.1)
Dyu(t,x) + B(x)u(t,z) = /Qk(x,y)v(t,y) dy, (t,z) € (0,7) x 09,

[ utta) din(@) = (0. € 0.7

Q
[ oty dut@) = 0). ¢ 0.7
where 2 is a bounded domain in R™ with a smooth boundary 92, A is the Laplacian,
a,c,de C(Q), 3€CONQ), ke WH(d9; L>*(Q)) are non-negative functions and
D, denotes the outward normal derivative on 0f2. Finally, u; and uo are two
positive Borel measure on €.

We define E = C(Q), X = E x E and denote by M}, the multiplication operator
induced by the function h. Moreover, we introduce the operator-matrix

A-M, O
as[rim o] 02

D(A) = {(uw) €X:ucH*Q), AuckE,

Dol + 500 = |

Q

(8.3)
B, y)oly) dy on 0.

It can be proved (cf. [9, p. 26]) that A generates an analytic semigroup on X with
a=03=1and 6§ € (0,1). Therefore we can apply Theorem and its Corollaries
6.2, 6.3.

Let us assume that (ug,vo) € D(A), ((A — a(-))uo, c(-)uo — d(-)vo) € (C(Q) x
C(Q), D(A))g 00

Am@MWWZm@%tém@WM@wah

g1,92 € CH[0,7];C), zir € C(Q), i,k = 1,2, (211,221), (212, 222) € (C(Q) x
C(€), D(A))g,00,

/21,1 dm(x)/ Z.2 dpa(x) — / 21,2 dm(x)/ 29,1 dps(z) # 0.

Q Q Q Q

Then the identification problem (8.1)), admits a unique global strict solution
((u,v), f1, f2) € C([0,7]; D(A)) x C([0,7]; C) x C([0,7];C)

such that
(Dtuv Dtv)v A(’LL, U)T € B([Oa 7-]; (C(ﬁ) X C(ﬁ)a D(A))H,oc)

We can characterize the interpolation space (C(€2) x C(2), D(A))p.00 taking ad-
vantage of (cf. [2I, Theorem 1.14.3, p. 93]) and the representation of A — AI as a
product of suitable operator matrices (cf. [9], p. 126).
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Problem 8.2. Let us consider the weakly coupled identification vector problem
occurring in the theory of semiconductors. Here we will deal with the problem
consisting of recovering the three scalar functions f; : [0,7] — R, 1 < j < 3, in the
singular problem

Dyuy = aAuy — dAuz + f1(t)¢1, in (0,7) x £,
Dyug = bAug + eAuz + f2(t)¢2, in (0,7) x Q,
0 =uy —ug — cAug + fs(t)C& in (0,7) x €, (8.4)
ur(0,-) =wuo,1,  u2(0,-) =wuo2, inf,
up = ug = ug =0, 1n( T) x 09,

under the following three additional conditions

<ui(t? ')7901') = /Qui(tvx)@i(x) dr = gi(t)a te (O’T)7 1=1,2,3, (85)

where ¢; € LP(R), i = 1,2,3, p € (1,40], a,b € R4, ¢c,e € R\{0}, d € R and
pi € LP' (), 1/p+1/p/ =1,i=1,2,3.

We notice that Theorem cannot be directly applied to this identification
problem, since such a problem is singular due to the lack of the term D;uz. However,
since A 1 WP(Q) N W2P(Q) — LP(Q) is a linear isomorphism, we can solve the
elliptic equation for ug:

Uz = CilAil[Ul — U + f3(t)<3], in (0,7’) x Q. (86)
Assume now
X3! i= (A7 s, 03) 12(0) # 0. (8.7)
Consequently, from and the additional equation (usz(t,-),¢s)r2(q) = g3(t) we
deduce the following formula for fs:
fa(t) = exaga(t) — x3(A™ (w1 —u2)(t, ), p3)- (8.8)

Therefore, our inverse problem is equivalent to the following problem:

Diuqp = aAu + [ —de tuy + de s (AT g, 03) G+ de T ug

—de x3 (A g, <P:3>C3} —dx3g3(t)Cs + f1(t)C1, in (0,7) x €,

Dyug = bAus + [ecilul —ec g (AT g, 3)¢3 — ec g
(8.9)
+ 60—1X3<A_1U27<P3>C3} +ex3g3(t)(3 + f2(t)C2, in (0,7) x Q,

u1(0,-) = w1, u2(0,-) =up2, inQ,
up =ug =0, in (0,7) x 99,
<ui(t7 )7‘;01> = gz(t)7 te (077—)7 1= ]-72
Define {e*®};>¢ as the analytic semigroup generated by A with the domain

