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OBLIQUE DERIVATIVE PROBLEMS FOR DEGENERATE
LINEAR SECOND-ORDER ELLIPTIC EQUATIONS IN A
3-DIMENSIONAL BOUNDED DOMAIN WITH A BOUNDARY
CONICAL POINT

MARIUSZ BODZIOCH

ABSTRACT. We investigate the behavior of strong solutions to oblique deriv-
ative problems for degenerate linear second-order elliptic equations in a 3-
dimensional bounded domain with a boundary conical point. We obtain es-
timates for the local and global solutions and find the best exponents of the
continuity at the conical boundary point.

1. INTRODUCTION

We investigate the behavior of strong solutions to the oblique derivative problem
for degenerate linear second-order elliptic equations in a 3-dimensional bounded
domain with the boundary conical point. Such problem was studied for in a
2-dimensional bounded domain with a boundary conical point by Borsuk [4], and
for the Laplace operator in a 2-dimensional domain by Solonnikov et al [§]-[I0],
[15]-[I7]. They established a-priori estimates for weak solutions in the Sobolev -
Kondratiev weighted spaces. Some regularity results were obtained by Lieberman
in [12]-[14] for such problems in smooth domains.

Let G C R? be a bounded domain with boundary G that is a smooth surface
everywhere except at the origin O € 0G. We consider the elliptic boundary value
problem

Llu] = a” (@)ug,q, + a' (2)uy, + a(z)u = f(z), z€G
Blu] = % + X(w)% + ‘?ﬂw(w)u =g(zx), x€dG\O’
where 7 denotes the unite exterior normal vector to IG\O.

We shall find an exact estimate of the type u(xz) = O(|z|*) for the strong solution
to problem . Analogous estimates have been obtained in [5] for non-degenerate
equations and in [3] for degenerate equations, but only with Dirichlet boundary con-
ditions. We derive the Friedrichs-Wirtinger type inequality adapted to our problem,
with an exact estimating constant, and establish some auxiliary integro-differential
inequalities. We derive weighted estimates for local and global solutions, and find
the best exponents of the continuity at the conical boundary point.

(1.1)
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We consider estimates for the solutions to equations with minimal smoothness
on the coefficients; this is a principal feature of our work.

We introduce the following notation for a domain G which has a conical point
at O € 0G.

e (r,w) = (r,wi,ws): the spherical coordinates in R? with pole O defined by
T1 =7rcoswi, &2 =rsinwicoSwsy, I3z = Trsinw; sinws;

K: an open cone with vertex in O, 0K: the lateral surface of K;
Q := K N S?: asurface on sphere;
0f): a circle on the cone, df): the area element of €;
Gt :=Gn{(rw):0<a<r<bweN}: alayer in R
Ib:=0GN{(r,w):0<a<r<buwe dN}: the lateral surface of the layer
Gos
o Gg:=G\G¢, Ty:=0G\I'§, Q, := GENIB,(0),0< p<d, de (0,1);
o G =G24, k=0,1,2,....
We recall some well known formulas related to spherical coordinates (r, w1, ws)
centered at the conical point O:

ou
ar
where |V, u| denotes the projection of the vector Vu onto the tangent plane to the
unit sphere at the point w,

1
Vul? = (G2 + [ Voul,

1, 0u 1 0Ou
Vu.) 2 _ (2 2 Il el 2,
Vol 7 (&Ul) QQ(6W2)
1 0 J(w) Ou 0 ,Jw) Ou
Aug=—[2 e S .
wtt J(w) [&ul q1 8(4}1 8w2 q2 aw2 )] ’

where J(w) = sinwy, q1 = 1, g2 = sin® wy,
ds = rdrdo

denotes the 2-dimensional area element of the lateral surface of the cone K and do
denotes the 1-dimensional length element on 92 and do = sin 2 dw,.

Let us assume, without loss of generality, that there exists d > 0 such that G¢&
is a rotational cone with the vertex at O and the aperture wy € (0, 7). Thus

Fg ={(rywi,w2) : 7 € (0,d),w; = %,wz € (—m, 7}

We use the standard function spaces: C*(G); C§(G); the Lebesgue space LP(G),
p > 1, with the norm [lul[z»q) = ([ |u|Pdz)'/P; the Sobolev space W*P(G) for
integer £ > 0, 1 < p < oo, which is a set of all functions w € L,(G) such that
for every multi-index # with |3| < k the weak partial derivatives D”u belongs
to L,(G), equipped with the finite norm ||ullwr.rq) = ([4 2161<k | DBulPdx)t/P;
the weighted Sobolev space Vp’fa(G) for integer £k > 0, 1 < p < o0 and a € R,
which is the space of distributions v € D’(G) with the finite norm |\u||fofa(G) =

_1

(Jo > 161<k retPUBI=F)| DAy |Pda) /P and V}fa ?(T"), which is the space of functions

@, given on OG, with the norm ||| ,_1 = inf | @y (), where the infimum
P ) P,

p,o

is taken over all functions ® such that q)‘aa =  in the sense of traces.
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FI1GURE 1. Three-dimensional bounded domain with the boundary
conical point

For p = 2 we use the following notation
WHG) = WE2(G),  WEG) = VEL(G), W™ (1) = Vo, ().
Definition 1.1. A function u(z) is called a strong solution of problem (L.1)) pro-
vided that u(z) € W23(GQ)NW?2(G.)NCO(G) for all e > 0 and satisfies the equation

loc
Lu = f for almost all x € G, as well as the boundary condition Bu = ¢ in the sense

of traces on I'; for all £ > 0.

We use the following assumptions:
(A1) the ellipticity condition
3
vle[TIEP < ) a¥ ()& < plalTI?, VEER®, w € G
ij=1

with 7 > 0 and the ellipticity constants v, > 0; a(x) = a’*(z), and
lim,) o [z 77a% () = 67

(A2) a¥(z) € C°(G), a'(x) € LP(G), p > 3, a(x) € L*(G), f(z) € L*(G), g(x) €
VV11 /2 (0G); there exists a monotonically increasing nonnegative function A,
continuous at zero, A(0) = 0, such that for x € G

3 y N 1/2 3. 1/2

(3 lal7a¥ (@) = 612) o+ o (M0’ @)+ [P lat)] < Aa:

i,j=1 i=1

(A3) a(z) <0in G;

(Ad) y(w),x(w) € C*(ON) and there exist numbers 7o > tan <, xo > 0 such
that v(w) > v >0, 0 < x(w) < Xo;

(A5) there exist numbers f; >0, g1 > 0, go > 0, s > 1 such that

[f(@)] < Ailel 27, g(@)] < gilz*, /GQ r|Vgl*dz < g50*, 0 € (0,1);

0
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(A6) My = max, g |u(z)| is known (see [12] [13]).

