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GROWTH OF SOLUTIONS TO LINEAR DIFFERENTIAL
EQUATIONS WITH ENTIRE COEFFICIENTS

HUI HU, XIU-MIN ZHENG

Abstract. In this article, we study the growth of solutions of linear differ-
ential equations with some dominant entire coefficients. Especially, we obtain
some results on the iterated p-lower order of these solutions, which extend pre-
vious results. Moreover, we investigate the iterated exponent of convergence
of distinct zeros of f (j)(z)− ϕ(z).

1. Introduction

We shall assume that readers are familiar with the fundamental results and
the standard notations of Nevanlinna’s theory; see e.g. [5, 8, 13]. Let us define
inductively for r ∈ [0,+∞), exp1 r = er and expp+1 r = exp(expp r), p ∈ N. For
all sufficiently large r, we define log1 r = log r and logp+1 r = log(logp r), p ∈ N.
We also denote exp0 r = r = log0 r and exp−1 r = log1 r. We recall the following
definitions of finite iterated order; see e.g. [2, 3, 8, 9, 10, 12].

Definition 1.1. The iterated p-order σp(f) of a meromorphic function f(z) is
defined as

σp(f) = lim sup
r→∞

logp T (r, f)
log r

(p ∈ N).

Remark 1.2. If f(z) is an entire function, then

σp(f) = lim sup
r→∞

logp T (r, f)
log r

= lim sup
r→∞

logp+1 M(r, f)
log r

= lim sup
r→∞

logp νf (r)
log r

,

where p ∈ N, νf (r) is the central index of f(z).

Definition 1.3. The iterated p-lower order µp(f) of a meromorphic function f(z)
is defined by

µp(f) = lim inf
r→∞

logp T (r, f)
log r

(p ∈ N).
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Remark 1.4. The iterated p-lower order µp(f) of an entire function f(z) is defined
by

µp(f) = lim inf
r→∞

logp T (r, f)
log r

= lim inf
r→∞

logp+1 M(r, f)
log r

= lim inf
r→∞

logp νf (r)
log r

(p ∈ N).

Definition 1.5. The finiteness degree of the order of a meromorphic function f(z)
is defined by

i(f) =


0, if f is rational;
min{j ∈ N : σj(f) < ∞}, if f is transcendental with

σj(f) < ∞ for some j ∈ N;
∞, if σj(f) = ∞ for all j ∈ N.

Definition 1.6. The iterated convergence exponent of the sequence of a-points of
a meromorphic function f(z) is defined by

λp(f − a) = λp(f, a) = lim sup
r→∞

logp N(r, 1
f−a )

log r
(p ∈ N),

and the iterated convergence exponent of the sequence of distinct a-points of a
meromorphic function f(z) is defined by

λp(f − a) = λp(f, a) = lim sup
r→∞

logp N(r, 1
f−a )

log r
(p ∈ N).

If a = 0, the iterated convergence exponent of the zeros or the iterated convergence
exponent of the distinct zeros is defined respectively by

λp(f) = λp(f, 0) = lim sup
r→∞

logp N(r, 1
f )

log r
(p ∈ N),

or

λp(f) = λp(f, 0) = lim sup
r→∞

logp N(r, 1
f )

log r
(p ∈ N).

If a = ∞, the iterated convergence exponent of the poles or the iterated convergence
exponent of the distinct poles is defined respectively by

λp(
1
f

) = lim sup
r→∞

logp N(r, f)
log r

(p ∈ N),

or

λp(
1
f

) = lim sup
r→∞

logp N(r, f)
log r

(p ∈ N).

Furthermore, we can get the definitions of λp(f − ϕ) and λp(f − ϕ), when a is
replaced by a meromorphic function ϕ.

Definition 1.7. Let f(z) be an entire function. Then the iterated p-type of an
entire function f(z), with iterated p-order 0 < σp(f) < ∞ is defined by

τp(f) = lim sup
r→∞

logp−1 T (r, f)
rσp(f)

= lim sup
r→∞

logp M(r, f)
rσp(f)

(p ∈ N\{1}).

We definite the iterated p-lower type of f(z) as follows.
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Definition 1.8. Let f(z) be an entire function. Then the iterated p-lower type of
an entire function f(z), with iterated p-lower order 0 < µp(f) < ∞, is defined by

τp(f) = lim inf
r→∞

logp−1 T (r, f)
rµp(f)

= lim inf
r→∞

logp M(r, f)
rµp(f)

(p ∈ N\{1}).

Remark 1.9. If p = 1, then the equalities

lim sup
r→∞

logp−1 T (r, f)
rσp(f)

= lim sup
r→∞

logp M(r, f)
rσp(f)

,

lim inf
r→∞

logp−1 T (r, f)
rµp(f)

= lim inf
r→∞

logp M(r, f)
rµp(f)

in Definitions 1.7 and 1.8 respectively fail to hold. For example, for the function
f(z) = ez, we have limr→∞

T (r,f)
r = 1

π 6= 1 = limr→∞
log M(r,f)

r . Therefore, we
assume p ∈ N\{1} in the following.

We denote the linear measure and the logarithmic measure of a set E ⊂ [0,+∞)
by mE =

∫
E

dt and mlE =
∫

E
dt/t respectively (see e.g. [6]).

2. Main Results

In 1998, Kinnunen investigated complex oscillation properties of the solutions of
the higher order linear differential equations

f (n) + An−1(z)f (n−1) + · · ·+ A1(z)f ′ + A0(z)f = 0 (2.1)

and
f (n) + An−1(z)f (n−1) + · · ·+ A1(z)f ′ + A0(z)f = F (z), (2.2)

with entire coefficients of finite iterated order and obtained the following result in
[9].