A Wol’p(ﬂ) NW?2P(Q) — LP(Q) and observe that the semigroups {7} (t)};>0 and
{T5(t)}+>0 generated by aA and bA are defined, respectively, by

Ti(t) = ™2, Ty(t) = "2, (8.10)
In this case we have
X4 = (LP(Q); WP (Q) N Wy (2))g,00 X (LP(2); W2P(Q) N WP (2))g,00-
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Such spaces were characterized by Grisvard (a proof can be found, for the reader’s
convenience, in [2I} p. 321]). Then we define

Biaiup = —de Yug + dC_1X3<A_1U1, ©3)(s, (8.11)
By gus = de ™ ug — detxs (A ug, 02) s, (8.12)
Baiuy = ec” uy — ec s (AT ug, 03) (s, (8.13)
B sus = —ec Mug + e g (AT ug, 03) G, (8.14)
hi(t) = —dx393(t)C3,  ha(t) = exsgs(t)(s, (8.15)

211 =C1, 222 =C2, 212=221=0. (8.16)

Assume further that
[aAu(m —de Mgy 4 de s (A g 1, ) G 4 de M ug 2 — de” s (A Mg 2, <P3>C3}

€ (LP(Q); WP(Q) N W, P(Q))g.00,
(8.17)

{6671%71 —ec  x3 (A ug 1, 03)C + bAUg 2 — ec g 2 4+ ec T X3 (A ug o, <P3>C3}
€ (LP(Q); WP (2) N Wy ()00,

(8.18)
Up1,up2 € WHP(Q)NW,P(), (3 € (LP(Q); WHP(Q) N Wy P(D)po, (8.19)
(C1,1)(Co, p2) (A7 C3, 03) # 0. (8.20)

Then we can apply Theorem with (a,8) = (1,1), to problem to en-
sure that there exists a quadruplet (ui,us, f1, f2) € X = {C*([0,7]; LP(Q)?) N

([0, 7); [WP(Q2) N Wol’p(Q)]Q)} x C([0,7]; C?) solving (8.9). Finally, we observe
that the pair (us, f3) is defined by formulae and (8.7). Therefore it belongs
to C([0, 7]; W2P(Q) N W, P(2)) x C([0, 7]; C).
The same technique applies when our additional information is
(ui(t,-), i)z = 9i(t), i = 1,2, (ui(t,-), ¢3)r2() = g3(t), te(0,7).

In this case the solvability condition changes to

Jopr(@)Ci(@)de [ o1()Cs(x) da
fra@a POt O patemal 2o o

In fact, from , we easily derive the new identification problem
Dyuy = (aA —deug +be tug + f1(t)¢ — de ! f3(£)¢s, in (0,7) x Q,
Dyug = ec”'uy + (bA — ec™ ug + fo(t)Ga + ec f3(t)¢s,  in (0,7) x Q,
u1(0,-) =up1, u2(0,:) =ug2, inQ,
up = wug, in (0,7) x 99,
(ui(t, ), pi)rz) = 9i(t), t€(0,7), i=1,2,
(ui(t, "), p3)r2() = g3(t), t€(0,7).
Now Corollary [5.3] applies if the following solvability condition is satisfied

fQSDl Cl( ) 0 fQ‘Pl CS( )
Jop2(x Cz( )dz  ec 1fQ<P2 )G3(z) dz | # 0.
Jo p3(x Cl( ) dx —de™! [ p3(x)Cs(x) da

(8.22)
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But this condition is nothing but (8.21)). However, notice that the consistency
conditions
(uo,i(t,-), pi)r2) = 9i(0), i = 1,2,  (uo1(t,-), ¥3)r2(0) = 93(0),

must hold.

Assume now that the boundary condition involving ug is changed to the Neu-
mann one, i.e. Dyus = 0 on (0,7) x 99, where v and D, denote, respectively,
the outward unit vector normal to €2 and the normal derivative on J€). Then the
elliptic problem

0=wu; —ug — cAusz + fg(t)Cg, n (0, T) x Q,

8.23
D,uz =0, in (0,7) x 09, (8.23)

admits a unique solution in W22 (), if and only if the following condition is satisfied

fS(t)<<3a1> = _<(u1 _u2)<t7')71>> te [077—]5
where (h,1) = [, h(z)dx, h € L'(2). Assuming that

Xz = (G, 1) £ 0,
we obtain
f3(t) = —=xs{(ur —u2)(t,-), 1), telo,7]. (8.24)
Note that in this case we can get rid off of the third additional condition in .
Consequently, an equivalent problem for (uy,us, f1, f2) turns out to be the following;:
Dyuy = aAuq —de™! [ul —ug — x3C3((uy — ua), 1)] + f1(t)¢, in (0,7) x Q,
Dyug = bAuy + ec™t [ul —ug — x3C3{(u1 — uz), 1>] + fa(t)Ce, in (0,7) x Q,
u1(0,) =up1, u2(0,:) =1ugz2, in €,
up =ug =0, in (0,7)x 99,
(ui(t, ), i) = gi(t), te(0,7), i=12.