Remark 1.2. It is easy to verify that f € WY , (G), by assumptions (A2) and
(A5).

The following statement is our main result.

Theorem 1.3. Let u be a strong solution of and X\ is the smallest positive
eigenvalue of (see subsection[2.1] and Appendiz). Let assumptions (A1)—(A6)
be satisfied with A(r) being Dini-continuous at zero. Then there are d € (0,1) and
constant C' > 0 depending only on v, u, s, A, 70, Xo, meas G, diam G, |x|lc1ac),
17llcroc), on the modulus of continuity of leading coefficients and on the quantity

fol #T)dr, such that for all x € G holds the inequality

(@) < C(Julo.c + ks + 1o, @) + 19027200 )

‘l‘l/\, ifS > A (12)
X \x|ﬂnﬁ, ifs=\,
|z|®, if s <A
where
1 1/2
ks=(g2+—(f?+¢? . 1.3
(90+25(f1 +91)) (1.3)

Remark 1.4. For s < X estimates (L.2)) are valid for A(r) being continuous but
not Dini-continuous at zero; see [2] and [5, Theorems 4.19, 4.20].

2. PRELIMINARIES

2.1. The eigenvalue problem. Let x(w) > 0, y(w) > 0 be C*(99Q)-functions and
¥ be the unite exterior normal vector to K at the points of 9. Let us consider
the following eigenvalue problem for the Laplace-Beltrami operator A, on the unit
sphere,

A+ XA+ DY(w) =0, we
2.1
20 + (@) + () .

which consists of the determination of all values A > 0 (eigenvalues), for which (2.1))
has a non-zero weak solutions ¥ (w) (eigenfunctions).

0, weod

Remark 2.1. Since 092 C 0K, on 02 we have % = v

60.)1 :

Definition 2.2. A function ¢ is called a weak solution of problem (2.1)) provided
that 1 € W1(Q) and satisfies the integral identity

10y 9
/Q <E 8:5; &Z — A+ 1)1/”7>d9 + /{)JMM + y(w))ndo =0

for all n(x) € W(Q).
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2.2. Friedrichs - Wirtinger type inequality.
Theorem 2.3. Let A be the smallest positive eigenvalue of problem (2.1) and as-

sumption (A4) is satisfied. For any u € W(Q) the inequality

/Q W2d0) < ﬁ[ /Q Voul2d0 + /8 ) + () do|  (22)

holds.

Proof. Let u(w),¥(w) € C1(Q), ¥(w) be the eigenfunction corresponding to the
eigenvalue \. Let us define v(w) € C1(Q) by u(w) = ¥ (w)v(w). Then

J|Vul?

J 0u J(au

Q1 (3w1 g2 Ows

)?

J28w 2] o v J28w2 2] o v
> 2y 2 L2 2 27
- (8(4)1) + U8W1 Owy U (8w2) + q2 vawg Ows
7i 2J31/J 28 Jaw 0 o J O 28 J O
" Own (v g1 Owy 707~ Ow (ql &ul) t o Ows (v g2 aw2) &ug(qg &02)'
Therefore,

/\V ul?dQ

I N
> [ [t 2 g+ gt 2

/¢ 8J8w)+6 J81/J]dw

8(4)1 q1 6(4)1 80.)2 q?@wg

= / zpv2(i6—wcos(ﬁ, wi) + i@i cos(V,wsq)) do — / Yv? A, hdQ.
a0 q1 Ow g2 Owy Q

Taking into account that cos(¥/,w;) = 1, cos(¥,w3) = 0, ¢ = 1 and (2.1)), we obtain

/|un|2d(22)\()\+l)/ ¢2v2d9—/ (Ax(W) + y(w))p*v? do.
Q Q o0

Returning to u = v, we obtain the desired inequality (2.2). The extension to
u € W(Q) follows directly by the approximation arguments. O

2.3. Hardy - Friedrichs - Wirtinger type inequality.

Theorem 2.4. Let v € W1, (GY) and x(w),v(w) € C°(G), v(w) > ~ > 0,
X(w) >0 and XA > 0 be the smallest positive eigenvalue of . Then

/Gg r3v?dr < ﬁ [/Gg Vo2 de + /Fd</\)dw) + 7(w)>r72vzds]. (2.3)

0
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Proof. We consider inequality (2.2)) for v(r,w). Multiplying it by r—! and integrat-
ing for r € (0,d), we obtain

AN+ 1)/ r—3v?dr
G§

d
:)\()\+1)/ /r*1v2drdﬂ
0 Ja
d d
S/ /r_1|va|2drdQ+/ / Ax(w) +y(W))r~tv? drdo
0 Ja o Joq

:/ r_3|va|2d:E—|—/ Mx(w) +y(w))r~2v?ds.
(X rg

0

Hence it follows the required inequality (2.3]). |

Lemma 2.5. Let G¢ be a conical domain and Vu(o,w) € La(Q) for almost every-
where g € (0,d) and assumption (A4) is satisfied. Let X > 0 be the smallest positive
eigenvalue of (2.1)) and

(7(9):/ r*1|Vu|2d:c+/ y(w)r~?utds. (2.4)
e re

RC-

Proof. Writing U (0) in spherlcal coordinates we have

/ -t 2/ |v ul? der—l—/ / yu? do dr;
Q o T Jon

differentiating with respect to ¢ we obtain

0t = [ ey

Furthermore, for any € > 0,

@_ (@)<
o T %,

Then
L,
+ —u
r=op 2

1
0 < — = 24Q.
ng)d 2/\U (o) + 5 /mx(w)u d

do.

r=p

]dQ + %/&m v (w)u?

=0 r=0

€2 1 5 0uy
2! + 2: ¢ (8r) ’
by the Cauchy inequality. Choosing € = A and applying the Friedrichs - Wirtinger

type inequality ([2.2), we obtain

/Q(ng?; . + ;u2 Tﬁg)dQ
<[5 G e
2
<ol 2 G Je
gD L e ] _ o

= gl [ LGy o] a5 [ s

1 1 2
+§/BQ)<( w)u? dU——AU( )+2/BQX(W)U ds.

