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GROWTH OF SOLUTIONS TO LINEAR DIFFERENTIAL
EQUATIONS WITH ENTIRE COEFFICIENTS

HUI HU, XIU-MIN ZHENG

ABSTRACT. In this article, we study the growth of solutions of linear differ-
ential equations with some dominant entire coefficients. Especially, we obtain
some results on the iterated p-lower order of these solutions, which extend pre-
vious results. Moreover, we investigate the iterated exponent of convergence
of distinct zeros of f(9)(z) — ¢(2).

1. INTRODUCTION

We shall assume that readers are familiar with the fundamental results and
the standard notations of Nevanlinna’s theory; see e.g. [Bl 8, [13]. Let us define
inductively for r € [0,+00), exp; 7 = €" and exp,,,; 7 = exp(exp,7), p € N. For
all sufficiently large r, we define log; r = logr and log, ;r = log(log,r), p € N.
We also denote exp,r = r = log,r and exp_; r = log; 7. We recall the following
definitions of finite iterated order; see e.g. [2, Bl [8 @] 10} 12].

Definition 1.1. The iterated p-order o,(f) of a meromorphic function f(z) is
defined as

log, T(r,
op(f) = lim sup g’iog(rf) (p € N).
Remark 1.2. If f(z) is an entire function, then

10 T s 10 M T, 10 velr
op(f) = limsup M = lim sup gp“—(f) = lim sup M7
P r—00 logr oo logr mee log r

where p € N, v4(r) is the central index of f(z).

Definition 1.3. The iterated p-lower order y,(f) of a meromorphic function f(z)
is defined by

() = liminf 282 L)

r—00 ogr

(p € N).
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Remark 1.4. The iterated p-lower order p,(f) of an entire function f(z) is defined
by

log, T'(r, lo M(r, log ve(r
pp(f) = liminf 28p ) (r, /) = lim inf 81 B J) r, /) = lim inf 28p VA1) £(r)
T—00 log r r—00 logr r—00 logr

(p € N).

Definition 1.5. The finiteness degree of the order of a meromorphic function f(z)
is defined by

0, if f is rational,

min{j € N:o;(f) < oo}, if fis transcendental with
0;(f) < oo for some j € N;

00, if 0;(f) = oo for all j € N.

i(f) =

Definition 1.6. The iterated convergence exponent of the sequence of a-points of
a meromorphic function f(z) is defined by

1
Ap(f —a) = Ap(f,a) = limsup M

r—o00 logr

(p €N),

and the iterated convergence exponent of the sequence of distinct a-points of a
meromorphic function f(z) is defined by

N(r. -1
Xp(f —a)= Xp(f, a) = limsup w

eN).
r—o0 logr (p )

If a = 0, the iterated convergence exponent of the zeros or the iterated convergence
exponent of the distinct zeros is defined respectively by

log, N(r, L
M) = 2(7.0) = timsup 220,
or
log N(r,1
() = (7,0 = limsup 2Ty

r—00 log r
If a = oo, the iterated convergence exponent of the poles or the iterated convergence
exponent of the distinct poles is defined respectively by

log, N(r, f)
—) = 1 S R S
)\p(f) 1Tm_>sup og (p eN),
or
_ 1 log, N(r, f)
) = lim —=p 277 .
)\p(f) 1T_)sup og (p eN)

Furthermore, we can get the definitions of \,(f — ¢) and A, (f — ¢), when a is
replaced by a meromorphic function .

Definition 1.7. Let f(z) be an entire function. Then the iterated p-type of an
entire function f(z), with iterated p-order 0 < 0, (f) < oo is defined by

. log, \T(r,f) .. log, M (r, )
7p(f) = limsup % = limsup W (p € N\{1}).

T—00 T—00

We definite the iterated p-lower type of f(z) as follows.
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Definition 1.8. Let f(z) be an entire function. Then the iterated p-lower type of
an entire function f(z), with iterated p-lower order 0 < pu,(f) < oo, is defined by

. 1ng71 T(T, f) o s lng M(T, f)
7,(f) = liminf —=2 = liminf — 22— (P e N1
Remark 1.9. If p = 1, then the equalities
lim su 710&7_1 T, f) = limsu 710&) M(r, f)
o S ) B e ¢ D
1 T log, M
lim inf O8p-1 21 T) (r, /) = lim inf 8p (r, /)
r—00 rﬂp(f) 7—00 r“p(f)
in Definitions and respectively fail to hold. For example, for the function
f(z) = e*, we have lim,_, @ = % # 1 = lim, w. Therefore, we

assume p € N\{1} in the following.