(8.25)
Then we define
Bi(u1,ug) = —de ™ uy — up — x3(3((ur — u2),1)],
By (u1,uz) = ec” ' ug — up — x3¢3((ug — uz), 1)],
hi(t) = ha(t) = 0,
211 =C1, 222=C, 212=2,=0.

Assume further

alug — de™ ugy — uo2 — X3¢ (w01 — uo2), 1))

€ (LP(Q); W?P(Q) N WP (9))g,00,

bAug2 — de™ ug,r — o2 — x3¢3 (w01 — uo,2), 1)] (8.26)

€ (LP(92); W2P(2) N Wy ™(2))g,00,
uo1,tp2 € W2P(Q) VWP (), Gs € (LP(); WP () N Wy P (2))o.00,
(C1y1)(C2, 2)(C3, 1) # 0.
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Then we can apply Theorem [7.2] with (, 3) = (1, 1), to problem (8.25) to ensure
that there exists a quadruplet

(ulau27flaf2) ek

= {CY([0,7); L7(2)%) n C1 ([0, 7]; W27 (Q) n Wy P()] %)} x C([0, 7] C?)
solving (8.9). Finally, we observe that the pair (us, f3) is defined by formulae
and (8.24)). Therefore it belongs to C([0, 7]; W2P(2)) x C([0, 7]; R).

Now we change the boundary conditions in the previous direct problem to the
following ones of mixed Dirichlet-Neumann type

up =uz=wug =0, in (0,7)xIp, (8.27)
Dyuy = Dyus = Dyuz =0, in (OaT) X I'n. (828)

Here I'p is an non-empty open subset and I'y = 9Q\T'p. Moreover, 2 must satisfy
the exterior sphere condition

my(B(zo, R) NQ°) > cR", Vxo € 09, (8.29)

m,, denoting the n-dimensional Lebesgue measure. In particular the latter property
holds if 9 is Lipschitz (cf. [B, 24]). Explicitly, we consider the identification
problem (8.11)) consisting in recovering the three scalar functions f; € C([0,7];C)
such that

Dy = aAuy — dAug + f1(t)¢, in (0,7) x Q,
Dyug = bAug + eAus + fa(t)¢2, in (0,7) x £,
0 =wuy —us — cAus + f3(t)¢sz, in (0,7) x Q,
u1(0,-) = o1, u2(0,) = upz2, inf (8.30)
up =us =u3z =0, in (0,7)x'p,
Dyu; = Dyus = Dyuz =0, in (0,7) x Ty,
Hp(Q)(uilt, ), i) )= = 9i(t), ¢ €(0,7), i=1,2,3,
for given p; € H5(Q) and g; € C*([0,7];C), i = 1,2, 3.
Identifying L?(2) with its antidual space, we introduce the Hilbert space
HH(Q) ={ucH(Q):u=00nTp} (8.31)
and we denote its antidual space by Hp(Q)*. Then we define the linear operator
A € L(HLH(Q); H5()*) by the bilinear form
(Aw,v)p2(0) = /QVu~de, u€ Hp(Q), ve Hh(Q)*. (8.32)

We note that A is the realization of —A in H},(2)* under the homogeneous Dirichlet
condition on I'p and the homogeneous Neumann condition on I'y and that —A
generates an analytic semigroup on H} (Q)* (cf. [5], [15, p.114] and [24]). Moreover,
—A is an isomorphism from HL(Q2) to Hp(Q)*.

Let us observe that, for any 6 € [1/2, 1], we have

D(A%) = [L2(Q), Hp()]ao-1 = [[HH(Q)", Hp(Q)]1/2, Hp(2)]