%)
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3. THE BARRIER FUNCTION

Let G¢ be a convex rotational cone with a solid angle wg € (0,7) and the lateral
surface I'§ such that G C {21 > 0}. Let us define the following liner elliptic
operator
32

Lo = |27 aY (@) 5=,
10

a'l(x) = a’'(x), z € G¢,

where
v|z|"€? < a¥(x)&&; < plw|TE?, Vo € GY, VE € RP,
where v, u are positive constants. Also define the boundary operator

0 0 1
B=— — + —7(w), >0 >0, xo > >0, x € TN\{0}.
5 T XW) g+ |x|7(w) Y(w) =0 Xo = x(w) 2 0, z € TH\{O}
Lemma 3.1 (Existence of the barrier function). Fiz numbers o > tan %, g1 > 0,
d € (0,1). There exist h > 0 depending only on wy, a number B > 0, a number
s € (0,70 cot L — 1), a function w(z) € C* (ég) N C?(GY) that depends only on
wo, the ellipticity constants v and p of operator Ly, and quantities vy, g1, > such
that for any » € (0, 5] the following inequalities hold

Lo[w(z)] < —vh?|z[*~!, =z € G
Blw(z)] > gif«|*, x €T\0;

0 < w(z) < Co(30, B,wo)|z|*!, z e GY;
|Vw(z)| < C (30, B,wo)|z|*, =€ Gl

Proof. We follow the proof in [3, Section 4.2.2] and [5] section 10.1.3]. Let z =
(v1,79,73) € R3. In {x; > 0} we consider the cone K with the vertex O such
that K D Gg. Let OK be the lateral surface of K and let on 0K Nxzo0x1 = 't
be x1 = thwy, where h = cot %, 0 < wy < 7 such that in the interior of K the
inequality ©1 > h|za| holds. We shall consider the function

w(zx) = xf‘l(a:% — hzxg) + Bxf“, (3.5)

with some s € (0,1), B > 0.
Inequalities (3.1)), (3.3) and (3.4) were proved in Lemma 10.18 [5]. Now we shall
prove inequality (3.2). Using the spherical coordinates it is easy to derive that

ow . h* 9

il = r (1+h2)HT%[B(1+%)+2(1+h)],
aiw
or

= B3+ 1)r*( h

'y ‘/1+h2

)%Jrl.

Hence it follows that

h%
> ¥ ———[Bhyo + Bh(3 + 1)x0 — B(1 + 5) — 2(1 + h?)].

ry = (V14 h2)xtl
Since 0 < 3¢ < 3¢9 < hyg — 1, hyg > 1, xo > 0, we obtain
h>or*

I, = WirRmn

Blw]

Blw {B[(hyo — 1 = 30) + xoh] — 2(1 + h?)} > g1r*,
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for 0 < r < d < 1, if we choose

1 a(V1+ h2)%o+1 9
B> +2(1+h%)|. 3.6
~ (hyo —1—30) + hxo [ h#o ( ] (3:6)
In this way, we show (3.2)). O

Now we can estimate |u(z)| for problem (1.1} in the neighborhood of a conical
point.

Theorem 3.2. Let u(x) be a strong solution of problem (1.1)) and satisfy assump-
tions (A1)—(A6). Then there exist numbers d € (0,1) and s > 0 depending only on
v, i, %, f1, Y0, 7, S, g1, My and domain G, such that

lu(x) —u(0)| < Colz[*, 2 € GY, (3.7)
where the positive constant Cy depends only on v, u, sy, f1, Y0, S, g1, Mo, and the
domain G, and does not depend on u(x).

Proof. We shall act similarly as in the proof of Theorem 10.19 [5]. We suppose,
without loss of generality, that «(0) > 0. Let us take the barrier function w(z)
defined by (3.5) with 3¢ € (0, 5¢) and the function v(x) = u(x) — u(0). For them
we shall show
(Aw(z)) < Lo(z), x € G,
[Aw(zx)] > Blv(z)], z€T{,
Aw(z) > v(z), € QqUO0,

with some constant A > 0.

By assumptions (A3), (A5) and Lemma [3.1] calculating the operator £ on func-
tion v(z), we obtain

Lo(x) = Llul@) — u(0)] = Lu(z) — £u(0) = f(x) — a(z)u(0) > f(x) = —fir =2

and since 0 < s < 7,

c <
B >

. 1
Lw(z) < Low + a'(z)w,, < —vhZr Tl 4 @Clr” < —51/}7,27"%071

if, by the continuity of A(r), we choose d > 0 so small that
Qmﬂgqmmg%ﬁ,rgd (3.9)
Hence it follows that
L[Aw(z)] < —%VAhZT%O_l < —fir*T? < Lu(x), x€ Gg,

if we choose A as follows

2f1
From (3.2) we obtain
B[Aw] L > Agir”. (3.10)
it

Now we calculate B[v] on T'%. If A > 1, from the boundary condition of (T.T)) from
(3.10) and because of s > 1, we obtain
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1
= g(z) = —y(@)u(0) < g(z) < """ < Agir* < BlAw], x€TL.

Let us compare u(x) and w(z) on Q4. Since #? > h222 in K, from (3.5)), we have

w(z)| = [af " (@] - h*ad) + Bai
r=d el (3.11)
> Bwf"'l > Bd*t! cos™H! =0
r=d 2
On the other hand,
v(z)|  =lu(z) —u(0)]| < M,. (3.12)
Qd Qd
By (3.11)), (3-12), (3.6),
A
w(@)
> ABd*t! cos™t! %
h »o+1 V1 + h2)*o+1 1
S [91( Sl A T n2)]
V1 + h2 h>o (hyo — 1 = 3) + hxo
Z MO 2 v )
Qq

where A is made large enough to satisfy
(hyo —1 = %) + hxo
hd=ot1[gy + 20 (\/1 + h2)1==0]

Choosing the small number d > 0 according to (3.8)) and numbers B > 0, A > 1
according to (3.6]), (3.9) and (3.13]), we provide (3.7)).

Therefore the functions v(z) and Aw(x) satisfy the comparison principle (see [5]
Proposition 10.16]), and we have

A > My

(3.13)

v(z) = u(z) — u(0) < w(z) < Aw(z), z € GL.
Considering an auxiliary function v(x) = u(0) — u(x) we can derive the estimate
u(z) —u(0) > —Aw(x).
Thus, by , the theorem is proved. ([l

4. GLOBAL INTEGRAL WEIGHTED ESTIMATES

Theorem 4.1. Let u be a strong solution of problem (1.1)) and assumptions (A1)—
(A5) are satisfied. Then u € WZ(G) and

B 1/2
lullz gy + (/6c:r 2y(wyutds) < C(u

0.6+ I1flhio | @)+ ||9||VV11/2(6G))’

(4.1)
where C > 0 depends on v, p, diam G, |x|lc1aa), |Vllcroa) and on the modulus
of continuity of leading coefficients.

