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WEAK SOLUTIONS FOR A-DIRAC EQUATIONS WITH
VARIABLE GROWTH IN CLIFFORD ANALYSIS

BINLIN ZHANG, YONGQIANG FU

Abstract. In this article we show the existence of weak solutions for ob-
stacle problems for A-Dirac equations with variable growth in the setting of
variable exponent spaces of Clifford-valued functions. We also obtain the ex-
istence of weak solutions to the scalar part of A-Dirac equations in space

W
1,p(x)
0 (Ω, C`n).

1. Introduction

After Kováčik and Rákosńık first discussed the Lp(x) space and W k,p(x) space in
[20], a lot of results have been obtained concerning these kinds of variable exponent
spaces and their applications, for example, see [4, 5, 6, 7] and references therein.
Recently the theory of nonlinear partial differential equations with nonstandard
growth conditions has important applications in elasticity (see [27]), eletrorheolog-
ical fluids (see [26]) and so on. For an overview of variable exponent spaces with
various applications to differential equations we refer to [15] and the references
quoted there.

Clifford algebras were introduced by Clifford as geometric algebras in 1878, which
are a generalization of the complex numbers, the quaternions, and the exterior
algebras, see [11]. As an active branch of mathematics over the past 40 years,
Clifford analysis usually studies the solutions of the Dirac equations for functions
defined on domains in Euclidean space and taking value in Clifford algebras, see
[18]. Gürlebeck and Sprößig [12, 14] developed the theory of Clifford analysis to
investigate elliptic boundary value problems of fluid dynamics, in particular the
Navier-Stokes equations and related equations. Doran and Lasenby [2] gave in
detail an overview of the intrinsic value and usefulness of Clifford algebras and
Clifford analysis for mathematical physics.

Nolder [21, 22] introduced A-Dirac equations DA(x,Du) = 0 and investigated
some properties of weak solutions to the scalar parts of above-mentioned equations,
for example, the Caccioppoli estimate and the removability theorem. Fu and Zhang
[8] first introduced the weighted variable exponent spaces in the context of Clifford
algebras, and then discussed the properties of these spaces. As an application, they
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obtained the existence of weak solutions in space WD,p(x)(Ω,C`n) to the scalar part
of the nondegenerate A-Dirac equations DA(x,Du) + B(x, u) = 0. Unfortunately,
the proof of [8, Corollary 4.1] is invalid for the case in which B(x, u) ≡ 0. Mo-
tivated by such problems, the aim of this paper is to investigate the existence of
solutions to the scalar part of A-Dirac equations. Note that when u is a real-valued
function and A : Ω × C`1n(Ω) → C`1n(Ω), the scalar part of A-Dirac equations be-
comes divA(x,∇u) = 0; i.e., A-harmonic equations. These equations have been
extensively studied with many applications, see [17].

In recent years, obstacle problems in the variable exponent setting have attracted
a lot of interest, we refer to [5, 8, 9, 16, 25] and references therein. Inspired by their
works, we are interested in the following obstacle problems:∫

Ω

[
A(x,Du)D(v − u)

]
0
≥ 0 (1.1)

for v belonging to

Kψ = {v ∈W 1,p(x)
0 (Ω,C`n) : v ≥ ψ a.e. in Ω} (1.2)

where ψ(x) = ΣψIeI ∈ C`n(Ω), ψI : Ω → [−∞, +∞], v ≥ ψ, a.e. in Ω means that
for any I, we have vI ≥ ψI a.e. in Ω.

We will study the solution u ∈ Kψ for (1.1)-(1.2) as A(x, ξ) : Ω × C`n → C`n
satisfies the following growth conditions:

(A1) A(x, ξ) is measurable with respect x for ξ ∈ C`n and continuous with
respect to ξ for a.e. x ∈ Ω,

(A2) |A(x, ξ)| ≤ C1|ξ|p(x)−1 + g(x) for a.e. x ∈ Ω and ξ ∈ C`n,
(A3)

[
A(x, ξ)ξ

]
0
≥ C2|ξ|p(x) + h(x) for a.e. x ∈ Ω and ξ ∈ C`n,

(A4)
[
(A(x, ξ1)−A(x, ξ2))(ξ1 − ξ2)