= [Hp(Q)*, Hp(Q)]1/2—(20-1)/2
= [HH(Q)*, Hp ()] — (Hp(Q)*, Hp(€2))6,00-

20—1
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Notice that Au € L?(Q) needs not to imply u € H?(Q) due to the boundary
conditions of mixed type, while D(AY/?) = L?(Q). Choose now X = Hh(Q)*.
Then from the equation

cAuz = —uy +uz — f3(t)(3
we have
uz = —c AT g e AT g — e TTAT f3(8) G
and
93(t) =m, (Q) (us(t, ), 03) (-
H1 ) <A Lug (t, ), 3 my () 0E2(9)<A71U2(ta ), 3) m1 ()
_Cilf3(t)H}3(Q)<A 1(37<PB>H;,(Q)*~
If
Nt =1 ) (NG 08) ) # 0,
the latter equation uniquely determines f3 as
fa(t) = —engs(t) = ny ) (A ua (b, ), 08) 1 - + M ) (A Mzt ), @3) o)+
Whence we easily deduce the formula
Aug = —¢"Muy + ¢ ug + ¢ gy o) (A ua (), 08) ()< Gs
— gy ) (A ua(t, ), 03) 1 )+ G + 193 () Cs.
So, problem reduces to the following
Dyuy = —aluy — ¢ rdug + ¢ tduy + ¢ dnHl @) (A~ Yus(t, ), ©3) 11, (2)+ C3
— ¢ gy o) (N ua(t, ), 03) i )+ G + dngs ()G + fL(1)G,

n (0,7) x Q,
Dyug = —bAug 4 ¢ teu; — ¢ Leuy — cflenlp o) <A*1u1(t, ), 903>H}3(Q)*<3 (8.33)
+ ¢ lengy (o) (A M ua(t, ), 0s) )= Cs — engs(t)Gs + f2(t)Ca,
n (0,7) x Q,

u1(0,-) =wup1, u2(0,-) =wug2, inQ,
my @ Uity ), 0i) m ) = 9i(t), t€(0,7), 1=1,2.

Now assume that the data (@1, @2, ¢3,C1,C2, (3, %0,1, U025 91, g2, g3) satisfy the fol-
lowing properties:

pi € HH(Q), G € (Hp(Q), Hp(Q))o,o, 1=1,2,3;
Up,1,Up,2 € H}L(Q), Aug 1, Aug o € (HE(Q)*,H},(Q))QW,
g1, 92,93 € C([0,7]; R),
a9 (Wi0, i) mL (o) = 9i(0), 1=1,2,3,
HL(Q) <A71<37 <P3>H,5(Q)* H;,(Q)@l, <P1>H,5(Q)* HE(Q)<C27 <P2>H}3(Q)* # 0.

Then, according to Theorem with &« = 8 = 1, we can conclude that the
identification problem (8.30) admits a unique solution

(u1, u2, us, f1, fa, f3) € C([0, 7] [Hp(Q)']*) x C([0,7); C),
Dyux, Dyuy € B([0, 7]; (Hp(Q)*, Hp(2))o.00);
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Remark 8.1. Note that sufficient conditions could be deduced simply by re-
placing the interpolation space (Hp (Q)*, H5(Q))g.0o with D(A?), since D(A?) for
6 € [1/2,1] coincides with the complex interpolation space [H5(Q)*, H5(Q)]s,
which is included in (H5(Q)*, H5(2))g.00, as we have already pointed out.

Problem 8.3. Let us consider the identification problem consisting of recovering

the m scalar functions f; : [0, 7] — R in the singular problem

Dtu = alylAu + al’zA’U + blyl(x)u -+ 61’2(1')’0 + hl (t, .T) + Z fj(t)zl,j,
j=1

in (0,7) x Q,

Dy = ag1Au~+ az2Av + by 1 (z)u + bo o (x)v + ha(t, x) + Z [i(t)z2,5, (8.34)

j=1
in (0,7) x Q,
u(0,-) =wup,1, v(0,-) =wugg2, in,
u=v=0, in (0,7) x 09,
under the following m additional conditions
Uilu(t, )] =gt), te(,7),j=1,...,m (8.35)
Ui, )] =g;), te(0,7),j=r+1,...,m, (8.36)

where ) is a (possibly unbounded) domain in R™ with a smooth boundary, a; ; € R,
bi; € C(4R), i,j = 1,2. Therefore, choosing Xo = LP(2), p € (1,+0oc), and
D(A) = WP(Q) N Wy P(Q), the well known resolvent estimates for our operator
A hold in LP(Q), so that A generates an analytic semigroup of linear bounded
operators.