Proof. Let us rewrite (|1.1)) in the following form
Au= f(2)|z| 77 = |27 (2) = 6] |2 Vug,0, + a' (@)ug, + alz)u]. (4.2)
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Integrating r—'uAu over G. by parts and using the boundary condition, we have

/riluAud:E
Ga
0  Ou
_ —1
_/Gsr uaxi(axi)dw
ou ou or
_ -1, 0u, ou B —1 -2
/FET uaﬁds € /Qauardﬂs /Gauxi(r Ug, — T uaaji)d:z: (4.3)

= [ (o) - T ) )ds

7671/ u@dﬂsf/ ril\Vu\2dx+/ S, x; de.
o. Or Ge Ge

We consider the last integral above,

/ r*?’uumixi dxr
GE

1 ou?
= 5/ 7‘_33:18 dx
. G ' (4.4)
= f/ r—3u?x; cos(ii, x;) ds
2 Jr.
1 1 0
- 7/ r3u?x; cos(it, x;)dQ. — 7/ 2 (r73x;)dx
2 Q. 2 G 8.’131'
However,
3 3
9 _3 -3 —a, Or -3 _qr?
;axi(r mi):;(r R R e (4.5)
Thus, because of
x; cos(m, ;) o =c
equality (4.4) takes the form
/ T_Buuwixi dx
Ge
1 -3, 2 —» e? 2
=— | r~"uz;cos(ii, x;)ds — —— u”dQ. (4.6)
2 Jr. 2 Ja.
1 1 1
= 7/ r 30l cos(ﬁ,xi)derf/ r 30l cos(ﬁ,xi)dsff/ u?dS).
2 Jra 2 Jr, 2 Jo
We know that (see [3, Lemma 1.3.2])
i _‘7 i =0 4.7
x; cos(7i, ;) s (4.7)
By (4.7) and
or or ( ) i ( )
— = cos(m, x;) = — cos(, z;),
87’[ &rl ’

equation (4.6]) takes the form

1 1 0
/ r_guuwixi dr = —f/ u2dQ + 7/ T_2u2—7:,ds.
Ge 2 Q 2 Ty 871
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Inserting it to equality (4.3)) we obtain

tusate = [ty ot ()2~ [ 22
/Ger uAudw/Er u(g r'y(w)u X(w)aT)ds € Qeuardﬂ5

1 1
—/ r_1|Vu|2dx—f/u2dQ+f/ r_2u28—7;ds.
G. 2 Q 2 Ty on

Let us multiply both sides of (4.2)) by r~!u and integrate over G.

/ r luAudz
Ge

= [ rupde = [ @ 0) — 8 s, + o, + ale)ulda.
G. Ge
(4.9)

(4.8)

From (4.8) and (4.9) we have
1
/ 7‘71|Vu|2dx—|—/ 7(w)r72u2ds—|—f/ u?dQ
G. r 2 Ja

€

ou ou 1 or
= [ rlugd _/ “lu—ds — —1/ —d. 7/ P =d
/FE?" ugds Fx(w)r ug ds—¢ quaT —|—2 Fdr u” 5zds

€

—/ r T Tufde +/ r T ul(a¥ (z) — 5gr7)u$i$j + a' (@) uy, + a(z)u]ds.
Ge

Ga
(4.10)
To estimate the integral over 2. in the above equation we consider the function
M (e) = max |u(z)|. (4.11)
€N,
Then, because of u € C(G),
lim M(g) = |u(0)]. (4.12)
e—+0
O

Now we proof the following lemma.

Lemma 4.2. There exists a positive constant ¢y, which depends only on v, u, G,
maxg yec Az = yl), [Ixllcr e, IVllcroa) such that

ou
S 1 ou < 2
slirfs-log ‘/QE U Q| < colu(0)?. (4.13)

Proof. Considering the set G2¢ we have ). C dG?¢. Using the following inequality
(see [14, Lemma 6.36))

[ wlao. < [ (ul+ [Vulds,
Q. G2e

where ¢ is dependent only on the domain G and putting w = ug—:f we obtain
lw| + |Vw| < ¢ (r?u2, + |Vul® +r~2u?).
Therefore,

/ \u%mﬁg < c/ (r*u?, + |Vul* + r?u?)dz. (4.14)
Q. Gz2e
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Let us consider new variable x’, which is defined by x = ez’ and the sets G5E/ 2

and G2 C GZ)%Z. Then the function w(z') = u(ex’) satisfies in G
problem for the uniformly elliptic equation

1/2 2 the followmg

e Ta" (ex’ JWar gt + el Ta' (er Ywy + &% Talex )w = > fex!), '€ G‘ig
Jw ow 1 5/2
o7 +x(w )? + m y(w)w =eg(ex’), '€ F1§2-

(4.15)
Because of L?-estimate for the solution of problem (4.15)) inside the domain and
near a smooth portion of the boundary (see [1I, Theorem 15.3]), we obtain

/ (w2, + |V'w* + w?)da' < 01/ (72T +w?)da' + 0252”9”w1/2 rs/2))
G G 12

where ¢1,¢; > 0 depend only on v, p, G, max , yeat? Al — '), HXHCl(F‘;’@)’
”’7”01(1*?;2)'
Now, let us return to the variable =

/ (r*u?, + |Vul* + r?u?)dz
G2e

: (4.16)
S /G,SE/Z 7‘72U2dl' + 501||f||?j/ (G5E/2) + 602”9” 1/2(1—\§jé2)'

e/2
By the Mean Value Theorem (see [5, Theorem 1.58]) with regard to u € C°(G)

and (4.11]), we have

5e/2
/ P2 Qda:—/ /u2(7“,w)dﬂdr
Goa/Z Q

c/2 (4.17)
< 25/ u?(016,w)dQ) < 2eM?(0;¢) - meas
Q

for some 2 < 6y < 5. From (£.14), (4.16)(4.17) it follows that

_ ou
[ Gk < CARE) + Uy | g + Callalyygossy

(G
Hence, by assumptions about functions f, g and (| -, we obtain (4.13). (I

We get the following estimates of integrals from the right side of equality (4.10)):
e by the Cauchy inequality, we obtain

| orrupde < [ o allflde = [ E )t
c. c. Ge (4.18)

1) 1
<9 =32 1—27 2 .
2/6‘5 dx—l—%/ fidx, V& >0;

e because of v(w) > 79, we have

/ T hugds < [ 7 ullglas = / (r*VA@lul) ﬁm) .