We denote the linear measure and the logarithmic measure of a set E C [0, +00)
by mE = [, dt and mE = [, dt/t respectively (see e.g. [6]).

2. MAIN RESULTS

In 1998, Kinnunen investigated complex oscillation properties of the solutions of
the higher order linear differential equations

O+ A () 4+ AL+ Ao(2)f =0 (2.1)
and
FO 4 Ay ()Y b A (2) f + Ao(2) f = F(2), (2.2)

with entire coefficients of finite iterated order and obtained the following result in
[9].

Theorem 2.1. Let Ay(2), A1(2), ..., An—1(2) be entire functions and let i(Ap) = p,
0<p<oo. Ifi(Aj) <p orop(4;) <op(Ao) =k forallj=1,2,...,n—1, then
i(f) =p+1 and opi1(f) = & hold for all non-trivial solutions of ([2.1)).

Note that there is some coefficient Ag(z) strictly dominating other coefficients
in Theorem [2.1] Thus, a natural question arises: If there are some coefficients have
the same iterated order as Ay(z), can the similar result hold? B. Belaidi in [1]
considered the question and obtained next result.

Theorem 2.2. Let Ayg(2), A1(2),. .., An_1(2) be entire functions, and let i(Ag) =
p. Assume that max{o,(A;) : j # 0} < 0,(Ao)(> 0) and max{7r,(4;) : 0,(4;) =
op(A0)} < 1p(Ag) =7(0 < 7 < 00). Then every solution f(z) # 0 of satisfies
i(f)=p+1 and op1(f) = 0p(Ao).

Theorems and investigated the iterated order of solutions of 7 when
there is some dominating coefficient with iterated order. Another question is: If
there is some dominating coefficient with iterated lower order, what can we say
about the growth of solutions of (2.1). For the special case p = 2, Zhang-Tu in [14]
discussed it and obtained the following result.

Theorem 2.3. Let Ag(z),...,An_1(2) be entire functions satisfying max{c(A;),
j=1,...,n—1} < p(Ap) < o(Ag) < oo, then every solution f(z) # 0 of (2.1

satisfies
1(Ao) = p2(f) < o2(f) = o (Ao).
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In this paper, we investigate the above problems. Moreover, we investigate the
iterated exponent of convergence of distinct zeros of fU)(z) — p(z). Firstly, we
extend Theorem into a general case and obtain the same result.

Theorem 2.4. Let Ag(z), A1(2),...,An_1(2) be entire functions of finite iterated
order satisfying max{o,(4;),7 =1,...,n—1} < pp(Ag) < 0,(Ag) < 00, then every

solution f(z) Z0 of satisfies
pip(Ao) = pp11(f) < opy1(f) = 0p(Ao). (2.3)

Secondly, when there are some coefficients with iterated order equal to p,(Ao),
we obtain the following two results.

Theorem 2.5. Let Ag(z), A1(z ) ., Ap_1(2) be entire functions, and let i(Ag) =
p. Assume that max{o,(4;) : j # O} < pp(Ag) < 0p(Ao) and 1 = max{1,(4;) :
op(A;) = pp(4o)} < T (AO) =7(0 < 7 < 00). Then every solution f(z) # 0 of
(2.1) satisfies

ppr1(f) = kp(Ao) < 0p(Ao) = 0p11(f) = Aps1(f = ) = X1 (f — ), (2.4)

where p(z) # 0 is an entire function satisfying opt1(p) < pp(Ao).

Theorem 2.6. Let Ap(2),A1(2),...,An_1(2) be entire functions of finite iterated
order satisfying max{o,(A;),j # 0} < pp(Ao) = p and

hmsupz m(r, A;)/m(r, Ag) <

Then every non-trivial solution f ) of . satisfies
tp+1(f) = pp(Ao) < 0p(A0) = 0p11(f) = Api (f = 0) = XApra (f —90),  (2.5)
where p(z) # 0 is an entire function satisfying opt1(p) < pp(Ao).

Remark 2.7. All solutions of (2.1]) in Theorems are of regular growth
tp+1(f) = opt1(f), when the coefficient Ay(z) is of regular growth p,(A¢) =
Jp(Ao).

Theorem 2.8. Let Ay(z), A1(2),...,An—1(2) be meromorphic functions of finite
iterated order satisfying

1 )
max{)\p(A—O),ap(Aj),j =1,...,n—1} < pp(Ao) < o,(4p) <

if f(z) £ 0 is a meromorphic solution of (2.1) satisfying NET }c; < exppfl{rb},
(b < pp(Ap)), then we have

0p(do) = 0ps1(f) = Xp1(fP =) = Xpsa (f =), (G=0.1,...),  (26)
where p(z) #Z 0 is a meromorphic function satisfying op+1(p) < op(Ao).