Theorem 2.1. Let A0(z), A1(z), . . . , An−1(z) be entire functions and let i(A0) = p,
0 < p < ∞. If i(Aj) < p or σp(Aj) < σp(A0) = κ for all j = 1, 2, . . . , n − 1, then
i(f) = p + 1 and σp+1(f) = κ hold for all non-trivial solutions of (2.1).

Note that there is some coefficient A0(z) strictly dominating other coefficients
in Theorem 2.1. Thus, a natural question arises: If there are some coefficients have
the same iterated order as A0(z), can the similar result hold? B. Beläıdi in [1]
considered the question and obtained next result.

Theorem 2.2. Let A0(z), A1(z), . . . , An−1(z) be entire functions, and let i(A0) =
p. Assume that max{σp(Aj) : j 6= 0} ≤ σp(A0)(> 0) and max{τp(Aj) : σp(Aj) =
σp(A0)} < τp(A0) = τ(0 < τ < ∞). Then every solution f(z) 6≡ 0 of (2.1) satisfies
i(f) = p + 1 and σp+1(f) = σp(A0).

Theorems 2.1 and 2.2 investigated the iterated order of solutions of (2.1), when
there is some dominating coefficient with iterated order. Another question is: If
there is some dominating coefficient with iterated lower order, what can we say
about the growth of solutions of (2.1). For the special case p = 2, Zhang-Tu in [14]
discussed it and obtained the following result.

Theorem 2.3. Let A0(z), . . . , An−1(z) be entire functions satisfying max{σ(Aj),
j = 1, . . . , n− 1} < µ(A0) ≤ σ(A0) < ∞, then every solution f(z) 6≡ 0 of (2.1)
satisfies

µ(A0) = µ2(f) ≤ σ2(f) = σ(A0).
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In this paper, we investigate the above problems. Moreover, we investigate the
iterated exponent of convergence of distinct zeros of f (j)(z) − ϕ(z). Firstly, we
extend Theorem 2.3 into a general case and obtain the same result.

Theorem 2.4. Let A0(z), A1(z), . . . , An−1(z) be entire functions of finite iterated
order satisfying max{σp(Aj), j = 1, . . . , n−1} < µp(A0) ≤ σp(A0) < ∞, then every
solution f(z) 6≡ 0 of (2.1) satisfies

µp(A0) = µp+1(f) ≤ σp+1(f) = σp(A0). (2.3)

Secondly, when there are some coefficients with iterated order equal to µp(A0),
we obtain the following two results.

Theorem 2.5. Let A0(z), A1(z), . . . , An−1(z) be entire functions, and let i(A0) =
p. Assume that max{σp(Aj) : j 6= 0} ≤ µp(A0) ≤ σp(A0) and τ1 = max{τp(Aj) :
σp(Aj) = µp(A0)} < τp(A0) = τ(0 < τ < ∞). Then every solution f(z) 6≡ 0 of
(2.1) satisfies

µp+1(f) = µp(A0) ≤ σp(A0) = σp+1(f) = λp+1(f − ϕ) = λp+1(f − ϕ), (2.4)

where ϕ(z) 6≡ 0 is an entire function satisfying σp+1(ϕ) < µp(A0).

Theorem 2.6. Let A0(z), A1(z), . . . , An−1(z) be entire functions of finite iterated
order satisfying max{σp(Aj), j 6= 0} ≤ µp(A0) = µ and

lim sup
r→∞

n−1∑
j=1

m(r, Aj)/m(r, A0) < 1.

Then every non-trivial solution f(z) of (2.1) satisfies

µp+1(f) = µp(A0) ≤ σp(A0) = σp+1(f) = λp+1(f − ϕ) = λp+1(f − ϕ), (2.5)

where ϕ(z) 6≡ 0 is an entire function satisfying σp+1(ϕ) < µp(A0).

Remark 2.7. All solutions of (2.1) in Theorems 2.4, 2.5, 2.6 are of regular growth
µp+1(f) = σp+1(f), when the coefficient A0(z) is of regular growth µp(A0) =
σp(A0).

Theorem 2.8. Let A0(z), A1(z), . . . , An−1(z) be meromorphic functions of finite
iterated order satisfying

max{λp(
1

A0
), σp(Aj), j = 1, . . . , n− 1} < µp(A0) ≤ σp(A0) < ∞,

if f(z) 6≡ 0 is a meromorphic solution of (2.1) satisfying N(r,f)

N(r,f)
< expp−1{rb},

(b < µp(A0)), then we have

σp(A0) = σp+1(f) = λp+1(f (j) − ϕ) = λp+1(f (j) − ϕ), (j = 0, 1, . . . ), (2.6)

where ϕ(z) 6≡ 0 is a meromorphic function satisfying σp+1(ϕ) < σp(A0).

Corollary 2.9. Let A0(z), A1(z), . . . , An−1(z) satisfying the hypotheses of Theorem
2.4, then every solution f(z) 6≡ 0 of (2.1) satisfies

µp+1(f) = µp(A0) ≤ σp(A0) = σp+1(f) = λp+1(f (j) − ϕ) = λp+1(f (j) − ϕ),

where ϕ(z) 6≡ 0 is an entire function satisfying σp+1(ϕ) < σp(A0).
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3. Lemmas for the proofs of main results

Lemma 3.1. Let f(z) be a transcendental entire function. There exists a set E1

of r of finite logarithmic measure, such that for all z satisfying |z| = r 6∈ E1 and
|f(z)| = M(r, f), we have

f (k)(z)
f(z)

=
(νf (r)

z

)k(1 + o(1)), (k ∈ N, r 6∈ E1),

where νf (r) is the central index of f(z).

Lemma 3.2 ([6, 8]). Let g : [0,+∞) → R and h : [0,+∞) → R be monotone
increasing functions. If (i) g(r) ≤ h(r) outside of an exceptional set of finite linear
measure, or (ii) g(r) ≤ h(r), r 6∈ E2 ∪ (0, 1], where E2 ⊂ [1,∞) is a set of finite
logarithmic measure, then for any constant α > 1, there exists r0 = r0(α) > 0 such
that g(r) ≤ h(αr) for all r > r0.