1)
! / g3ds, Y6, > 0;
e

< — w)r2ulds +
2 Jr, ) 20170
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e we have

or
/ r2u?——ds g/ r2ulds < d? u?ds.
'y on 'y Iy

Further, we apply [14, Lemma 6.36]

d™2 | u? < 6pd™? |Vul*de + 052/ wide, Yoy > 0; (4.20)
T4 Ga Ga

e by assumption (A2) and the Cauchy inequality, we obtain

/ r | (IrTa (2) — 6 wgya, | + 177 (@) |ug, | + 77 |a(@)| |u])da

GE

= / A (Y2 g ) (775 [u]) + 172 [Vl (07 2 u]) + r2u?]da (4.21)
Ga

< 2/ A(r)(ru?, + r 7Y Vul? + r73u?)da;
Ge
e we have

ou ou Ju
_ -1, GUL -1, O, -1, OU
/FE x(w)r U ds /Fg x(w)r up, ds /Fd x(w)r ug, ds.

Because 0 < x(w) < xo,

0 0
- /F X(w)rflua—:ds <d o |u8—:f|d8 < C(d, XO)/ (u2, + |Vu|* + u?)dz,
d

Tq Gd

(4.22)
by [14, Lemma 6.36]. Further
9] 1 2
_/Fg X(w)r_lua—uds =-3 /rd (w)a— dr do
1 . wo [T  wo < ou?(r, 20 wa)
- __ = = N 207e) 4.23
5 5l g x( 5 ,wg)/e 5 drdw, (4.23)

1 s
< 5/4 x(%,wz)uz’(&,%,wz)dwg,
by wp € (0,7) and x(w) > 0. Hence and from (4.22]) we obtain

Ju
J— _1 R
/FE x(w)r Ug, ds

1 s
< C’(Xo,d)/ (uiz + |Vu|2 + u2)dx + 5/ X(%7w2)u2(5, ?,wg)dwg.
Gq

—T
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Substituting (4.18)—(4.21)) and (4.23)) in inequality (4.10)), we obtain

/ r_1|Vu|2dm+/ Y(w)r—?utds
Ge.

e
0
< e*l/ Sl |,
Q. or

1)

+ % [ lds+ [ A, 4 TuP 4 s
. G,

0
+ 7/ r~*u*dz + C(xo, d)/ (u2, + |Vu|* + u?)dx

2 Je. .

1 0 wo 9 wo 1 ) 1 )
+ 5 /_ﬂ— X(?MUQ)U (57 ?,w2)dW2 + 5”'](”‘;‘/{)_27(6') + 261’}/0 ||g||L2(an)

(4.24)
We have that A(r) is continuous in zero and A(0) = 0, by assumption (A2). Thus
for all § > 0 there exists d > 0 such that

A(r)y<d forall 0 <r <d.

Assuming that 2e < d, by (4.16) and (4.17)), we obtain

/G A(r)(ruZ, +r [ Vul? +r3u?)de (4.25)
= /.. A(r)(ru2, + 7YVl + r~3u?)de
[ A
+ ; E.A(r)(ru?m +r Y Vaul|? 4+ r3u?)da (4.26)
4

2 2 2
< CAE{ME) + Iy | goesey + 1052 oepn |
+ 5/ (ru2, +r Y Vu]? +r73u?)de
GgE
+ Oy (d, diam G) / (uZ, + |Vul|* + u?)dz, (4.27)
Gq

for all § > 0 and 0 < & < d/2. Setting ¢ = 27*~1d to (4.16)), we have
/ (ru2, +r | Vul* + r3u?)dz
G
< Cg/ (r3u? + 72 ) da
Gk=1)yGk) yGk+1)
e inf/ (rIVG? + r1G2)da,
Gk—1)yG k) yGk+1)

where the infimum is taken over the set of all functions G € W(G) such that
G = g on 0G. Summing these inequalities over k = 0,1,..., [logy(d/4e)], for all
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e € (0,d/2) we obtain

I

2e

By inequalities (4.27)) and (4.28]), we have
/ A(r)(ru, +r Y Vul? + r3u?)de
G.

(Tugzm —i—r_1|Vu|2 +r_3u2)dx < C’g/

ed (T_3u2 +r1_27f2)da:+C4||g||€i/11/2(rgd).

(4.28)

< .A(QE){MQ(E) + ”fHIQ/Vf_Q (GS%Z) + ||g||?;V11/z(F5%2)} +46 - r_3u2d$

+C1(d, diam G)/ (w2 + IVl 42+ (110 g+ 191% 072 0 )-

G
‘ (4.29)
Thus, from (4.24) and (4.29)), choosing §; = 1, we obtain
/ r_l\Vu\zdm—&—/ y(w)r—?u?ds
<5_1/ 2% 40 +/W (20 wo)u(e, 20 wy)dw
= o 67’ € _ﬂ-X 27 2 ) 27 2 2
2 2 2 —3,,2
+ A (M) Uy | oty + W} +6 [ 7ol
+ C(diam G, xo, d) /G(u2 +1Vul +ut)dz + C(If s, ) + 191217256,
(4.30)

for any § > 0, where C > 0 is dependent on 7o and is independent of €. By Lemma
as well as u € C%(G), we can pass in (4.30) to the limit ¢ — +0, using the
Fatou Theorem. In this way we obtain

/ Y Vul?dx +/ y(w)r—2uds

G oG

< 6/ r3utde + C’/ (u2, + |Vul* + u?)dz (4.31)
G G

+Cllud e+ 113 )+ 19001/2 0

Now, we consider the first integral of the right side of (4.31). By the Hardy -
Friedrichs - Wirtinger type inequality (2.3]), we obtain

/ r3ulde
G

:/ T73u2dx—|—/ r—?utdr

(X4 Ga

< ;{/ 7‘71|Vu|2dx—|—/ <Ax(w)+’y(w)>r72u2ds}+0/ u?dx
A+ Uga rd e

1
< -1 2 —2 2 —2 2
_)\()\_'_1){/%17" [Vul dx—|—/\X0/Fgr uds—l—/rg’y(w)r uds}

+C’/ u?dz,
G
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since x(w) < xo. Thus, because of y(w) > 9 > 0,

6/ r3ulde
G
AXo

/ rHVul?dr + L(l + =) y(w)r—?u?ds + 06/ u?da.
G G

é
< -
(4.32)

Choosing small number ¢, from ((4.31))—(4.32)) it follows that

/T_1|VU|2d$+/ Y(w)r~*u*ds
G aa (4.33)
<Cy /G(uim +|Val* +w*)de + Collf vy, () + 19012 o)

By L2-estimate for solutions of problem (1.1)) (see [T, Theorem 15.1]), we have

2 2 2 2 2 2
/G (w2, + Vul? +u?)de < el + 11 )+ 191502000 ): (439

where the positive constant ¢ dependents only on v, u, 7,d, G, max, yeq A(lz — yl),

Ixllcioa), 1vlleroa)- By (4.32)-(.34), we have

/(T71|Vu|2+7"73u2)dx+/ Y(w)r~2u?ds
G oG

N (4.35)
< CalluBe+ 1 s e lol1ss o)
Let us pass in (4.28]) to the limit ¢ — +0. As a result we obtain
ru de < Cs | r~3ulde + Cs||f||% + CullglZn 2, (4.36)
Gd T - G WP, (G) Wll/ (9G)
0

By (4.35)—(4.36)) we obtain desired estimate (4.1)).