]
0
> 0 for a.e. x ∈ Ω and ξ1 6= ξ2 ∈ C`n,

where g ∈ Lp
′(x)(Ω), h ∈ L1(Ω), Ci (i = 1, 2) are positive constants. Throughout

the paper we always assume that Ω is a bounded domain in Rn(n ≥ 2). And that
(unless declare specially)

p ∈ P log(Ω) and 1 < p− =: inf
x∈Ω̄

p(x) ≤ p(x) ≤ sup
x∈Ω̄

p(x) := p+ <∞ (1.3)

This article is divided into four sections. In Section 2, we will recall some ba-
sic knowledge of Clifford algebras and variable exponent spaces of Clifford-valued
functions, which will be needed later. In Section 3, we will prove the existence
of solutions for the above-mentioned obstacle problems for A-Dirac equations with
nonstandard growth. Furthermore, we also obtain the existence of solutions to the
scalar part of A-Dirac equations in W 1,p(x)

0 (Ω,C`n).

2. Preliminaries

2.1. Clifford algebra. In this section we first recall some related notions and
results from Clifford algebras. For a detailed account we refer to [11, 12, 13, 14, 15,
16, 17, 18].

Let C`n for the real universal Clifford algebras over Rn, then

C`n = span{e0, e1, e2, . . . , en, e1e2, . . . , en−1en, . . . , e1e2 . . . en}

where e0 = 1 (the identity element in Rn), {e1, e2, . . . , en} is an orthonormal basis
of Rn with the relation eiej + ejei = −2δij . Thus the dimension of C`n is 2n. For
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I = {i1, . . . , ir} ⊂ {1, . . . , n} with 1 ≤ i1 < i2 < · · · < in ≤ n, put eI = ei1ei2 . . . eir ,
while for I = ∅, e∅ = e0. For 0 ≤ r ≤ n fixed, the space Clrn is defined by

C`rn = span{eI : |I| := card(I) = r}.

The Clifford algebras C`n is a graded algebra as

C`n = ⊕rC`rn.

Any element a ∈ C`n may thus be written in a unique way as

a = [a]0 + [a]1 + · · ·+ [a]n

where [ ]r : C`n → C`rn denotes the projection of C`n onto C`rn. It is customary to
identify R with C`0n and identify Rn with C`1n respectively. For u ∈ C`n, we know
that [u]0 denotes the scalar part of u, that is the coefficient of the element e0. We
define the Clifford conjugation as follows:

(ei1ei2 . . . eir ) = (−1)
r(r+1)

2 ei1ei2 . . . eir

For A ∈ C`n, B ∈ C`n, we have

AB = B A, A = A.

We denote
(A,B) = [AB]0.

Then an inner product is thus obtained, leading to the norm | · | on C`n given by

|A|2 = [AA]0.

From [13] we know that this norm is submultiplicative:

|AB| ≤ C3|A‖B|. (2.1)

where C3 ∈ [1, 2n/2] is a constant.
A Clifford-valued function u : Ω → C`n can be written as u = ΣIuIeI , where

the coefficients uI : Ω → R are real valued functions.
The Dirac operator on Euclidean space used here is as follows:

D =
n∑
j=1

ej
∂

∂xj
=

n∑
j=1

ej∂j .

If u is C1 real-valued function defined on a domain Ω in Rn, then Du = ∇u =
(∂1u, ∂2u, . . . , ∂nu), where ∇ is the distributional gradient. Further D2 = −∆,
where ∆ is the Laplace operator which operates only on coefficients. A function
is left monogenic if it satisfies the equation Du(x) = 0 for each x ∈ Ω. A similar
definition can be given for right monogenic function. An important example of a
left monogenic function is the generalized Cauchy kernel

G(x) =
1
ωn

x

|x|n
,

where ωn denotes the surface area of the unit ball in Rn. This function is a funda-
mental solution of the Dirac operator. Basic properties of left monogenic functions
one can refer to [11, 12, 13, 14].
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Next we recall some basic properties of variable exponent spaces. Let P (Ω) be
the set of all Lebesgue measurable functions p : Ω → (1,∞). Given p ∈ P (Ω) we
define the conjugate function p′(x) ∈ P (Ω) by

p′(x) =
p(x)

p(x)− 1
, x ∈ Ω.