To develop our strategy, we generalize to the case p € (1, +00) the results proved
for p = 2 in [§]. For this purpose we introduce in the space X = LP(2) x LP(f2) the
linear unbounded operator A defined by

a1 A arpA B
A= |:a2,1A aggA] ;» D(A) =D(A) x D(A). (8.37)
Some simple algebraic computations yield the following formula for the resolvent
(A=)t

CLQ’QA — A —CLLQA (838)

21—1
= —a271A CL1,1A -~ )\I:| [(al,lA — AI)(agyzA — )\I) — a172a271A } .
Observe that the determinant operator D = (a; 1A — X )(az2A — A) — a1 2a2 1A%
coincides with

D = N1 = Xay1 + az2)A + (a1,1a2,2 — a1,2a2,1) A%, (8.39)

Suppose now that
a1 >0, a22>0, ai1+aze >0, aiia22—aigaz; >0, (8.40)
(a11 — az2)? +4ay 2a2,1 > 0. (8.41)

We note that the last inequality in (8.40) can be weakened to > if © is bounded,
while condition (8.41)), not required in [8, Lemma 1, p.185], is necessary to ensure
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that the equation A\? — M(ay1 + a22) + (a1,1a22 — a1,2a21) = 0 admits two real
solutions 0 < A; < Ag, since (cf. (8.41))

(@11 + CL2,2)2 —4(ar11a22 — a1,202,1) = (a1,1 — 112,2)2 + 4aq 2a2,1 > 0. (8.42)

Now, in contrast with [8] we use the factorization D = (A — A1 A)(A — A\2A). From
the identity

D= XA\ IA = A) A A= A) (8.43)
we deduce the resolvent estimate
(A=A 2y SCA+ A", ReA>0. (8.44)
Therefore, A generates an analytic semigroup on X. On the other hand the matrix
operator
5=t ] 69

belongs to L£(X), so that A+ B, with D(A + B) = D(A), generates an analytic
semigroup on X, too. Now we make the following assumptions:

\1/1[2’171] . \Ifl[Zl’m}
\IJT[Z]. 1] . \I/'r[zl m]
det ’ ’ 0,
¢ U,iilzo0] o0 Wegi[22m) 7
\I/m[2271] Ce \111[22,m}

Ug, Vg € D(A), (A + B)(Uo,vo)T S (X,D(A))epo X (X,’D(A))g)oo = g X Zy,
(z1.,225)" € Zg, g; € C*([0,7];R), ; € LUQ), j=1,...,m, 1/p+1/qg=1,
(hhhg)t S C([O,T];Ze X Zg).

The characterization of the space Zy can be found in [2I, Theorem 4.4.1, p.321].
Now we define the linear bounded functionals ¥;, j =1,...,m, by

Wjlu] = /Qw(éE)U(w‘) da. (8.46)

Then, by Corollary we conclude that the identification problem (8.34])—(8.36)
admits a strict solution (u,v, fi1,..., fm) with the following additional regularity:

Dyu, Dyv € B([0,7]; Zy),
a11Au + a1 2Av + by 1 () u+ b1 2(-)v € C([0, 7]; LP(Q)) N B([0, T]; Zs),
ag’lAu -+ QQ’QA'U + b2,1(~)u -+ b2’2(°)’0 c C([O, 7']; LP(Q)) N B([O, T]; Zg)

Observe that this strategy works also if LP(Q) is replaced with C(2) and related
functionals ¥, € C(Q)*.

9. IDENTIFICATION PROBLEMS FOR PDE’S CORRESPONDING TO (3 € (0,1)

Problem 9.1. Let 2 be a bounded domain in R™ with a C*°-boundary 9€2. We
want to recover the scalar functions f; : [0,7] — C, j = 1,...,m, in the initial
boundary value problem

ou

E(t,x) + A(z, Dy)u(t,z) = ij(t)zj(x), (t,z) € (0,7) x Q, (9.1)
j=1
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u(0,2) = up(x), x€Q, (9.2)
a(x)Dyu(t, z) + a(x) - Vu(t,z) + b(t, z)u(t,x) =0, (¢t,z) € (0,7) x 99, (9.3)

under the m additional pieces of information

/Qm(m)u(t,x)dx =g;i(t), 0<t<rt i=1,...,m, (9.4)
along with the consistency conditions
/Q ni(x)ug(z)de = ¢;(0), i=1,...,m. (9.5)
Here . .
— A(z,D,) = Z ;i j(x) Dy, Dy, + Z%(@Dm + ag(x) (9.6)
i,j=1 i=1

is a second-order elliptic differential operator with real-valued C'*°-coefficients on
Q such that

aj:i(m) = ai,j(ﬂ?), Z ai,j(x)ngj > CO|£‘25 (‘T7§) € Q x an (97)

ij=1

co being a positive constant. Concerning the linear boundary differential operator
defined, for all (¢,z) € (0,7) x 99, by

A\(x, Dyu(t,z) = a(z)Dyu(t,x) + a(x) - Vu(t, z) + b(z)u(t, x), (9.8)
we assume that a, b and « are real-valued C*°-functions and a vector field on 992,
respectively, such that Tu = « - Vu is a real C*°-tangential operator on 09, D,
standing for the conormal derivative associated with the matrix (am-(x)); ie.,

n o, n
D, = (Y aij@mie)n;@) 3 ais(@)De, (9.9)
b=l ij=1
n(x) = (nl(ff)a e ,nn(m)) denoting the outward unit normal vector to 92 at z.