Corollary 2.9. Let Ao(2), A1(2), ..., An—1(2) satisfying the hypotheses of Theorem
then every solution f(z) £ 0 of (2.1) satisfies

pi1(f) = pp(Ag) < 0p(A0) = p1(f) = Xppa (FY = 9) = Xpn (FV) = ),
where p(z) #Z 0 is an entire function satisfying op+1(p) < op(Ao).
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3. LEMMAS FOR THE PROOFS OF MAIN RESULTS

Lemma 3.1. Let f(z) be a transcendental entire function. There exists a set Eq
of v of finite logarithmic measure, such that for all z satisfying |z| = r € E1 and
[f ()] = M(r, ), we have

)
f(2)
where vy (r) is the central index of f(z).

Lemma 3.2 ([0, 8]). Let g : [0,400) — R and h : [0,4+00) — R be monotone
increasing functions. If (i) g(r) < h(r) outside of an exceptional set of finite linear
measure, or (i) g(r) < h(r), r ¢ E2 U (0,1], where E5 C [1,00) is a set of finite
logarithmic measure, then for any constant o > 1, there exists ro = ro(a) > 0 such
that g(r) < h(ar) for all v > rg.

Lemma 3.3 ([II]). Let Ao(z2),A1(2),...,An_1(2) be meromorphic functions of
finite iterated order satisfying max{o,(A;),j =1,...,n—1} < pup(Ao) < 0,p(Ao) <
oo, if f(z) #Z 0 is a meromorphic solution of (2.1) satisfying % < exppfl{rb},
(b < pp(Ao)), then opr1(f) = op(Ao).

Lemma 3.4. Let f(z) be an entire function with p,(f) < oo, then for any given
e > 0, there exists a set By C (1,400) having infinite logarithmic measure such
that for all r € E4, we have

log, T' 1 M 1
w(f) = tm 0B TCD g M) logy vyl

r—o0, r€E4 logr r—o00, r€E4 log r r—oo,r€Es  logr

= (UM o), (ke N g B,

and
M(r, f) < expp{r“l’(fHE}.

Proof. We use a similar proof as [I1, Lemma 3.8]. By the definition of iterated
p-lower order, there exists a sequence {7, }°°; tending to oo satisfying (1+ %)Tn <
Tn+1, and
. log,y M(rn, f)
rillnoo log ry, = tp(f)-
Then for any given € > 0, there exists an n; such that for n > n; and any r €
[rn, (1+ 1)ry], we have

logp-',-l M(Tna f) < logp-',-l M(Tv f) < 10gp+1 M((l + %)TTH f)

log(1+ L)r, ~ log r - log 7y
Let By = U2, [rn, (1+ 1)r,], then for any r € E,, we have
10gp+1 M(Tv f) . 10gp+1 M(T’n, f)
Dot DD gy et D) ),
r—o00, r€E4 logr Tp—00 log ry,
and (141)
> fUFm g & 1
mE = Z g 5= Zlog(l—i—ﬁ):oo.
n=ni n n=ni
It is easy to see
log, T'(r, lo M (r, log, v¢(r
r—oo, r€Ely IOgT r—o0, r€EFy 10g7“ r—o0, r€Fy logr

The proof is complete. O
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Lemma 3.5 ([I1]). Let Ao(z), A1(2),...,An—1(2) be entire functions of finite it-
erated order satisfying i(Ao) = p, op(Ao) =0 and

n—1

hmsupz m(r, A;)/m(r, Ag) <

7—00

then every non-trivial solution f ) of [2:1) satisfies opi1(f) = 0p(Ao) = 0.

Lemma 3.6 ([4]). Let f(z) be a transcendental meromorphic function. Let oo > 1
be a constant, and k and j be integers satisfying k > j > 0. Then the following two
statements hold:

(a) There exists a set Eg C [1,00) which has finite logarithmic measure, and a
constant C' > 0, such that for all z satisfying |z| = r ¢ Eg U [0, 1], we have

(k)
|f 4 (z)’ < C[T(ozr, )
f(])(z) r
b) There exists a set Eg C [0,2mw) which has linear measure zero, such that if
6

0 € [0,27) — Eg, then there is a constant R = R(6) > 0 such that (3.1) holds for
all z satisfying arg z = 6 and |z| > R.