We define the variable exponent Lebesgue spaces Lp(x)(Ω) by

Lp(x)(Ω) = {u ∈ P (Ω) :
∫

Ω

|u|p(x)dx <∞}.

with the norm

‖u‖Lp(x)(Ω) = inf{t > 0 :
∫

Ω

∣∣∣u
t

∣∣∣p(x)dx ≤ 1}. (2.2)

Definition 2.1 ([2]). A function a : Ω → R is globally log-Hölder continuous in Ω
if there exist Li > 0 (i = 1, 2) and a∞ ∈ Rn such that

|a(x)− a(y)| ≤ L1

log(e+ 1/|x− y|)
, |a(x)− a∞| ≤

L2

log(e+ |x|)
hold for all x, y ∈ Ω. We define the following class of variable exponents

P log(Ω) =
{
p ∈ P (Ω) :

1
p

is globally log-Hölder continuous }.

Theorem 2.2 ([1]). If p(x) ∈ P (Ω), then the inequality∫
Ω

|uv|dx ≤ 2‖u‖Lp(x)(Ω)‖v‖Lp′(x)(Ω)

holds for every u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω).

Theorem 2.3 ([1]). If p(x) ∈ P (Ω), then space Lp(x)(Ω) is complete and reflexive.

Remark 2.4. We shall say that fn ∈ Lp(x)(Ω) converge modularly to f ∈ Lp(x)(Ω)
if limn→∞

∫
Ω
|fn − f |p(x)dx = 0. In [20] it is shown that the topology of Lp(x)(Ω)

given by the norm (2.3) coincides with topology of modular convergence.

Variable exponent spaces of Clifford-valued functions. In this section, we
first recall some notation of variable exponent spaces of Clifford-valued functions,
for a detailed treat we refer to [8, 9].

We define the space

Lp(x)(Ω,C`n) = {u ∈ C`n : u =
∑
I

uIeI , uI ∈ Lp(x)(Ω)}

with the norm

‖u‖Lp(x)(Ω,C`n) =
∥∥∑

I

uIeI
∥∥
Lp(x)(Ω,C`n)

=
∑
I

‖uI‖Lp(x)(Ω)

and the Sobolev space

W 1,p(x)(Ω,C`n) = {u ∈ Lp(x)(Ω,C`n) : ∇u ∈ (Lp(x)(Ω,C`n))n}
with the norm

‖u‖W 1,p(x)(Ω,C`n) = ‖u‖Lp(x)(Ω,C`n) + ‖∇u‖(Lp(x)(Ω,C`n))n (2.3)

By C∞(Ω,C`n) denote the space of Clifford-valued functions in Ω whose coeffi-
cients are infinitely differentiable in Ω and by C∞0 (Ω,C`n) denote the subspace of
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C∞(Ω,C`n) with compact support in Ω. Denote W 1,p(x)
0 (Ω,C`n) by the closure of

C∞0 (Ω,C`n) in W 1,p(x)(Ω,C`n) with respect to the norm (2.3).

Remark 2.5 ([8]). A simple computation shows that

2−
n(1+p+)

p− ‖|u|‖Lp(x)(Ω) ≤ ‖u‖Lp(x)(Ω,Cln) ≤ 2n‖|u|‖Lp(x)(Ω),

from which we can obtain that ‖u‖Lp(x)(Ω,C`n) and ‖|u‖|Lp(x)(Ω) are equivalent norms
on Lp(x)(Ω,C`n).

Theorem 2.6 ([8]). If p(x) ∈ P (Ω), then the inequality∫
Ω

|uv|dx ≤ C(p, n)‖u‖Lp(x)(Ω,C`n)‖v‖Lp′(x)(Ω,C`n)

holds for every u ∈ Lp(x)(Ω,C`n) and v ∈ Lp′(x)(Ω,C`n).
Theorem 2.7 ([9]). If p(x) ∈ P (Ω), then W 1,p(x)(Ω,C`n) is a reflexive Banach
space.