Lemma 3.3 ([11]). Let A0(z), A1(z), . . . , An−1(z) be meromorphic functions of
finite iterated order satisfying max{σp(Aj), j = 1, . . . , n− 1} < µp(A0) ≤ σp(A0) <

∞, if f(z) 6≡ 0 is a meromorphic solution of (2.1) satisfying N(r,f)

N(r,f)
< expp−1{rb},

(b < µp(A0)), then σp+1(f) = σp(A0).

Lemma 3.4. Let f(z) be an entire function with µp(f) < ∞, then for any given
ε > 0, there exists a set E4 ⊂ (1,+∞) having infinite logarithmic measure such
that for all r ∈ E4, we have

µp(f) = lim
r→∞, r∈E4

logp T (r, f)
log r

= lim
r→∞, r∈E4

logp+1 M(r, f)
log r

= lim
r→∞, r∈E4

logp νf (r)
log r

,

and
M(r, f) < expp{rµp(f)+ε}.

Proof. We use a similar proof as [11, Lemma 3.8]. By the definition of iterated
p-lower order, there exists a sequence {rn}∞n=1 tending to ∞ satisfying (1+ 1

n )rn <
rn+1, and

lim
rn→∞

logp+1 M(rn, f)
log rn

= µp(f).

Then for any given ε > 0, there exists an n1 such that for n ≥ n1 and any r ∈
[rn, (1 + 1

n )rn], we have

logp+1 M(rn, f)
log(1 + 1

n )rn

≤
logp+1 M(r, f)

log r
≤

logp+1 M((1 + 1
n )rn, f)

log rn
.

Let E4 = ∪∞n=n1
[rn, (1 + 1

n )rn], then for any r ∈ E4, we have

lim
r→∞, r∈E4

logp+1 M(r, f)
log r

= lim
rn→∞

logp+1 M(rn, f)
log rn

= µp(f),

and

mlE =
∞∑

n=n1

∫ (1+ 1
n )rn

rn

dt

t
=

∞∑
n=n1

log(1 +
1
n

) = ∞.

It is easy to see

lim
r→∞, r∈E4

logp T (r, f)
log r

= lim
r→∞, r∈E4

logp+1 M(r, f)
log r

= lim
r→∞, r∈E4

logp νf (r)
log r

.

The proof is complete. �
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Lemma 3.5 ([11]). Let A0(z), A1(z), . . . , An−1(z) be entire functions of finite it-
erated order satisfying i(A0) = p, σp(A0) = σ and

lim sup
r→∞

n−1∑
j=1

m(r, Aj)/m(r, A0) < 1,

then every non-trivial solution f(z) of (2.1) satisfies σp+1(f) = σp(A0) = σ.

Lemma 3.6 ([4]). Let f(z) be a transcendental meromorphic function. Let α > 1
be a constant, and k and j be integers satisfying k > j ≥ 0. Then the following two
statements hold:

(a) There exists a set E6 ⊂ [1,∞) which has finite logarithmic measure, and a
constant C > 0, such that for all z satisfying |z| = r 6∈ E6 ∪ [0, 1], we have∣∣f (k)(z)

f (j)(z)

∣∣ ≤ C
[T (αr, f)

r
(log r)α log T (αr, f)

]k−j
. (3.1)

(b) There exists a set E′6 ⊂ [0, 2π) which has linear measure zero, such that if
θ ∈ [0, 2π) − E′6, then there is a constant R = R(θ) > 0 such that (3.1) holds for
all z satisfying arg z = θ and |z| ≥ R.

Lemma 3.7 ([10]). Let A0(z), A1(z), . . . , An−1(z), F (z) 6≡ 0 be meromorphic func-
tions and let f(z) be a meromorphic solution of (2.2) satisfying one of the following
two conditions

(i) max{i(F ) = q, i(Aj), j = 0, 1, . . . , n− 1} < i(f) = p + 1, (0 < p < ∞);
(ii) b = max{σp+1(F ), σp+1(Aj), j = 0, 1, . . . , n− 1} < σp+1(f) = σ;

then λp+1(f) = λp+1(f) = σp+1(f) = σ.

Lemma 3.8. Let Bj(z), (j = 0, 1, . . . , n − 1) be meromorphic functions of finite
iterated orders. Assume that max{σp(Bj) : j 6= 0} ≤ µp(B0) ≤ σp(B0), λp( 1

B0
) <

µp(B0) and τ1 = max{τp(Bj) : σp(Bj) = µp(B0), j 6= 0} < τp(B0) = τ(0 < τ <
∞). Then every meromorphic solution f(z) 6≡ 0 of the equation

f (n) + Bn−1(z)f (n−1) + · · ·+ B1(z)f ′ + B0(z)f = 0, (3.2)

satisfies σp+1(f) ≥ µp(B0).

Proof. By (3.2), we obtain

−B0(z) =
f (n)(z)
f(z)

+ Bn−1(z)
f (n−1)(z)

f(z)
+ · · ·+ B1(z)

f ′(z)
f(z)

. (3.3)

By the logarithmic derivative lemma and (3.3), we have

m(r, B0) ≤
n−1∑
j=1

m(r, Bj) + O (log(rT (r, f))) , (r 6∈ E), (3.4)

where E is a set of r of finite linear measure.
Noting the assumption that λp( 1

B0
) < µp(B0), we have

N(r, B0) = o(T (r, B0)), r →∞. (3.5)

Therefore, by (3.5) we have

µp(B0) = lim inf
r→∞

logp m(r, B0)
log r

and τ = τp(B0) = lim inf
r→∞

logp−1 m(r, B0)
rµp(B0)

.