Corollary 4.3. Let u be a strong solution of problem (1.1) and assumptions (A1)—
(A6) are satisfied. Then u(0) = 0.

Proof. We have £|u(0)? < |u(2)]* + |u(z) — u(0)|?, by the Cauchy inequality. Thus

G Gg

;|u(0)|2/Gg r3de < /dr_3|u(x)|2dx+/ r3u(x) — u(0)*dx. (4.37)

The first integral from the right side is finite by Theorem[4.1] According to Theorem
[3:2] we have for the second integral

d
/ 3 u(z) — u(0)2dr < Cg/ r2 iy = C2 measQ/ r2=tlar
ad ad 0
d2;«r+2
2+ 2

We see that the right side of inequality (4.37) is finite. But if w(0) # 0, the left
side of this inequality is infinite, because of de r=3dz ~ fod % = oo. It leads to a
0

= O2 meas Q) < oo0.

contradiction. Therefore must be w(0) = 0. O
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5. LOCAL INTEGRAL WEIGHTED ESTIMATES

Theorem 5.1. Let u be a strong solution of problem (1.1) and assumptions (Al)-
(A6) are satisfied with A(r) being Dini-continuous at zero. Then there are d € (0,1)
and a constant C > 0 depends only on v, i, d, A(d), s, \, 70,91, meas G, |x|lc1ac)

I7llcrac) and on the quantity fod A(T)dT, such that for all o € (0,d)

T

iz gy < C(lubo.c + 1l + gl oy + &)

Q)‘, if s > A (5.1)
X QAIH%, ifs=X\,
0°, ifs <A

where ks is defined by (L.3)).

Proof. By Theorem u € W12 (@). We consider the equation of the problem (1.1])
in the form (4.2). We multiply both side of (#.2)) by 7~!u and integrate over the
domain G§, 0 < p < d. As a result we obtain

/ rtuAudr = / rtu{r T f — [(rTa" (z) — 5f)uw%

Ge Ge (5.2)
+r7Tat (2)ug, + 1 Ta(z)u] }da.

On the other hand

/ r‘luAuda::/ r_lui(uxi)dxz —/ Ug, 0 (r_lu)—l—/ r_luai_{ds-
Gg Gg 8:61 Gg 8x2 GGS on
(5.3)

By direct calculations, we have

/ riluAud:r:f/
G G

Further,

1 2
r’1|Vu|2d:r+f/ r*Sxiaidx+/ r’lua—q_{ds. (5.4)
g 2 Gg 8351- on

_s Ou? s 0 _3 —3,2 -
r3ni——de = — | u?——(x;r%)d + ruw; cos(ii, z;)ds.
G ox; Ge 0x; aGe

e
0

Using the facts that 0GE = T§UQ,, (4.5) and z; cos(i, ;) 0 =

0 rg
0 we obtain
ou?
/ r_sxi—dng_2/ quQg:/quQ. (5.5)
G¢ Ox; Q, Q
Now, we have
0 0 0
/ r_lua—gds:/ r_lua—qfds—i—/ Q_lua—ung
Ge n rg n Q, r (5.6)

ou 1 ou
_ -1 _ I —
— /rg r—u(g — x(w) e (w)u)ds + Q/Quar dQ).

by the boundary condition of (1.1f). From equations (5.4)-(5.6) we obtain

/ r_luAudx:—/ L2
G

Oou
—1 2 oJu 1
Ggr |Vu| dm—l—/ﬂ(guﬁr + 5 U )d2

e
0
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+ /F rlu(g - x(w)% ~ (@)ds.

r
0

Hence from (5.2)),
s,
/ r*1|Vu|2dx+/ x(w)rilu—uds%-/ Y(w)r2u?ds
Ge e or e
0 0

= [(enge+ gurans [ hugas— [ rupas (57)
Q or rg G§
+/ rtu[(r~Ta" (z) — 6f)ummj +r7Tat (2)ug, + 1 Ta(z)uldr.
G.Q

Now we estimate terms of the right side of (5.7)):
e by the Cauchy inequality and assumption (A2),

[l "0 @) = 8l o < Al0) [ v ullussldo
Ge G

0 0

pN

(@) [ (2 usel) e e

0

I
N[ =

A(Q)/ (ru?, +r3u?)da;
G§
e similarly

/ 17 a0 (2) [, [d < A0 / r2|u|[Vulde
GQ

0
- / ) (r# [Vl ydo

1
! g>/< 32 4 V) de
2 e

0

IN

e by assumption (A2),

/ r_l_T\a(x)|u2dx§A(g)/ r3utda;
Gg Gg

[ rtliside = [ o a7 e
G¢ G¢

0 0

5 -3 2 .
gi/ drt ol gy VOO

) 1
/ rul|glds < 51/ “2ulds + 2 J; gst;
re re 1
e analogously to (4.28) we have
[z <cn [ 070 2 ek Cullgl gy 59)
GS GSQ W, H(T5°)

e further,

/ X(w)r_lu%dS—l m—/ / drdwg, wo € (0,7);
rg
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since [ a;r dr = u*(o,w) — u?(0) = u?(o,w), from the above,
0 1
[oxwrtugtas=3 [ wnlew)| _, do=o
re or 2 Joq wi="3
e because of v(w) > 70, 0 < x(w) < x0, by (2.4), we have

-2 24 _ x(w) —2,,2 X0 )r—2u2ds X0 77
/rg X(@)ruds _/ )V( wir s < Yo /rg ) ds < Yo Ulo)
(5.9)

also

1 1 ~
/ r2ulds < — | y(w)r *ulds < —U(p);
re Yo Jr¢ o
e applying the Hardy - Friedrichs - Wirtinger type inequality ([2.3)), by (2.4]) and

(©-9),
1
—3,20. —1 2 2 2
/Ggr u“dr < )\(A—l)[/(;gr |Vul dm+/rg<)\x(w)+'y(w)>r u ds}

0
1 ~ 1
-~ U - -2,24 (5.10)
S+ o [ X
S C()\7 X0, ’YO)[}(Q)
From inequality (5.7), by the above estimates and Lemma we obtain
(1= (A(e) +0))U(0)
L 2 2
< 20(0) + AT (20) + 10 I By | (gaey + 191302020, 76> 0
where the positive constant ¢; is dependent on 7o, xo, A. Using assumption (A5),
the last inequality ([5.11) takes the form