Lemma 3.7 ([10]). Let Ao(2), A1(2),...,An—1(2), F(z) Z 0 be meromorphic func-
tions and let f(z) be a meromorphic solution of (2.2) satisfying one of the following
two conditions

(1) max{i(F) =¢q,i(4;),7=0,1,...,n—1} <i(f) =p+1, (0<p < 0);

(i) b=max{op41(F),0p+1(4;),7 =0,1,....,n— 1} <ops1(f) =0
then Api1(f) = Ap+1(f) = opsa(f) = 0.
Lemma 3.8. Let B;(z), (j =0,1,...,n — 1) be meromorphic functions of finite
iterated orders. Assume that max{o,(B;) : j # 0} < pp(Bo) < 0,(By), )\p(BiO) <
tp(Bo) and 7 = max{1,(B;) : 0p(B;) = pp(Bo),j # 0} < T,(Bo) = 7(0 <7 <
o0). Then every meromorphic solution f(z) Z 0 of the equation

D+ By (2) fY 4+ Bi(2) f' + Bolz)f =0, (3.2)

satisfies op11(f) > pp(Bo).
Proof. By (3.2), we obtain

(logr)* log T(ar, £)]" . (3.1)

IARIC) Fm () f'(z)
By the logarithmic derivative lemma and , we have
n—1
m(r, Bo) < > _m(r, B;) + O (log(rT(r, [))), (r & E), (3.4)
j=1

where F is a set of r of finite linear meabure
Noting the assumption that ,(3- =) < pp(Bo), we have

N(r,By) = o(T(r, By)), 1 — oo. (3.5)
Therefore, by (3.5)) we have

B =1 'flogpm(ﬁBo) d _ B li f
p(Bo) = liminf —=0 2= and 7 = 7,(Bo) = liminf —=7000

log,,_; m(r, By)

(3.6)
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By (3.6)), for sufficiently large r, we have
m(r, Bo) > exp, 1{(T — g)rhr(Bo)y, (3.7)

Set b = max{o,(B;) : 0p(B;) < pp(Bo)}. If 0,(Bj) < pp(Bo), then for any
given €(0 < 2e < min{p,(By) — b, 7 — 71 }), we have

log, m(r, B;)

liiris:ip Tog < b < pp(Bo). (3.8)
By (3.8), for sufficiently large r, we have
m(r, Bj) < expp_l{rb+5}. (3.9)

If 0,(B;) = pp(Bo), j # 0, then we have
log,, 4 m(r, Bj)

h?rﬁris;ip i (B0) <7 <T (3.10)
By (3.10), for sufficiently large r, we have
m(r, Bj) < exp,_1{(m1 + g)rhro(Bo)} (3.11)

By (3.4),(3.7),(3.9) and (3.11)), we obtain

exp, 1 {(r—e)r* P} < (n—1) exp, 1 {(r+e)r* P} +0(log (rT(r, f))), (3.12)
where r ¢ E, F is a set of r of finite linear measure. By Lemma and (3.12]), we
have opt1(f) > pp(Bo)- O

Lemma 3.9 ([I1]). Let f(z) be a meromorphic function of finite iterated order
satisfying i(f) = p, then there exists a set Eg C (1,400) having infinite logarithmic
measure such that for all r € Eg, we have

log,, T'(r, f)

li — = .
r—nx},I?EEg log r 7»(f)

Lemma 3.10. Let Bj(z), (j =0,1,...,n — 1) be meromorphic functions of finite
iterated orders. If

log,, m(r, log, m(r, Bo)

,r€E97

(3.13)
where Eg is a subset of r of infinite logarithmic measure. Then every meromorphic

solution f(z) £ 0 of (3.2)) satisfies op+1(f) > Po-
Proof. By (3.13]), we have

. B;j) .
ﬁlzmax{hmsup ,]#0}<50: lim

r—00 logr logr

m(r, B;) < exppfl{rﬁl"’g}, (3.14)

for any given € > 0 and sufficiently large 7. By the hypotheses of Lemma[3.10} there
exists a set Fy having infinite logarithmic measure such that for all |z| = r € Ey,
we have

m(r, By) > expp_l{rﬂ(’*e}. (3.15)
By (34),(14) and (B:15), we have
exp,_{r® 7} < O (log(rT(r, f))) + (n — 1) exp,_, {r" <}, (3.16)

for any given (0 < 2e < By — 1), where r € Eg\E,r — 00, and FE is a set of r of
finite linear measure. By (3.16)), we have o,4+1(f) > Bo. O
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4. PROOFS OF MAIN THEOREMS

Proof of Theorem[2.} By Theorem we know that every solution f(z) # 0 of
(2.1) satisfies opy1(f) = 0p(Ag). Then we only need to prove that every solution

z) of (2.1) satisﬁes tpt1(f) = pp(Ao).
We rewrite as

[Ao(z |_‘f ’+|nl

F () f'(2)
T 4 4+ A (2
Set max{o,(4,) : j ;é 0} = ¢, then for any given (0 < 2¢ < p,(Ap) — ¢) and for
sufficiently large r, we have