Theorem 2.8 ([9]). If u ∈W 1,p(x)
0 (Ω, Cln), then

‖u‖Lp(x)(Ω,Cln) ≤ C(n,Ω)‖∂u‖Lp(x)(Ω,Cln).

Theorem 2.9 ([9]). If p(x) satisfies (1.1) and u ∈W 1,p(x)
0 (Ω,C`n), then the norms∣∣∣∣u∣∣∣∣

W
1,p(x)
0 (Ω,C`n)

and
∣∣∣∣Du∣∣∣∣

Lp(x)(Ω,C`n)
are equivalent on W

1,p(x)
0 (Ω,C`n).

Proof. By [9, Remark 2.3], we know that
∣∣∣∣∇u∣∣∣∣

(Lp(x)(Ω,Cln))n is equivalent to∣∣∣∣Du∣∣∣∣
Lp(x)(Ω,Cln)

for u ∈ W
1,p(x)
0 (Ω,C`n). According to Theorem 2.8, the norms∣∣∣∣u∣∣∣∣

W
1,p(x)
0 (Ω,C`n)

and
∣∣∣∣∇u∣∣∣∣

(Lp(x)(Ω,Cln))n are equivalent on W 1,p(x)
0 (Ω,C`n). Thus

we obtain the desired conclusion. �

3. Weak solutions for obstacle problems for A-Dirac equations

In this section we will establish the existence of weak solutions for obstacle
problems for A-Dirac equations with variable growth. As a corollary, the existence
of weak solutions to the scalar part of A-Dirac equations is obtained. We first
introduce a theorem of Kinderlehrer and Stampacchia.

Let X be a reflexive Banach space with dual X∗ and let 〈·, ·〉 denote a pairing
between X and X∗. If K ⊂ X is a closed convex set, then a mapping A : K → X∗

is called monotone if
〈Au−Av, u− v〉 ≥ 0

for all u, v ∈ K. Further A is called coercive on K if there exists ϕ ∈ K such that
〈Aun −Aϕ, un − ϕ〉

‖un − ϕ‖X
→∞

whenever {un} ⊂ K with ‖un − ϕ‖X → ∞ as n → ∞. Moreover A is called
strongly-weakly continuous on K if un → ϕ in K, then Aun → Aϕ weakly in X∗.

Proposition 3.1 ([19]). Let K be a nonempty closed convex subset of X and let
A : K → X∗ be monotone, coercive and strongly-weakly continuous on K. Then
there exists an element u ∈ K such that

〈Au, v − u〉 ≥ 0

for all v ∈ K.
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In the following discuss we set X = W
1,p(x)
0 (Ω,C`n),K = Kψ and let 〈·, ·〉 be

the usual pairing between X and X∗; i.e.,

〈u, v〉 =
∫

Ω

[
uv

]
0
dx,

where u ∈ X, v ∈ X∗. By the definition of Kψ, it is immediate to obtain the
following lemma.

Lemma 3.2. K is a closed convex set in X.

Next we define a mapping T : K → X∗ by

〈Tu, v〉 =
∫

Ω

[
A(x,Du)Dv

]
0

for v ∈ X.

Lemma 3.3. For any u ∈ K, we have Tu ∈ X∗.

Proof. In view of (A2), (2.1) and the Hölder inequality, we obtain∣∣ ∫
Ω

[
A(x,Du)Dv

]
0

∣∣ ≤ ∫
Ω

∣∣A(x,Du)Dv
∣∣

≤ C3

∫
Ω

(
C1|Du|p(x)−1 + g(x)

)
|Dv|

≤ 2C1C3

∥∥ |Du|p(x)−1
∥∥
Lp′(x)(Ω)

‖|Dv|‖Lp(x)(Ω)

+ 2C3‖g‖Lp′(x)(Ω)‖|Dv‖|Lp(x)(Ω).