(1— (Alo) +9))U(0) < % "(0) + A0)U(20) + c2k26 0%, V5 >0. (512)
We have

(5.11)

0(d) < C(luBa+ 158 )+ 19131 o0 ) = Uo: (5.13)

by Theorem [£.1] Inequalities (5.12) and (5.13) are the Cauchy problem (CP) (see
[5, Theorem 1.57]) with

Plo) = (1= (A +0) Nlo)= 2 Ale), Qo) =Deakl6 '™, V6 >0,
(5.14)
The solution of this problem satisfies
~ d d 3
Ulo) < erXp —/ P(s)ds +/ Q(g)exp(—/ P(o)da)d§}
¢ o (5.15)

X exp / Bs)ds), Blo)=N(oesp( [ Ployds),

[

by [5, Theorem 1.57].
There are three p0s51ble cases: s > A\, s=Aand s < A.
Case s > \. Let us choose § = ¢°, for any € > 0. From ([5.14) it follows

Plo) = 2~ n A2 Ao,

-2, N(o) =2A
Y o

Qo) = 2\cak2p* 1.
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We calculate

Ao
/73 ( R +2/\/ s €(0d).
Thus
N
exp ( f/ P(o) da) < Cl(Q)2A7 C, = exp( 2)\/ Alo)
0 S
d
" 2 (20)° - & %2 A(o)
P(o)do =In2** — 20225 2\ do <1n2*.
e € 4 g
Therefore,

26 d
/ B(s dg—/ N(s exp( P(o )da)dg<)\22’\“/ @dggaz,
0
)\22A+1/ 'A
and further

d ¢ 4
/ Q(() exXp ( - / P(O> dO’) ds < 2)\01(]21@‘5@”/ §2S_1_€_2)\d§
e e

e

— A1 O dQ(s_;() - __A)Q :_ =
< a2 (%)
if we choose e =s— A > 0. By and from the above inequalities, we obtain
Ul(o) < C1(Uy + k2)0*, (5.16)
where the positive constant Cl )dg

Case s = A\. Now, we can take in any functlon 0(p) > O 1nstead of § > 0.
In this way we obtain the Cauchy problem (5.15)) with

2\ Ao _ _
Plo) = 21— () + 80 M(o) =22, () = a2 ()P
Let us choose 6(p) = m, 0 € (0,d), where e denotes the Euler number. We
calculate ’
<
—/ ’P(U)dagln(g)g)\—i—/ —|—2)\/ AO
o S Uln

ed

In <% A(o)
o ed +2)\/ do;

e (= [ Pie) < (9 e (2 [ Aar), e oy

20 In( 5% )
P(o)do < In2* + 1n(1ﬁ) <1n2%Y,
o niy

- 1n(§)2 +1In(
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because of In(§2) < In(<4). Therefore,
d d 2 d
[ = [ N@ew ([ Pedo)ac< e [T A<,
e 0 S 0
with constant Cy as above in the case 1. Moreover
d S
/ Q(c) exp ( — / P(o) da) ds
0 o

d d 4d
= AN%ek20° In &2 exp(2) / A) i) / &
o 0 g o S

d d
< C’4k§92>‘ In? 6—, Cy = 4)\%¢, exp(2/\/ Alo) o).
o 0
By (5.15)), from the above inequalities, we obtain
_ ~ d
U(0) < Ca(Up + k2)0* In? % (5.17)

where the positive constant 5’2 depends on A, d, s and on fod @dg.
Case s < \. In this case from (5.14) with any § > 0 we obtain the Cauchy
problem ([5.15)). We calculate

/P do <lIn ( )2)\(1 2 +2)\/ Alo do;
exp /77 da _( )2>\1 e 2)\/ Alo) s € (o,d).

Therefore, fg B(s)ds < Cy with constant Cy as above in case 1. Moreover,

/g " o) e (- /,_) P(o)do)ds

d d
< 2/\02@5*1@%(17&) exp (2/\/ Alo) da)/ =AM -1 g
o O 0

d25—2AH2A8 _ 25—2X+2)6

= 222k 02 exp ( 2)\/d Alo) o) 25_2Ai2m < Csk2g™,
if we choose § =

( ) < Cs(Up + k2)o* (5.18)

where the pos1t1ve constant Cs > 0 depends only on A\, d s and on [, d A(g ds.

the desired estimate

Finally, by (5.16) - taklng into account of , , , we obtaln

6. THE POWER MODULUS OF CONTINUITY
Proof of Theorem[I.3 Let us define the function
o, 5> A

(o) =qoMng, s=A
0°, s< A
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for 0 < o < d and consider two sets Gz§4 and G§/2 C Gi%, o > 0. We make
transformation z = gz, u(pz’) = Y(o)w(z’). The function w(z') satisfies the
problem

1—7 1

07 (oa sy, + 0T (o Y + @ Taloryw = L flor'). o € G,

ow 1 ow 0 , , 5
— = V7 I*,,.
57 + |x,|’7(w)w + X(w)ar, w(g)g(gx ), ' eTi,

Applying the local maximum principle (see [12], Theorem 3.3|, [14, Corollary 7.34])
we obtain

sup w(a’)]
1/2
< O{(/G2 dex’>1/2 + %z};p |g(gm‘l)‘ + f;(;;(/GQ |f(£m,)|3dx/>1/3}7

1/4 1/4 1/4

(6.1)

where the positive constant C' depends only on max,ecsa v(w), Xo, 01

us return to variable x and to function u(x). As a result we obtain

1 23
wdx' = / u?(ox')da' < 7/ r3uldr.
/. 2@ Jor = 52y Joa

2
1/4 1/4 o/4

@dt. Let

By Theorem we have
2

/G2 wdz’ < C<|U($)|0,G + Hf(33)||v‘i/{)72f(c) + ||9(33)||W11/2(8g) + ks) (6.2)
1/4
where kg is defined by (1.3). According to assumption (A5),
0FTr <1, s>\
0 Y s— _
w00 sup lg(z)] < w(Q)glg =g é <1, s=A (6.3)
e/ 1, s< A
which implies
0
—=19(x)| < g1.
In the same way,
2—7 1/3 -7 1/3
0 INEF < 4 3
¥(o) (/(;2 el dm) ) </G? @) dw)
1/4 e/4
1—7 2Q 1/3
S ¢ ( ) fl (/ T3(S_2+T)T2d7“ - meas Q)
0 0/4
1—71 s
i s—14+7 __ 7 0 (64)
<f 0 =h-—7=
"6 (0) " (o)

A<, s> A
:.]?1 1nll<17 s=A
[

1, s <A



EJDE-2012/228 OBLIQUE DERIVATIVE PROBLEMS 23

which implies
2—T

i(‘Q) (/G2e |f(37)|3d;g)1/3 <F.

e/4

For all x| € (%, 0), we have

sup [ul < C1(lulo + ki (e + 19172 o) + k)2 (0),

e/2

by (6.1)—(6.4). Putting |z| = 20 we obtain the required estimate (T.2). O

7. EXAMPLES

Let us present some examples that demonstrate that the assumptions on the
coefficients of the operator £ are essential for validity of Theorem We assume
that the domain G lies inside the cone

Go = {(r,w1,w2) : 7> 0, w1 € (0, %), we € (—m,7]; wo € (0,7)},

where O € JG and in a neighborhood of O the boundary 0G coincides with the
lateral surface of the cone Gy. Let us denote

Top={(r,wi,ws) :7 >0, w = %, wy € (—m,m; wo € (0,m)}.