(3.6)
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By (3.6), for sufficiently large r, we have

m(r, B0) ≥ expp−1{(τ − ε)rµp(B0)}. (3.7)

Set b = max{σp(Bj) : σp(Bj) < µp(B0)}. If σp(Bj) < µp(B0), then for any
given ε(0 < 2ε < min{µp(B0)− b, τ − τ1}), we have

lim sup
r→∞

logp m(r, Bj)
log r

≤ b < µp(B0). (3.8)

By (3.8), for sufficiently large r, we have

m(r, Bj) ≤ expp−1{rb+ε}. (3.9)

If σp(Bj) = µp(B0), j 6= 0, then we have

lim sup
r→∞

logp−1 m(r, Bj)
rµp(B0)

≤ τ1 < τ. (3.10)

By (3.10), for sufficiently large r, we have

m(r, Bj) < expp−1{(τ1 + ε)rµp(B0)}. (3.11)

By (3.4),(3.7),(3.9) and (3.11), we obtain

expp−1{(τ−ε)rµp(B0)} ≤ (n−1) expp−1{(τ1+ε)rµp(B0)}+O(log(rT (r, f))), (3.12)

where r 6∈ E, E is a set of r of finite linear measure. By Lemma 3.2 and (3.12), we
have σp+1(f) ≥ µp(B0). �

Lemma 3.9 ([11]). Let f(z) be a meromorphic function of finite iterated order
satisfying i(f) = p, then there exists a set E8 ⊂ (1,+∞) having infinite logarithmic
measure such that for all r ∈ E8, we have

lim
r→∞, r∈E8

logp T (r, f)
log r

= σp(f).

Lemma 3.10. Let Bj(z), (j = 0, 1, . . . , n − 1) be meromorphic functions of finite
iterated orders. If

β1 = max
{

lim sup
r→∞

logp m(r, Bj)
log r

, j 6= 0
}

< β0 = lim
r→∞

logp m(r, B0)
log r

, r ∈ E9,

(3.13)
where E9 is a subset of r of infinite logarithmic measure. Then every meromorphic
solution f(z) 6≡ 0 of (3.2) satisfies σp+1(f) ≥ β0.

Proof. By (3.13), we have

m(r, Bj) < expp−1{rβ1+ε}, (3.14)

for any given ε > 0 and sufficiently large r. By the hypotheses of Lemma 3.10, there
exists a set E9 having infinite logarithmic measure such that for all |z| = r ∈ E9,
we have

m(r, B0) > expp−1{rβ0−ε}. (3.15)
By (3.4),(3.14) and (3.15), we have

expp−1{rβ0−ε} ≤ O (log(rT (r, f))) + (n− 1) expp−1{rβ1+ε}, (3.16)

for any given ε(0 < 2ε < β0 − β1), where r ∈ E9\E, r →∞, and E is a set of r of
finite linear measure. By (3.16), we have σp+1(f) ≥ β0. �
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4. Proofs of main theorems

Proof of Theorem 2.4. By Theorem 2.1, we know that every solution f(z) 6≡ 0 of
(2.1) satisfies σp+1(f) = σp(A0). Then we only need to prove that every solution
f(z) of (2.1) satisfies µp+1(f) = µp(A0).

We rewrite (2.1) as

|A0(z)| ≤
∣∣f (n)(z)

f(z)

∣∣ + |An−1(z)|
∣∣f (n−1)(z)

f(z)

∣∣ + · · ·+ |A1(z)|
∣∣f ′(z)
f(z)

∣∣. (4.1)

Set max{σp(Aj) : j 6= 0} = c, then for any given ε(0 < 2ε < µp(A0) − c) and for
sufficiently large r, we have

M(r, A0) ≥ expp{rµp(A0)−ε}, (4.2)

and
M(r, Aj) ≤ expp{rc+ε}, (j = 1, 2, . . . , n− 1). (4.3)

By Lemma 3.6, there exists a set E6 having finite logarithmic measure and a con-
stant C > 0 such that for all z satisfying |z| = r 6∈ E6 ∪ [0, 1], we have∣∣f (k)(z)

f(z)

∣∣ ≤ C(T (2r, f))k+1, (k ≥ 1). (4.4)

Substituting (4.2)-(4.4) into (4.1), for the above ε > 0, we have

expp{rµp(A0)−ε} ≤ Cn expp{rc+ε} (T (2r, f))n+1
, (4.5)

for all z satisfying |z| = r 6∈ E6 ∪ [0, 1], r →∞ and |A0(z)| = M(r, A0). By Lemma
3.2 and (4.5), we have µp+1(f) ≥ µp(A0)− ε. Since ε > 0 is arbitrary, we obtain

µp+1(f) ≥ µp(A0). (4.6)

By (2.1), we have∣∣f (n)(z)
f(z)

∣∣ ≤ |An−1(z)|
∣∣f (n−1)(z)

f(z)

∣∣ + · · ·+ |A1(z)|
∣∣f ′(z)
f(z)

∣∣ + |A0(z)|. (4.7)

By Lemma 3.1, there exists a set E1 ⊂ (1,+∞) having finite logarithmic measure
such that for all z satisfying |z| = r 6∈ E1, and |f(z)| = M(r, f), we have∣∣f (j)(z)

f(z)

∣∣ =
∣∣νf (r)

z

∣∣j |1 + o(1)|, (j = 1, . . . , n). (4.8)

By Lemma 3.4, there exists a set E4 ⊂ (1,+∞) having infinite logarithmic measure
such that for all |z| = r ∈ E4\E1, we have

|A0(z)| ≤ M(r, A0) ≤ expp{rµp(A0)+ε}. (4.9)

Hence, by (4.3),(4.7)-(4.9), we have

|νf (r)|n|1 + o(1)| ≤ n expp{rµp(A0)+ε}rn|νf (r)|n−1|1 + o(1)|,
then we obtain

|νf (r)||1 + o(1)| ≤ nrn expp{rµp(A0)+ε}, (r ∈ E4\E1). (4.10)

By the definition of iterated p-lower order and (4.10), we have µp+1(f) ≤ µp(A0)+ε.
Since ε > 0 is arbitrary, we have

µp+1(f) ≤ µp(A0). (4.11)

By (4.6) and (4.11), we obtain µp+1(f) = µp(A0). The proof is complete. �
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Proof of Theorem 2.5. By Theorem 2.2, we have σp+1(f) = σp(A0). Now we need
to prove (1) µp+1(f) = µp(A0) and (2) σp+1(f) = λp+1(f − ϕ).