Assume further (cf. [20, p. 515] that the vector field a does not vanish on
Iy = {z € 9Q : a(x) = 0} and the function t — a(x(t,z0)) has zeros of even
order not exceeding some value 2k; along the integral curve a'(t, zo) = a(x(t, zg))
satisfying the initial condition x(0,z¢) = xg, with zy € To. In other words, the
so-called (H)s-condition holds with § = 6; = (1 + 2k;)~!. Tt is shown on p. 516 in
[20] that the operator L defined by

D(L) = {u € L*(Q) : A(-, Dy)u € L*(Q), A(-, Dy)u=0 on dQ}, (9.10)
Lu=A(-,D;)u, wu€D(L). (9.11)
satisfies in L?(2) the resolvent estimate
[+ L) ey < C(L+[A)~0F0/2 (9.12)
for all A with a large enough modulus belonging to the sector
Yo ={AeC\ {0} : |argA| < ¢}, ¢ (n/2,m). (9.13)

If we consider the subelliptic case k = (1 + 6)/2 > 1/2, we can immediately apply
Corollary
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Problem 9.2. Here we deal with a problem - similar to Problem 9.1 - in the
reference space of Holder-continuous functions X = (C*(Q), || [|«), when o € (0, 1)
and the boundary 992 of  is of class C*™ for some positive integer m. In this case
the linear differential operator A is defined by

D(A) = {u c CQm"'O‘(ﬁ) :DYu=00n99Q, |y|<m— 1}7 (9.14)
Au(x) = > ay(z)Du(z), z€Q, ueD(A), (9.15)
[v|<2m
where (3 is a usual multi-index with |3| = Z;’:l B; and DP = H?Zl(— D, )% .

Assume that the coefficients a, : @ — C of A satisfy the following conditions
(i) ay € C*(Q;C) for all |y| < 2m;

(ii) ay(z) €R for all x € Q and |y| = 2m;

(iii) there exists a positive constant M > 1 such that

M7HEP™ < > ay ()€ < MIEP™,  (2,€) € Ax R™. (9.16)

[v[=2m

Then there exist A, ¢ € Ry such that the spectrum of the operator A + X satisfies
G(A+ ) C S(nja)c = {2z €C\ {0} : |arg 2| < g —clu{o}. (9.17)

Moreover, for any p € (7/2,7) there exists a positive constant C'(u) such that
[ = A) "l goagmy) < C(w) A1 X e s, (9.18)

For details cf. Satz 1 and Satz 2 in [22], where we choose | = o, 3 =1 — (a/2m).
As an example, we can consider the problem consisting in recovering the vector-
function (u, fi,..., fp), where f; : [0,7] = C, j =1,...,p, satisfying

%(t,x) + A+ Nu(t,z) = ij (t)zj(z) + h(t,z), (t,z)€[0,7] xQ, (9.19)
u(0,x) =uo(z), =€, (9.20)
DYu(t,x) =0, (t,z)€[0,7] xIQ, |y]|<m—1, (9.21)

under the p additional conditions
u(t, ;) = g;(t), tel0,7], j=1,....,p, (9.22)

where T;, j =1,...,p, are p fixed points in €.
We remark that A is not sectorial and D(A) C {u € C*(Q) : u =0 on 00Q}. In
view of Corollary we can establish our identification result.

Theorem 9.1. Let § € (a/(2m),1) and f =1—«a/(2m) > 0. Let Y™ be either
of the spaces (X, D(A))y,00 or X 4. Let ug € D(A), Aug € Y™, g; € C1([0,7];C),
j=1,...,p, he C([0,7]; X) N B([0,7]; Y"°), uo(Z;) = g;(0), j =1,...,p, with
Zl(fl) e Zp(fl)
det | ... e ... | #O.
2(@p) - 2p(Tp)
Then problem - admits a unique strict solution
(u, f1,. .., f») € [C1([0,7]; C*(Q) N C([0,7]; D(A))] x C([0, 7];C)?
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such that u(t,-) € C?>™+%(Q) for all t € [0,7], Dyu € B([O,T];Yj_(a/Qm)’w), Au €
[Co=(e/2m) ([0, 7]; C(@) N B((0, 7] Y4~ /*™ =),

Problem 9.3. Under the same assumptions on m and  as in Problem 9.2 we
introduce the linear operators A and D by the formulae.