M(r, Ag) > expp{r“P(AO)_E}, (4.2)

(4.1)

and

M(r, Aj) < exp, {r‘*}, (j=1,2,...,n—1). (4.3)
By Lemma there exists a set Fg having finite logarithmic measure and a con-
stant C' > 0 such that for all z satisfying |z| = r &€ Eg U [0, 1], we have

F® (2
e \ <O )M (k2 1), (4.4)
Substituting (4.2))- (4.4 into ([@.1)), for the above € > 0, we have
expp{rmf‘o)*f} < Cnexp, {r"<} (T(2r, )", (4.5)

for all z satisfying |z| = r € EgU[0, 1], r — oo and |Ap(z)| = M(r, Ag). By Lemma
and (4.5)), we have pp11(f) > pp(Ag) —e. Since € > 0 is arbitrary, we obtain

ps1(f) > pp(Ao). (4.6)
By (2.1)), we have
F™(z) f n-l f'(2)
e + -+ A (2 z)|. 4.7
) 1| =53 | A ( )Ilf( ) (2)] (4.7)
By Lemma there exists a set E1 C (1,400) having finite logarithmic measure
such that for all z satisfying |z| =r & Ey, and |f(2)| = M (r, f), we have
(
2O =2 o), =1, (18)

By Lemma[3.4] there exists a set E4 C (1, +00) having infinite logarithmic measure
such that for all |z| = r € E4\E, we have

|A0(Z)| S M(r7 AO) S expp{r#p(AO)-i_s}' (49)
Hence, by ""‘ y We have
lp(r)]"[1 + o(1)] < nexp, {r#eAF 1™y (7)1 4 o(1)),
then we obtain
s (r)|[1 4 o(1)] < nr"exp, {r*(ATEL (r € By\Ey). (4.10)

By the definition of iterated p-lower order and (4.10)), we have f1,41(f) < pp(Ao)+e.
Since € > 0 is arbitrary, we have

tipi1(F) < pp(Ao). (4.11)
By (4.6) and (4.11), we obtain p,+1(f) = pp(Ao). The proof is complete. O
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Proof of Theorem [2.5. By Theorem we have 0,41(f) = 0,(4p). Now we need

to prove (1) pp41(f) = pp(Ao) and (2) op11(f) = Aps1(f — ).

(1) On the one hand, we set b = max{o,(A4;),0p(4;) < pp(Ao)}. If 0,(4,) <
tp(Ap), then for any given ¢(0 < 2¢ < min{u,(A¢) —b, 7 — 71 }) and for sufficiently
large r, we have

M(r,Aj) < expp{rb+8} < expp{r“P(AD)_E}. (4.12)

If 0,(Aj) = pp(Ao), 7(4;) <7 <71 = 1,(Ag), then for sufficiently large r, we
have

M(r, Aj) < exp,{(r1 + e)riw(Ao)}, (4.13)
M (r, Ag) > exp,{(r — e)rt»(A0)}. (4.14)

By @12), [@.13), (@.14), and (4.4)), we obtain
exp,{(T — e)r* (A} < pexp, {(r + e)r» (A YOT(r, f)" T, (4.15)

where C' > 0 is a constant, for all z satisfying |z| = r ¢ Eg U [0,1], r — oo and

|Ao(2)| = M (r, Ag). By Lemma and (4.15), we have pp41(f) > pp(Ao).
On the other hand, by Lemma [3.4] there exists a set E4 having infinite logarith-

mic measure such that for all r € E4, we have

[Ao(2)] < M(r, Ag) < epr{(T + E)THP(AO)}. (4.16)
By (&7), (.3), (@12), (£13) and ([4.16)), we have
v (r)["[1 4+ 0(1)] < nexp,{(7 + e)rr A} [ (r) "1+ o(1)], (4.17)

where r € E4\E1, r — oo. By the definition of iterated p-lower order and ,
we obtain f,41(f) < pp(Ao). Thus, we have pp41(f) = pp(Ao).