Moreover,

‖ |Du|p(x)−1
∥∥
Lp′(x)(Ω)

= inf
{
t > 0 :

∫
Ω

|Du|p(x)

tp′(x)
dx ≤ 1

}
= inf

{
t > 0 :

∫
Ω

( |Du|
λ

1
p(x)−1

)p(x)
dx ≤ 1

}
≤ max

{
‖|Du‖|p+−1

Lp(x)(Ω)
, ‖|Du‖|p−−1

Lp(x)(Ω)

}
.

Then the assertion immediately follows from Remark 2.5 and Theorem 2.9. �

Lemma 3.4. T is monotone and coercive on K.

Proof. In view of (A4), it is immediate that T is monotone. Next we show that T
is coercive. Given ϕ ∈ K. Then by (A2), (A3) and (2.1), we obtain

〈Tu− Tϕ, u− ϕ〉

≥ C2

∫
Ω

|Du|p(x)dx+ C2

∫
Ω

|Dϕ|p(x)dx− 2
∫

Ω

|h|dx− C3

∫
Ω

|Du‖g|dx

− C3

∫
Ω

|Dϕ‖g|dx− C1C3

∫
Ω

|Du|p(x)−1|Dϕ|dx− C1C3

∫
Ω

|Du‖Dϕ|p(x)−1dx

≥ C2

∫
Ω

|Du|p(x)dx+ C2

∫
Ω

|Dϕ|p(x)dx− 2
∫

Ω

|h|dx

− C3ε

∫
Ω

1
p(x)

|Du|p(x)dx− C3

∫
Ω

1
p′(x)

ε
1

1−p′(x) |g|p
′(x)dx− C3

∫
Ω

|Dϕ‖g|dx

− εC1C3

∫
Ω

1
p′(x)

|Du|p(x)dx− C1C3

∫
Ω

1
p(x)

ε
1

1−p′(x) |Dϕ|p(x)dx
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− εC1C3

∫
Ω

1
p(x)

|Du|p(x)dx− C1C3

∫
Ω

1
p′(x)

ε
1

1−p′(x) |Dϕ|p(x)dx

≥
(
C2 − C3

( 1
p−

+ C1

)
ε
) ∫

Ω

|Du|p(x)dx− C5.

Taking ε = C2p−
2C3(1+C1p−) , we have

〈Tu− Tϕ, u− ϕ〉 ≥ C2

2

∫
Ω

|Du|p(x)dx− C5

≥ C2

2

∫
Ω

2−p+
(
|Du−Dϕ|p(x) − |Dϕ|p(x)

)
dx− C5

≥ C2

21+p+

∫
Ω

|Du−Dϕ|p(x)dx− C6.

Since ∫
Ω

∣∣Du−Dϕ
∣∣p(x)dx

‖|Du−Dϕ|‖Lp(x)(Ω)

=
∫

Ω

( ∣∣Du−Dϕ
∣∣

2−1‖|Du−Dϕ|‖Lp(x)(Ω)

)p(x) · (
2−1‖|Du−Dϕ|‖Lp(x)(Ω)

)p(x)
‖|Du−Dϕ|‖Lp(x)(Ω)

dx,

as ‖|Du−Dϕ|‖Lp(x)(Ω) ≥ 1 we have∫
Ω

∣∣Du−Dϕ
∣∣p(x)dx

‖|Du−Dϕ|‖Lp(x)(Ω)

≥ 2−p+‖|Du−Dϕ|‖p−−1

Lp(x)(Ω)
.

Therefore, in view of Remark 2.5 and Theorem 2.9, we obtain
〈Tu− Tv, u− v〉

‖u− ϕ‖X
→∞

as ‖u− ϕ‖X →∞. That is to say, T is coercive on K. �

Lemma 3.5. The operator T is strongly-weakly continuous on K.

Proof. Let {uk(x)} ⊂ K be a sequence that converges to an element u(x) ∈ K in
X. Then {uk} is uniformly bounded in X. Moreover, by (A1) we can deduce that
for each v ∈ X[

A(x,Duk)Dv
]
0
→

[
A(x,Du)Dv

]
0

a.e. on Ω, as k →∞.