D(A) = {u e C*™"*(Q) : D’u=00n9Q, |f| <m—1}, (9.23)

Au(z) = Z ag(z)DPu(z), 2 €Q, uc D(A), (9.24)
|Bl<2m

D(D) = {v IS Cszra(ﬁ) :D"v=00n 09, |y|<p-— 1}7 (9.25)

Du(z)= Y dy(z)D(z), z€Q, veDD), (9.26)
[vI<2p

where ag,d, € C*(Q2) and DP, D7 are defined as in Problem 9.2.
Let us introduce the operators B and C' defined by

Z b, (z)DVv(z), z€Q, veCP Q) (9.27)
[v1<2p-1
Cu(zx) = Z cs(x)DPu(z), x€Q, ue 1T Q). (9.28)
IBl<2m—1

In view of [22] Satz 1] the following estimate holds in the set |arg A\| < (7/2) + ¢
Re A > )\0:

IMllelle@y + AP ™ ull ga gy + AT C™ lul| gom-sva gy + [l gamsa @y
< Cil[(A+ Nl co @

(9.29)
Whence we deduce the estimates
ICA+ N fllgag < ColATH ™| £l 0 ), (9.30)
|B(D + A)‘lfllm @ < GNP o (9.31)
Consequently, conditions . hold with
l1—« 11—«
B 2m7 B2 2p’ 4t om V2 om (9.32)

Therefore, we are allowed to apply Theorem and Corollaries 6.2, 6.3 to the
problem consisting in finding a quadruplet (u, v, f1, f2) solving

(t,x) + Az, Dz)u(t,x) + B(z, Dy)v(t, x)

(9.33)
= fl(t)z 1(z) + fo(t)z12(x) + ha(t,x), (tz) € (0,7) x Q,
ov
a(t, x) + C(x, Dy)u(t, ) + D(x, Dy )v(t, x) (9.34)
= f1(t)z21(2) + f2(t)22,2(2) + ha(t,z), (@) € (0,7) x €,
w(0,2) = ug(z), v(0,2) =vo(z), z€Q, (9.35)
( ) ) = gl<t)a (t’%) = 92(t)a te [057-]7 (9'36)

where

Feq, u0,7) =g(0), v0,7)=g0). (9.37)
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Indeed, operator A defined in X x X = C%(Q) x C*(Q2) by
U Au+ Bv
D(A) =D(4) xD(D), A L}] - {Cu + DU:|

satisfies, for all A with large modulus belonging to the sector |arg A\| < (7/2) + €,
the resolvent estimate

I+ A) 7l pca@yxeag@y < A, (9.38)
where N N
—min{1- 2 121 .
B = min { . Qp} (9.39)

We confine ourselves to translating Corollary to this new situation.

Theorem 9.2. Let 3 be defined by (9.39) and 6 € (1—3,1), g1,92 € C1([0,7]; C),
ug € D(A), vo € D(D), Aug + Bug € (C*(Q); D(A))s,00,

Cug + Dvg € (C*(Q); D(D))g,00,
211,212 € (C*(Q); D(A))g,00s 221,222 € (C*(Q); D(D))g 00,
h1 € C([0,7);C*(92)) N B([0, 7]; (C*(2); D(A))6,00)
ha € C([0,7); C*(92)) N B([0, 7]; (C*(2); D(D))e,00)
satisfying the consistency conditions as well the solvability condition
21,1(T)22,2(7) — 21,2(T) 22,1 (2) # 0.

Then problem — admits a unique strict solution (u, v, f1, f2) in the space
[C1([0,7]; C*(Q) N C([0, 7];D(A))] x [C*([0, 7], C*(2)) N C([0,7]; D(D))]
xC([0,7];C) x C([0,7]; C) such that

Deu € B(0, 7] (C*(BD(A))os5-1.00),  Dev € B([0,7]: (O (D))o 5-1,00),
Au+ Bv € C**P=1([0,7); C*(Q)), Cu+ Dv e C/TF=1([0,7];C*(Q)).
We could also handle the system
- A1+ By B B,

o [nta) By Ayt Bas ... Bo | [0
§y$®+- o . . . i)
- - An + an (940)
_hl(t.x)
= e € [0,7],
_hn(t.m) zn,J
) y0j7 .] - 1 Y a (941)
A e (9.42)

in the space [C*(Q)]". ". Here the A;’s and the B; ;’s are linear differential operators
like in Problem 9.2 and Problem 9 1, respectively such that ord B; ; < ord A;, for
alli,j=1,...,p.