(1) On the one hand, we set b = max{σp(Aj), σp(Aj) < µp(A0)}. If σp(Aj) <
µp(A0), then for any given ε(0 < 2ε < min{µp(A0)− b, τ − τ1}) and for sufficiently
large r, we have

M(r, Aj) ≤ expp{rb+ε} ≤ expp{rµp(A0)−ε}. (4.12)

If σp(Aj) = µp(A0), τp(Aj) ≤ τ1 < τ = τp(A0), then for sufficiently large r, we
have

M(r, Aj) ≤ expp{(τ1 + ε)rµp(A0)}, (4.13)

M(r, A0) ≥ expp{(τ − ε)rµp(A0)}. (4.14)

By (4.12), (4.13), (4.14), (4.1) and (4.4), we obtain

expp{(τ − ε)rµp(A0)} ≤ n expp{(τ1 + ε)rµp(A0)}CT (r, f)n+1, (4.15)

where C > 0 is a constant, for all z satisfying |z| = r 6∈ E6 ∪ [0, 1], r → ∞ and
|A0(z)| = M(r, A0). By Lemma 3.2 and (4.15), we have µp+1(f) ≥ µp(A0).

On the other hand, by Lemma 3.4, there exists a set E4 having infinite logarith-
mic measure such that for all r ∈ E4, we have

|A0(z)| ≤ M(r, A0) ≤ expp{(τ + ε)rµp(A0)}. (4.16)

By (4.7), (4.8), (4.12), (4.13) and (4.16), we have

|νf (r)|n|1 + o(1)| ≤ n expp{(τ + ε)rµp(A0)}rn|νf (r)|n−1|1 + o(1)|, (4.17)

where r ∈ E4\E1, r → ∞. By the definition of iterated p-lower order and (4.17),
we obtain µp+1(f) ≤ µp(A0). Thus, we have µp+1(f) = µp(A0).

(2) We prove that λp+1(f − ϕ) = σp+1(f). Assume that f(z) 6≡ 0 is a solution
of (2.1), then σp+1(f) = σp(A0). Set g = f −ϕ, since σp+1(ϕ) < µp(A0) ≤ σp(A0),
then σp+1(g) = σp+1(f) = σp(A0), λp+1(g) = λp+1(f − ϕ). Substituting f =
g + ϕ, f ′ = g′ + ϕ′, . . . , f (n) = g(n) + ϕ(n), into (2.1), we obtain

g(n)+An−1(z)g(n−1)+· · ·+A0(z)g = −[ϕ(n)+An−1(z)ϕ(n−1)+· · ·+A0(z)ϕ]. (4.18)

If F (z) = ϕ(n) + An−1(z)ϕ(n−1) + · · · + A0(z)ϕ ≡ 0, then by Lemma 3.8, we
have σp+1(ϕ) ≥ µp(A0), which is a contradiction. Since F (z) 6≡ 0 and σp+1(F ) <

σp+1(f) = σp+1(g). By Lemma 3.7 and (4.18), we have λp+1(g) = λp+1(g) =
σp+1(g) = σp(A0). Therefore, λp+1(f − ϕ) = λp+1(f − ϕ) = σp+1(f) = σp(A0).
The proof is complete. �

Proof of Theorem 2.6. By Lemma 3.5, we have σp+1(f) = σp(A0). Now we need
to prove (1) µp+1(f) = µp(A0) and (2) σp+1(f) = λp+1(f − ϕ).

(1) On the one hand, by (4.1) and the logarithmic derivative lemma, we have

m(r, A0) ≤
n−1∑
j=1

m(r, Aj) + O(log(rT (r, f))), (r 6∈ E), (4.19)

where E is a set of r of finite linear measure.
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Setting lim supr→∞
∑n−1

j=1 m(r, Aj)/m(r, A0) < β < 1, for sufficiently large r, we
have

n−1∑
j=1

m(r, Aj) < βm(r, A0). (4.20)

By (4.19) and (4.20), we have

(1− β)m(r, A0) ≤ O(log(rT (r, f))), (r 6∈ E). (4.21)

By µp(A0) = µ, for any given ε > 0 and sufficiently large r, we have

m(r, A0) ≥ expp−1{rµ−ε}. (4.22)

By (4.21) and (4.22), for the above ε > 0, r 6∈ E, r →∞, we have

(1− β) expp−1{rµ−ε} ≤ O
(
log(rT (r, f))

)
. (4.23)

By Lemma 3.2 and (4.23), we have µ − ε ≤ µp+1(f). Since ε > 0 is arbitrary, we
have µp(A0) = µ ≤ µp+1(f).

On the other hand, since max{σp(Aj), j 6= 0} ≤ µp(A0) = µ, for any given ε > 0
and sufficiently large r, we have

|Aj(z)| ≤ expp{rµ+ε}, (j = 1, . . . , n− 1). (4.24)

By Lemma 3.4, there exists a set of E2 having infinite logarithmic measure such
that for all r ∈ E2, we have

|A0(z)| ≤ expp{rµ+ε}. (4.25)

By (4.7), (4.8), (4.24) and (4.25), we have

|νf (r)|n|1 + o(1)| ≤ n expp{rµ+ε}rn|νf (r)|n−1|1 + o(1)|. (4.26)

By (4.26), for the above ε > 0, we obtain

|νf (r)||1 + o(1)| ≤ nrn expp{rµ+ε}, (4.27)

where |z| = r ∈ E2\E1, r → ∞, |f(z)| = M(r, f). By (4.27), we obtain µp+1(f) ≤
µ + ε. Since ε > 0 is arbitrary, we have µp+1(f) ≤ µ. Thus, we have µp+1(f) =
µp(A0).