(2) We prove that A\pt1(f — ¢) = op+1(f). Assume that f(z) # 0 is a solution
of (2.1), then 0,41 (f) = 0,(Ag). Set g =[—,since gp41(p) < pip(Ao) < 0,(Ao),
then op11(9) = opt1(f) = 0p(Ao), Apr1(9) = Apta(f — ¢). Substituting f =
gto. f'=g+¢, ... f™ =gM 4 oM into (2.1, we obtain

g+ A, 1 (2)g" I+ Ag(2)g = [0+ A1 (2) T 4+ Ag(2) ). (4.18)

If F(z) = o™ + A, 1(2)e™ Y 4+ ... + Ay(2)p = 0, then by Lemma we
have op41(¢) > pp(Aop), which is a contradiction. Since F(z) # 0 and op41(F) <

op1(f) = opt1(9). By Lemma and ([4.18), we have Apy1(9) = Apra(9) =
op+1(g) = 0p(Ap). Therefore, A\pr1(f — ©) = Apr1(f — ) = opt1(f) = 0p(Ao).
The proof is complete. O

Proof of Theorem[2.6. By Lemma we have o,41(f) = 0p(Ao). Now we need

to prove (1) up+1(f) = p1p(Ao) and (2) opr1(f) = Apsr (f — ).
(1) On the one hand, by (4.1) and the logarithmic derivative lemma, we have

m(r, Ag) < z_: )+ O(log(rT(r, f))), (r¢E), (4.19)

where F is a set of r of finite linear measure.
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Setting lim sup, _, Z;:ll m(r, A;)/m(r, Ag) < 8 < 1, for sufficiently large r, we
have
1
m(r, Aj) < Bm(r, Ao). (4.20)
1

n

<.
Il

By and , we have
(1= B)m(r, Ao) < O(log(rT'(r, f))), (r & E). (4.21)

By pp(Ag) = p, for any given € > 0 and sufficiently large r, we have

m(r, Ag) > exp,_,{r" “}. (4.22)
By (4.21) and (4.22)), for the above € > 0,r ¢ E,r — oo, we have
(1= B)exp,_{r"°} < O(log(rT(r, f))). (4.23)

By Lemma [3.2] and ([4.23)), we have u — e < pp,41(f). Since € > 0 is arbitrary, we

have y,(Ag) = p < pip11(f).
On the other hand, since max{o,(A4;),j # 0} < pp(Ao) = p, for any given € > 0
and sufficiently large r, we have

|4,(2)] < expp{r‘”'s}, (j=1,...,n—1). (4.24)

By Lemma there exists a set of Ey having infinite logarithmic measure such
that for all r € E5, we have

|Ao(2)] < exp, {r**e}. (4.25)
By (.7), (4.8), (4.24) and (4.25)), we have
s ()11 + 0(1)] < nexp, {r =" vy (r)|" 711 + o(1)]. (4.26)

By (4.26)), for the above € > 0, we obtain
lvg(r)||1+o(1)] < nr” expp{r’“rg}, (4.27)

where |z| = r € E\Ey,r — o0, |f(2)| = M(r, f). By (4.27), we obtain pp41(f) <
w+ €. Since € > 0 is arbitrary, we have u,11(f) < p. Thus, we have p,1(f) =
tip(Ao). _

(2) We prove that Ap41(f — @) = op+1(f). Setting g = f — ¢, since op11(p) <
tp(Ao), we have opi1(9) = opr1(f) = 0p(Ao), Ap+1(9) = Ap+1(f — ). Substituting
f=g+e.f =g +¢, ... [ =g" + o™ into 1)), we obtain

g+ A _1(2)g" D4+ A0 (2)g = — [0+ Ap_1(2) D4+ A (2)g]. (4.28)

If F(z) = o™ 4+ A,_1(2)e™ D 4+ ... + Ap(2)p = 0, then by part (1), we have
op+1(®) > pp(Ap), which is a contradiction. Since F(z) # 0 and op41(F) <
ope1(f) = opr1(g). By Lemma 3.7 and [28), we have X,11(9) = Aps1(9) =

op+1(9) = 0p(Ao). Therefore, p,(Ao) = pp+1(f) < opra(f) = 0p(Ao) = Apsa(f —
©) = Ap+1(f — ¢). The proof is complete. O
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5. PROOF OF THEOREM [2.8]

By Lemma we have ,11(f) = 0,(Ap). Now we prove that X, (f) —¢) =
op+1(f)- B

(1) We prove the A\py1(f — @) = opt1(f). Setting g = f — ¢, since op11(p) <
op(Aop), we have 0p11(9) = op41(f) = 0p(A0), Ap+1(9) = Apr1(f — ). Substituting
f=g+o. f =¢d+¢,....f" =g 4o into (21), we obtain

g™+ A, ( )g" T e+ Ag(2)g = — [0+ An_1 (2)" TV 4 Ag(2) ). (5.1)