Since a bound of type follows from [22, Satz 1] the previous argument
applies immediately, e.g., when functionals ¥; are defined by ¥;[y;(-)] = y; (@),
j=1...,p, M, ..z being p fixed points in Q. The details are left to the
reader.
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Problem 9.4. Let us consider the degenerate parabolic system
E(t,x) = Ala(@)u(t,z)) + b(z)v(t,x) + f1(t)z1,1(z) + f2(t)21 2(2), (9.43)

(t, ) = c(@)u(t,z) + A(d(x)v(t, z)) + f1(t)z2,1(x) + f2(t)2z22(2), (9.44)

ot
(t,z) € (0,7) x Q,

w(0,2) = up(x), v(0,2) =wvo(z), z€Q, (9.45)
a(z)u(t,z) =0=d(z)v(t,x), (t,x)€ (0,7)x I, (9.46)
/ m(z)u(t, z)dz = g1(t), / na(x)v(t,x)de = go(t), 0 <t <, (9.47)

Q Q

along with the consistency conditions
/ m (2)uo(x)dz = g1(0), / na(z)vo(x)dx = g2(0), (9.48)

Q Q

where  is a bounded domain in R”, n > 1, with a C2-boundary 99, while a, b, c,
d are functions in C(€;R) such that a(z) > 0 and d(z) > 0 a.e. in Q. Moreover,
zij € L3(Q), i, = 1,2, ug, v € HJ(Q) N H*(Q), g; € C*([0,7);C), i = 1,2. Our
task consists in recovering (u, v, f1, fa).

We recall [106], p. 83] that, if

r>2 whenn=1,
at e L"(Q) with {r>2 whenn=2,

r>mn, whenn > 3,
then, for any function e enjoying the same properties as a, operator K (e) defined
by
D(K(e)):={ue€ L*(Q) :euc H}(Q)NH*(Q)}, K(e)u:=—Aleu), u€ D(K)
satisfies the estimate
I+ K (€)™  fllzeey < A= 27)| £l 12,

for all A in a sector containing the half-plane Rez > 0. Therefore, « = 1, § =
(2r —n)/2r.

Let us assume 1/a € L™ (2), 1/d € L™ (). Consequently, estimates (6.2)) hold
with « =1, 1 = (2r1 — n)/2r1, B2 = (2ry — n)/2ry for operators K(a) and K(d).
Since the multiplication operators generated by b and ¢ are bounded in L?(Q), 3

in (6.12) is given by
n n 1
= mi ) = mi 1_7’1_7}277
B = min{f, B2} mln{ o 2rg 5

since r; > n, j = 1,2. Let us assume

/Qnl(x)zlﬁl(x)dx/Qng(x)zgyg(x)dx — /Qm(x)zlﬁg(x)dx/Qng(x)zgyl(x)dx #0,
91,92 € C([0,7;C), 1-p<6<1.

=[50 ] o

Let



EJDE-2012/225 DIRECT AND INVERSE PROBLEMS 33

As (L*(9) x L*(9), D(A))p,00 = (L*(€), D(K (a)))p,00 ¥ (L*(Q), D(K(d))).c0 if
(Alal(-)uo) +b(-)vo, c(-)uo + A(d(-)vo))
€ (L*(), D(K(a)))o.00 % (L*(), DK (d)))p,00,

211, %12 € (LZ(Q) D(K( )))9 007 221, 299 € (LQ(Q) D(K(d)))g o0, from Corollary.
we can conclude that problem (9.43)-(9.47)), endowed with the consistency condition
admits a unique global strlct solution ((u,v), f1, f2) € C([0,7]; D(K(a)) x
D(K(d))) x C([0,7];C) x C([0,7]; C) such that (Dyu, Dyw)T € B([0,7]; (L*() x
L2(9), D(K (@) < DK (d)))o— 1y 00)s A, v)T € CO- (=3[0, 7]; L(Q) x L2(2))N
B0, 7J; (LA(Q) x L3(2), D(K () x DK (d)))o_1—5)00)-

More generally, we could deal with an analogous doubly degenerate problem
related to the system

%(m(x)U(t, ) = Ala(z)u(t, z)) + b(z)o(t, 2) + fr(t)21,1(2) + fa(t)21,2(2),

%(n(:ﬁ)v(t, z)) = c(@)u(t, x) + Ald(z)v(t, x)) + fi(t)z2,1(2) + fa(t)z2,2(),

(t,x) € (0,7) x Q
m and n being positive and continuous functions on 2, using the change of un-
knowns defined by m(z)u = uy, n(x)v = v;. Notice that then we must make
continuity assumptions on the behaviour on the boundary of functions b/n, ¢/m,
a/m, d/n.
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