(2) We prove that λp+1(f − ϕ) = σp+1(f). Setting g = f − ϕ, since σp+1(ϕ) <

µp(A0), we have σp+1(g) = σp+1(f) = σp(A0), λp+1(g) = λp+1(f−ϕ). Substituting
f = g + ϕ, f ′ = g′ + ϕ′, . . . , f (n) = g(n) + ϕ(n) into (2.1), we obtain

g(n)+An−1(z)g(n−1)+· · ·+A0(z)g = −[ϕ(n)+An−1(z)ϕ(n−1)+· · ·+A0(z)ϕ]. (4.28)

If F (z) = ϕ(n) + An−1(z)ϕ(n−1) + · · · + A0(z)ϕ ≡ 0, then by part (1), we have
σp+1(ϕ) ≥ µp(A0), which is a contradiction. Since F (z) 6≡ 0 and σp+1(F ) <

σp+1(f) = σp+1(g). By Lemma 3.7 and (4.28), we have λp+1(g) = λp+1(g) =
σp+1(g) = σp(A0). Therefore, µp(A0) = µp+1(f) ≤ σp+1(f) = σp(A0) = λp+1(f −
ϕ) = λp+1(f − ϕ). The proof is complete. �
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5. Proof of Theorem 2.8

By Lemma 3.3, we have σp+1(f) = σp(A0). Now we prove that λp+1(f (j)−ϕ) =
σp+1(f).

(1) We prove the λp+1(f − ϕ) = σp+1(f). Setting g = f − ϕ, since σp+1(ϕ) <

σp(A0), we have σp+1(g) = σp+1(f) = σp(A0), λp+1(g) = λp+1(f−ϕ). Substituting
f = g + ϕ, f ′ = g′ + ϕ′, . . . , f (n) = g(n) + ϕ(n) into (2.1), we obtain

g(n)+An−1(z)g(n−1)+· · ·+A0(z)g = −[ϕ(n)+An−1(z)ϕ(n−1)+· · ·+A0(z)ϕ]. (5.1)

Since λp( 1
A0

) < µp(A0), we have N(r, A0) = o(T (r, A0)), r → ∞. Therefore, by
Lemma 3.9, we have

σp(A0) = lim sup
r→∞

logp T (r, A0)
log r

= lim
r→∞, r∈E8

logp T (r, A0)
log r

= lim
r→∞, r∈E8

logp m(r, A0)
log r

,

(5.2)

where E8 is a subset of r of infinite logarithmic measure. Combining the assumption
and (5.2), we have

lim sup
r→∞

logp m(r, Aj)
log r

< lim
r→∞, r∈E8

logp m(r, A0)
log r

= σp(A0), j = 1, . . . , n. (5.3)

If F (z) = ϕ(n) + An−1(z)ϕ(n−1) + · · ·+ A0(z)ϕ ≡ 0, then by Lemma 3.10, we have
σp+1(ϕ) ≥ σp(A0), which is a contradiction. Since F (z) 6≡ 0 and σp+1(F ) <

σp+1(f) = σp+1(g), by Lemma 3.7 and (5.1), we have λp+1(g) = λp+1(g) =
σp+1(g) = σp(A0). Therefore, λp+1(f − ϕ) = λp+1(f − ϕ) = σp+1(f) = σp(A0).

(2) We prove that λp+1(f ′ − ϕ) = σp+1(f). Setting g1 = f ′ − ϕ, we have
σp+1(g1) = σp+1(f) = σp(A0) and

f ′ = g1 + ϕ, . . . , f (n+1) = g
(n)
1 + ϕ(n). (5.4)

By (2.1), we have

f(z) = − 1
A0(z)

(
f (n) + · · ·+ A1(z)f ′

)
. (5.5)

The derivative of (2.1) is

f (n+1) + An−1f
(n) + (A′n−1 + An−2)f (n−1) + · · ·+ (A′1 + A0)f ′ + A′0f = 0. (5.6)

Substituting (5.4) and (5.5) into (5.6), we obtain

g
(n)
1 + (An−1 −

A′0
A0

)g(n−1)
1 + (An−2 + A′n−1 −

An−1A
′
0

A0
)g(n−2)

1 + . . .

+ (A0 + A′1 −
A1A

′
0

A0
)g1

= −
[
ϕ(n) + (An−1 −

A′0
A0

)ϕ(n−1) + · · ·+ (A0 + A′1 −
A1A

′
0

A0
)ϕ

]
.

Setting

Bn−1 = An−1 −
A′0
A0

, Bn−2 = An−2 + A′n−1 −
An−1A

′
0

A0
,

. . . , B0 = A0 + A′1 −
A1A

′
0

A0
,

(5.7)
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we have

g
(n)
1 +Bn−1g

(n−1)
1 +Bn−2g

(n−2)
1 + · · ·+B0g1 = −

[
ϕ(n) +Bn−1ϕ

(n−1) + · · ·+B0ϕ
]
.