Since Ap(4-) < pp(Ao), we have N(r, Ag) = o(T'(r, Ap)),r — oo. Therefore, by
Lemma -' we have

o (Ao) = limsu log, T'(r, Ag) i log,, T'(r, Ao)
PAE0) Téoop log r oo, reFs logr (5.2)
. logp m(T, AO) .
= lim —W———=,
r—oo, r€Es logr

where FEj is a subset of r of infinite logarithmic measure. Combining the assumption

and (5.2]), we have

lim sup log, m(r, A;) < lm log,, m(r, Ag)
oo log r r—o0, 1€ Eg log r

=o0,(A0), 5=1,...,n. (5.3)

If F(z) =™ + A, _1(2)p™ VD + ...+ Ag(2)p = 0, then by Lemma we have
op+1(¢) > 0,(Ap), which is a contradiction. Since F(z) # 0 and op41(F) <
opt1(f) op+1(g), by Lemrila and , we have Xer](g) = Mpt1(g) =
op+1(9) = 0p(Ao). Therefore, Apy1(f — ) = Aps1(f — @) = 0p41(f) = 0p(Ao).

(2) We prove that A\pi1(f' — @) = opr1(f). Setting g1 = f' — ¢, we have
op+1(91) = op+1(f) = 0p(Ao) and

=gt fOrD =g 4o, (5.4)
By (2.1), we have
1
f@) = =g (P ). (5.5)

The derivative of (2.1)) is
FrD A, f<"’+( A 1+An 2>f("—1>+- + (AL + Ag)f' + Ay f = 0. (5.6)
Substituting ((5.4) and into , we obtain

n A n— A’I’L— A/ n—
g§>+<Am —°>g§ Yo (Apg + Al — 10 g0

Ap Ao 91 +...
A1 A
+ (Ao + A} — 1 %g1
0
Al A A/
—_[@(")+(A”*1_Io)w("_l)+---+(Ao+A§— 114 0)@].
0 0
Setting
/ /
Bn_l - An—l B ﬁ’ BTL_Q = An 2+ An 1 Ma
Ay A
A A (5.7)
ey BO = AO + All _ 1439

Ag
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we have

o +Buo1g\" TV + Boagl" P 4+ Bogy = — [ + By 19" 4+ Bog].

(5.8)
By (5.3) and (5.7), we have

log, m(r, B;) log,, m(r, Ao)

1£sip Tog < TH(X},H}eE8 log op(Ao), (5 #0), (5.9)
and
log, m(r, Ay) log, m(r, Bo)
An) = li A R S A Ii _op N 1
p(4o) raoglrleEg logr r—»o;,n;EEs logr ’ (5.10)
where Eg is a subset of infinite logarithmic measure r. Let Fy(z) = ™ +

B 19™ Y 4+ ... + Byp. We affirm Fy(z) # 0. If Fi(z) = 0, then by (5.9),
(5.10) and Lemma we obtain op,41(¢) > 0,(Ap), which is a contradiction.

Since Fi(z) # 0, and op41(F1) < opyi1(g1) = 0p(Ao). By Lemma and (5.8)), we
obtain

Ap+1(f = @) = A1 (f' = ¢) = apa (f).
(3) We prove that Ay 1(f” — @) = opr1(f). Setting go = f” — ¢, we have
opt+1(92) = op+1(f) = 0p(Ao) and
= g2ty fOHD = gV 4 o), (5.11)

Substituting ([5.5)) into (5.6), we have

Al Ap_1 4 _
FOD 4 Aoy = GO0 4 (Ayg + ALy = ZEED) fD
" A,O 0 (5.12)
+ (Ao + A = =20 f =0
Ao
The derivative of (5.12)) is
Aj A Ap_14] n
f(n+2) + (An—l _ Ig)f(n+1) + [(An—l o Zg)/ + (An—2 + A/n—l _ %)]f( )
A1 Af
o (Ag+ A = 0y —
0
(5.13)
By (5.12)), we have
Al A Al
pooj b ey A TR e AT,
o Ag+ A — A1 A A Al A1 Af A Al A1 A ’
0 1 Ao o+ A3y Ao 0+ A7 Ao

(5.14)
Substituting ((5.14)) into (5.13)), we have

Al (Ao + A — Aoy

f(n+2) + [(An_y — =9) = . f(n+1) 4.
[ Ao Ao+ A — Aixfo ]
/ i
(A + Ay — 20y 4, 4y - 20y
AO 0
Az Ap A A
O T (e ke RPN
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Setting
B B, _1B]
C'nfl = anl - ?07 Cn72 = Bn72 + B;Lfl - %a
0 B B! 0 (5.15)
.., Co=By+B, - =20
) 0 o+ 1 BO ;
we obtain
FOH2) L Oy (2) fOFY o Co(2)f = 0. (5.16)
Substituting (5.11)) into (5.16]), we obtain

95 4+ Cr1 ()68 4 Co(2)ga = — [0 + Cr1(2) " + -+ Col2)e].