To see the equi-continuous integrability of the sequence
{
[A(x,Duk)Dv]0

}
, we take

a measurable subset Ω′ ⊂ Ω, by (2.1) and (A2), for each v ∈ X, we have∣∣ ∫
Ω′

[
A(x,Duk)Dv

]
0

∣∣
≤ 2C1

(
C1

∥∥ |Duk|p(x)−1
∥∥
Lp′(x)(Ω′)

+ ‖g‖Lp′(x)(Ω′)

)
‖|Dv‖|Lp(x)(Ω′).

(3.1)

In view of Remark 2.4, Remark 2.5 and Theorem 2.9, we obtain that the first term
of (3.1) is uniformly bounded in k. The second term of (3.1) is arbitrarily small if
the measure of Ω′ is chosen small enough. By the Vitali convergence theorem, we
have

〈Tuk, v〉 =
∫

Ω

[
A(x,Duk)Dv

]
0
→

∫
Ω

[
A(x,Du)Dv

]
0

= 〈Tu, v〉

as k →∞. That is to say, T is strongly-weakly continuous. �
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Theorem 3.6. Suppose K 6= ∅. Under conditions (A1)-(A4), there exists a Clif-
ford-valued solution u ∈ K for the obstacle problems (1.1)-(1.2). That is to say,
there exists a Clifford-valued function u ∈ K such that∫

Ω

[
A(x,Du)D(v − u)

]
0
≥ 0

for any v ∈ K. Moreover, the solution to the scalar part of (1.1) and (1.2) is
unique up to a monogenic function, namely, if u1, u2 ∈ K are solutions to the
obstacle problem (1.1)–(1.2), then [Du1]0 = [Du2]0 on Ω.

Proof. Using Lemma 3.2, Lemma 3.5 and Proposition 3.1, it is immediate to obtain
the existence of weak solutions for the obstacle problems (1.1)–(1.2). If there are
two solutions u1, u2 ∈ K to the obstacle problem (1.1)–(1.2), then∫

Ω

[
A(x,Du1)D(u2 − u1)

]
0
dx ≥ 0,∫

Ω

[
A(x,Du2)D(u1 − u2)

]
0
dx ≥ 0

So we have ∫
Ω

[
A(x,Du1)−A(x,Du2)D(u1 − u2)

]
0
dx ≤ 0

According to (A4), we can infer that∫
Ω

[
A(x,Du1)−A(x,Du2)D(u1 − u2)

]
0
dx = 0 on Ω.

That is to say, [Du1]0 = [Du2]0 on Ω. �

Corollary 3.7. Under the conditions in Theorem 3.6, there exists one weak solu-
tion u ∈ X to the scalar part of DA(x,Du) = 0. Namely, there exists at least one
u ∈ X satisfying ∫

Ω

[
A(x,Du)Dϕ

]
0

= 0 (3.2)

for any ϕ ∈W 1,p(x)
0 (Ω,C`n).

Proof. Let ψ =
∑
I ψIeI , where ψI = −∞ for any I. Let u be a solution for the

obstacle problem of (1.1)–(1.2) in K. Since the Clifford-valued functions u − ϕ ∈
K,u+ ϕ ∈ K for any ϕ ∈W 1,p(x)

0 (Ω,C`n), we have∫
Ω

[
A(x,Du)Dϕ

]
0
≥ 0,

−
∫

Ω

[
A(x,Du)Dϕ

]
0
≥ 0.

Thus ∫
Ω

[
A(x,Du)Dϕ

]
0

= 0.

The proof is complete. �
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Example. If A(x, ξ) = ξ, then A-Dirac equations DA(x,Du) = 0 becomes −4u =
0, that is, Clifford Laplacian equation. If A(x, ξ) = |ξ|p−2ξ, then A-Dirac equations
becomes D(|Du|p−2Du) = 0, that is, p-Dirac equation (see [23]). Moreover, if
u is real-valued function, then the scalar part of A-Dirac equations is A-harmonic
equations −div(A(x,∇u)) = 0 (see [21, 22]). Therefore, by Corollary 3.7, we obtain
the existence of a weak solution of the A-harmonic equations under the required
conditions as in Theorem 3.6.
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[3] D. Edmunds, J. Rákosńık; Sobolev Embedding with Variable Exponent, Studia Math.

143(2000), 267-293.
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