(5.8)
By (5.3) and (5.7), we have

lim sup
r→∞

logp m(r, Bj)
log r

< lim
r→∞, r∈E8

logp m(r, A0)
log r

= σp(A0), (j 6= 0), (5.9)

and

σp(A0) = lim
r→∞, r∈E8

logp m(r, A0)
log r

= lim
r→∞, r∈E8

logp m(r, B0)
log r

, (5.10)

where E8 is a subset of infinite logarithmic measure r. Let F1(z) = ϕ(n) +
Bn−1ϕ

(n−1) + · · · + B0ϕ. We affirm F1(z) 6≡ 0. If F1(z) ≡ 0, then by (5.9),
(5.10) and Lemma 3.10, we obtain σp+1(ϕ) ≥ σp(A0), which is a contradiction.
Since F1(z) 6≡ 0, and σp+1(F1) < σp+1(g1) = σp(A0). By Lemma 3.7 and (5.8), we
obtain

λp+1(f ′ − ϕ) = λp+1(f ′ − ϕ) = σp+1(f).

(3) We prove that λp+1(f ′′ − ϕ) = σp+1(f). Setting g2 = f ′′ − ϕ, we have
σp+1(g2) = σp+1(f) = σp(A0) and

f ′′ = g2 + ϕ, . . . , f (n+2) = g
(n)
2 + ϕ(n). (5.11)

Substituting (5.5) into (5.6), we have

f (n+1) + (An−1 −
A′0
A0

)f (n) + (An−2 + A′n−1 −
An−1A

′
0

A0
)f (n−1) + . . .

+ (A0 + A′1 −
A1A

′
0

A0
)f ′ = 0.

(5.12)

The derivative of (5.12) is

f (n+2) + (An−1 −
A′0
A0

)f (n+1) +
[
(An−1 −

A′0
A0

)′ + (An−2 + A′n−1 −
An−1A

′
0

A0
)
]
f (n)

+ · · ·+ (A0 + A′1 −
A1A

′
0

A0
)′f ′ = 0.

(5.13)

By (5.12), we have

f ′ = −
[ 1

A0 + A′1 −
A1A′

0
A0

f (n+1) +
An−1 − A′

0
A0

A0 + A′1 −
A1A′

0
A0

f (n) + · · ·+
A1 + A′2 −

A2A′
0

A0

A0 + A′1 −
A1A′

0
A0

f ′′
]
.

(5.14)
Substituting (5.14) into (5.13), we have

f (n+2) +
[
(An−1 −

A′0
A0

)−
(A0 + A′1 −

A1A′
0

A0
)′

A0 + A′1 −
A1A′

0
A0

]
f (n+1) + . . .

+
[
(A0 + A′1 −

A1A
′
0

A0
) + (A1 + A′2 −

A2A
′
0

A0
)′

−
(A1 + A′2 −

A2A′
0

A0
)(A0 + A′1 −

A1A′
0

A0
)′

A0 + A′1 −
A1A′

0
A0

]
f ′′ = 0.
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Setting

Cn−1 = Bn−1 −
B′0
B0

, Cn−2 = Bn−2 + B′n−1 −
Bn−1B

′
0

B0
,

. . . , C0 = B0 + B′1 −
B1B

′
0

B0
,

(5.15)

we obtain
f (n+2) + Cn−1(z)f (n+1) + · · ·+ C0(z)f ′′ = 0. (5.16)

Substituting (5.11) into (5.16), we obtain

g
(n)
2 + Cn−1(z)g(n−1)

2 + · · ·+ C0(z)g2 = −
[
ϕ(n) + Cn−1(z)ϕ(n−1) + · · ·+ C0(z)ϕ

]
.

(5.17)
By (5.2), (5.9), (5.10) and (5.15), we have

lim sup
r→∞

logp m(r, Cj)
log r

< lim
r→∞, r∈E8

logp m(r, A0)
log r

= σp(A0), (j 6= 0), (5.18)

and

σp(A0) = lim
r→∞, r∈E8

logp m(r, A0)
log r

= lim
r→∞, r∈E8

logp m(r, C0)
log r

, (5.19)

where E8 is a subset of r of infinite logarithmic measure. If F2(z) ≡ ϕ(n) +
Cn−1(z)ϕ(n−1) + · · · + C0(z)ϕ ≡ 0, then by (5.18), (5.19) and Lemma 3.10, we
have σp+1(ϕ) ≥ σp(A0), which is a contradiction. Therefore, F2(z) 6≡ 0. Since
σp+1(F2) < σp+1(g2) = σp(A0), by Lemma 3.7 and (5.17), we have

λp+1(f ′′ − ϕ) = λp+1(f ′′ − ϕ) = σp+1(f).

(4) We prove that λp+1(f ′′′−ϕ) = σp+1(f). Setting g3 = f ′′′−ϕ, then σp+1(g3) =
σp+1(f) = σp(A0) and

f ′′′ = g3 + ϕ, . . . , f (n+3) = g
(n)
3 + ϕ(n). (5.20)

The derivative of (5.16) is

f (n+3)+Cn−1f
(n+2)+(C ′n−1+Cn−2)f (n+1)+· · ·+(C ′1+C0)f ′′′+C ′0f

′′ = 0. (5.21)

By (5.16), we have

f ′′ = −
[ 1
C0

f (n+2) +
Cn−1

C0
f (n+1) + · · ·+ C1

C0
f ′′′

]
. (5.22)

Substituting (5.22) into (5.21), we have

f (n+3) +
(
Cn−1 −

C ′0
C0

)
f (n+2) +

(
Cn−2 + C ′n−1 −

Cn−1C
′
0

C0

)
f (n+1)

+ · · ·+
(
C0 + C ′1 −

C1C
′
0

C0

)
f ′′′ = 0.