(5.17)
By (£2), (-9), (510) and (5-15), we have

log, m(r, C;) log,, m(r, Ag)

li : _ , .
TSP T gy A T Togr op(A0), (j #0),  (5.18)
and
10 m 'f',A 10 mi(r, C
op(Ag) = lim logym(rAo) -y, Logpm(nCo) (5.19)
oo, reEy logr r—o0,r€Fg logr
where FEg is a subset of 7 of infinite logarithmic measure. If Fy(z) = o™ +

Cp_1(2)p™ D 4 ... 4 Cy(2)¢ = 0, then by (5.18), (5.19) and Lemma we

have op11(p) > 0p(Ap), which is a contradiction. Therefore, F»(z) # 0. Since
Opt1(F2) < 0p41(g2) = 0p(Ag), by Lemma 3.7 and (5.17)), we have

Xp-‘—l(f// —p)= )‘p+1(f// —¢)= Up+1(f)-

(4) We prove that A, 11 ("' —¢) = op1(f). Setting g3 = f”'—¢p, then 0,41(g3) =
op+1(f) = op(Ao) and

=gt o, ooy FOF =gl 4o, (5.20)
The derivative of ([5.16) is
FOF) L C fOFD (O Cg) f Y (OO 7+ CL T = 0. (5.21)
By (5.16)), we have

7 1 (n+2) Cna (n+1) Ci o
=—[— —n-tl g 22 22
e e A o A (5.22)
Substituting (5.22)) into (5.21]), we have
/ U
FOHD 4 (G = DY ) 4 (0 1 0y - G210 e
OC o 0 (5.23)
+t (Co+Cp - é,oo)f”’zo.
Setting
C} Cpn-1C}
anl = Cnfl - FO’ Dn72 = Cn72 + C;Lfl - Cl 07
0 oo 0 (5.24)
oy Dy=Co+0Cp - =0
) 0 o+ Cl CO )
we have

Fn+) | Dn_l(z)f(”+2) + - 4+ Dy(2)f" =0. (5.25)
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Substituting (5.20) into (5.25)), we obtain
g:(),n) + Dn,l(z)génil) + -+ Do(z)gs = —[Lp(") + Dn,l(z)go("_l) + -+ Do(2)p].

(5.26)
By (5.18), (5.19) and (5.24)), we have

log,, m(r, D;) < lm log,, m(r, Ag)

li =o,(A i £ 0 5.27
1££S£p Tog 7 o Tog Up( 0), (J#0), ( )
and
log, m(r, A log, m(r, D
(Ao = fim  Bpmindd o, logym(r Do) (5.28)
r—00, 7€ Es log r r—oc0,r€Eg log r

where Fg is a subset of 7 of infinite logarithmic measure. Let F3(z2) = ¢ +
Dy_1(2)p" ) 4+ ... 4 Do(2)p = 0, by (5.27), (5.28) and Lemma [3.10, we have
F3(z) # 0. Since 0p41(F3) < 0p41(g3) = 0p(Ag), by Lemma [B.7 and (5.26), we

have

Apr1(f" = @) = Apa (f" = ) = p1a(f)-
(5) We prove that Ap1(fU) — ¢) = 0p41(f), (7 > 3). Setting g; = f9) — ¢,
(j > 3), then 0p41(g;) = Uerl(f(])) = 0p(Ao) and

fOD = gia i, =g D> 3). (5.29)

By successive derivation on ((5.25)), we also get an equation which has similar form
with (5.23)). Furthermore, combining (5.29)), we can get

n Hy n—1 HlH/
5" + (Hoor = 20080 4o+ (Ho + H{ — —=0)g;
Hy Hy
o (5.30)
= —[p™ 4+ (Ho + Hy — —=2)¢],
0
where H;(z), (j =0,1,...,n — 1) are meromorphic functions which have the same
formas D;(z),(j =1,...,n—1). Setting G,,_1 = H,—1 — 5—87 ..., Go=Hy+Hj—

Hy H),
o We have

log,, m(r, G;) - i log,, m(r, Ap)

I o (A (i
liIl’Sol;p IOgT r—o0, rcEg IOgT Up( 0)7 (j # 0)7
and
log,, m(r, A log, m(r, G
r—oo, r€Elg IOgT’ r—oo, rElg logr

where Fg is a subset of r of infinite logarithmic measure. By Lemmas [3.7] and [3.10]

we can get Xp+1(9j) = Ap11(95) = opt1(g;); Le., Xp+1(f(j) —p)= /\p+1(f(j) —p) =
op+1(f). the proof of Theorem is complete.
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