(5.23)

Setting

Dn−1 = Cn−1 −
C ′0
C0

, Dn−2 = Cn−2 + C ′n−1 −
Cn−1C

′
0

C0
,

. . . , D0 = C0 + C ′1 −
C1C

′
0

C0
,

(5.24)

we have
f (n+3) + Dn−1(z)f (n+2) + · · ·+ D0(z)f ′′′ = 0. (5.25)
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Substituting (5.20) into (5.25), we obtain

g
(n)
3 + Dn−1(z)g(n−1)

3 + · · ·+ D0(z)g3 = −[ϕ(n) + Dn−1(z)ϕ(n−1) + · · ·+ D0(z)ϕ].
(5.26)

By (5.18), (5.19) and (5.24), we have

lim sup
r→∞

logp m(r, Dj)
log r

< lim
r→∞, r∈E8

logp m(r, A0)
log r

= σp(A0), (j 6= 0), (5.27)

and

σp(A0) = lim
r→∞, r∈E8

logp m(r, A0)
log r

= lim
r→∞, r∈E8

logp m(r, D0)
log r

, (5.28)

where E8 is a subset of r of infinite logarithmic measure. Let F3(z) = ϕ(n) +
Dn−1(z)ϕ(n−1) + · · · + D0(z)ϕ ≡ 0, by (5.27), (5.28) and Lemma 3.10, we have
F3(z) 6≡ 0. Since σp+1(F3) < σp+1(g3) = σp(A0), by Lemma 3.7 and (5.26), we
have

λp+1(f ′′′ − ϕ) = λp+1(f ′′′ − ϕ) = σp+1(f).

(5) We prove that λp+1(f (j) − ϕ) = σp+1(f), (j > 3). Setting gj = f (j) − ϕ,
(j > 3), then σp+1(gj) = σp+1(f (j)) = σp(A0) and

f (j+1) = g′j + ϕ′, . . . , f (n) = g
(n−j)
j + ϕ(n−j), (j > 3). (5.29)

By successive derivation on (5.25), we also get an equation which has similar form
with (5.23). Furthermore, combining (5.29), we can get

g
(n)
j + (Hn−1 −

H ′
0

H0
)g(n−1)

j + · · ·+ (H0 + H ′
1 −

H1H
′
0

H0
)gj

= −
[
ϕ(n) + · · ·+ (H0 + H ′

1 −
H1H

′
0

H0
)ϕ

]
,

(5.30)

where Hj(z), (j = 0, 1, . . . , n− 1) are meromorphic functions which have the same
form as Dj(z), (j = 1, . . . , n−1). Setting Gn−1 = Hn−1− H′

0
H0

, . . . , G0 = H0 +H ′
1−

H1H′
0

H0
, we have

lim sup
r→∞

logp m(r, Gj)
log r

< lim
r→∞, r∈E8

logp m(r, A0)
log r

= σp(A0), (j 6= 0),

and

σp(A0) = lim
r→∞, r∈E8

logp m(r, A0)
log r

= lim
r→∞, r∈E8

logp m(r, G0)
log r

,

where E8 is a subset of r of infinite logarithmic measure. By Lemmas 3.7 and 3.10,
we can get λp+1(gj) = λp+1(gj) = σp+1(gj); i.e., λp+1(f (j)−ϕ) = λp+1(f (j)−ϕ) =
σp+1(f). the proof of Theorem 2.8 is complete.
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[1] B. Beläıdi; Growth and Oscillation of Solutions to Linear Differential Equations with Entire
Coefficients having the same Order, Elec. J. Diff. Eqns., 2009 (2009), no. 70, 1-10.

[2] L. G. Bernal; On Growth k-order of Solution of a Complex Differential Equations with Mero-
morphic Homogenous Linear Differential Equations, Proc. Amer. Math. Soc., 101, 1987,
317-322.

[3] T. B. Cao, Z. X. Chen, X. M. Zheng, J. Tu; On the Iterated Order of Meromorphic Solutions
of Higher Order Linear Differential Equations, Ann. Differential Eqns., 21(2), 2005, 111-122.

[4] G. Gundersen; Estimates for the Logarithmic Derivative of a Meromorphic Function, Plus
Similar Estimates, J. London Math. Soc., 37, 1988, 88-104.

[5] W. K. Hayman; Meromorphic Functions, Oxford: Clarendon Press, 1964.
[6] W. K. Hayman; The Local Growth of Power Series: a survey of the Wiman-Valiron method,

Canada Math. Bull., 17, 1974, 317-358.
[7] Y. Z. He, X. Z. Xiao; Algebroid Functions and Ordinary Differential Equations, Science Press,

1988 (in Chinese).
[8] I. Laine; Nevanlinna Theory and Complex Differential Equations, Berlin: Walter de Gruyter,

1993.
[9] L. Kinnunen; Linear Differential Equations with Solutions of Finite Iterated Order, Southeast

Asian Bull. Math., 22(4), 1998, 385-405.
[10] J. Tu, Z. X. Chen; Growth of Solutions of Complex Differential Equations with Meromorphic

Coefficients of Finite Iterated Order, Southeast Asian Bull. Math., 33, 2009, 153-164.
[11] J. Tu, T. Long; Oscillation of Complex High Order Linear Differential Equations with Co-

efficients of Finite Iterated Order, Elec. J. Qual. Theory Diff. Eqns., 66, 2009, 1-13.
[12] J. Tu, C. F. Yi; On the Growth of Solutions of a Class of Higher Order Linear Differential

Equations with Coefficients having the same Order, J. Math. Anal. Appl., 340, 2008, 487-497.
[13] G. Valiron; Lectures on the General Theory of Integral Functions, New York: Chelsea, 1949.
[14] C. Y. Zhang, J. Tu; Growth of Solutions to Linear Differential Equations with Entire Coef-

ficients of slow Growth, Elec. J. Diff. Eqns. Vol. 2010 (2010), No. 43, 1-12.

Hui Hu
Institute of Mathematics and Information Science, Jiangxi Normal University, 330022,
China

E-mail address: h h87 6@hotmail.com

Xiu-Min Zheng (Corresponding author)
Institute of Mathematics and Information Science, Jiangxi Normal University, 330022,
China

E-mail address: zhengxiumin2008@sina.com


	1. Introduction
	2. Main Results
	3. Lemmas for the proofs of main results
	4. Proofs of main theorems
	5. Proof of Theorem ??
	Acknowledgements

	References