Let xo is a nonnegative constant and v, is positive constant.
As a first example, we consider the problem

Au=0, z€ Gy,

ou (7.1)

ou 1
%h—‘o + Xoah—‘o + ;VOU‘FO =0.

The solution to this problem is the function
u(r,wy,ws) = T)‘*PA*(coswl),quadeg € (—m, 7,

where Py~ (coswy) is the Legendre spherical harmonic (see [I1} section 7.3]), A* is
the smallest positive solution of and is estimated by (8.15]).
As a second example, we consider the problem

Au= -2\ + 1) " 2)(w1), z € Gy

ou ou 1 _ A-1, W0
(% tXog, ;’You) = —XoT ¢(?)~

wl:“’TO
The solution of this problem is the function
1
u(r,wi,wy) = In ;z{;(wl),
where A > 0 and 9(w;) are defined by (8.15) and (8.5). From here

f@)=0(z]*"?), g(x) = O(lz]*).

In this case s = A, 7 = 0. Thus, this example confirms the validity (|1.2)) of Theorem
[L3 for s = .
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8. APPENDIX: EIGENVALUE PROBLEM ([2.1])

We want to prove the existence of the smallest positive eigenvalue of problem
(2.1). Let us consider the equation of problem (2.1). Calculating the Beltrami-
Laplace operator we obtain

v v 1 0%

= + 57— cot —— 5 +AA+1)=0
8w%+8w1 0 W1+sin2w1 8w%+ (A+1) ’

%), wy € (—m, 7], wo € (0,m).
We use the method of separation of variables: v(wy,ws2) = 1 (w1)¢(w2). From above

equation it follows

wi € (O,

w1-[1fb”+zicotw1+/\(/\+1)] :_fpﬁzuz

= ¢(wz) = Asin(uws) + Bcos(pws), VA,B

and with regard to the boundary condition of ([2.1)),
2
w
W (w1) + 9 (w1) cotwr + AN +1) — —2—)p(wr) =0, wy € (0,22),

sin?

sin® wy 2 (8.1)
¥(52) + Do+ 90) () =0,

where wg € (0,7), xo = x(%*) >0, 70 = 7(%*) > 0. We multiply equation of (8.1)
by sinw; and write it in the form

(P) = + AN + 1)y =0, (82)
where
p=sinw; >0, ¢=p’sintw, o=sinw;, w € (0,wy/2).

By [7, Theorem 7, Chapter VI, we know that if the coefficient ¢ changes everywhere
in the same sense, every eigenvalue of (8.2)) changes in this same sense. Thus, if
1 = 0 we obtain the problem for the smallest positive eigenvalue

Y (w1) + cotwy - Y (w1) + AA+ D)p(w1) =0,  w; € (0, %)’

(8.3)
w w
W(?O) + (Axo + 70)7?(70) =0.
Now we want to solve this problem. For this we set
P(wi) =n(), €& =cosw. (8.4)

Let us denote &y = cos %2. Then our problem takes the form
w
(1= &)ne — 26 + XA+ 1) =0, €€ (cos 70 1)

—\/ 1= &1 (%) + (A +7)n(é) = 0.

Solutions of this equation are the Legendre spherical harmonics (see [II], section

7.3]) 1(€) = Pa(€) or by (8.4),

blwn) = Px(coswn). (8.5)
Using the boundary condition, we obtain the following equation for A,
APr—1(cos %) — Acos %PA (cos %) = (Ax + ) sin %’P)\(COS %) (8.6)
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Now we define the function

A )\cos
F\) = =Px- 1(cos %) —(

wo
A — .
e D + Xo + 7o) Px(cos 5 ), (8.7)

where wy € (0,7). According to [11, (7.3.13), (7.3.14)], P-a—1(&) = Px(&) and
Po(0) = P-1(&) = 1, we obtain

F(0) = -7 <0. (8.8)
Now, we use the asymptotic representation of Py(cos %) (see [I1}, (7.11.12)]). We
have for A — +o0

wo 2 wo 1
S B S (6 W LA
Pacsleos ) = |~ sinl(A - )%+ 101+ O =)
COS 1/ =g sin[( )\+ ][ —&—O()\)]
Choosing
LI LGI S T
20.10 wo
Weobtainsin[(%—i—ﬂ“—:—%)%—i—%]>0and sin[(Q?’L:r0 —|—4k—”+ 5)9+ %] <0. Thus
we have 5 n
T ™
—_— 4 — 0 8.9
]—‘(Qw + o ) > (8.9)

for k > 1, wy € (0,7), because of 9 > 0, xo > 0. Finally, from (8.8), and
continuity of function F(A) (see [11]), it follows that there is the smallest positive
solution of . Indeed, the continuous function F(A) at the ends of the interval
[0, 400) takes different signs and therefore it must have the first positive zero. Thus
there exists the smallest positive eigenvalue of problem .

Let us estimate the value of \. Putting % = y(wq) in (8.3)), we obtain

Y +y? dycotwr FAAE1) =0, w € (0,22,
2
o (8.10)
y(*2 )=—=Xx0o—", 7 >0, xo=>0.

By and P} () = —\/117?7)/{(5), €€ (—1,1) (see [I1} (7.12.5)]) we have

L Pi(coswi)  Px(cosw)
ylwr) = —sinwy Pr(coswi)  Pa(coswi)’ (8.11)

Using formula [I1}, (7.12.28)] we obtain

r'(A+2) 1-¢
1) = -l /1 —€2-F(1 = \,2 2, —= A2
where F(a, b, ¢, z) denotes the hypergeometric function. From (8.11)), (8.12]) we find
Pi(1)
0) =< =0,
y(0) Pa(1)

by Pa(1) =1 (see [11I, (7.3.13)]) and F(a,b,c,0) = 1 by the definition. From the
equation of problem (8.10) we have

y +ycotwy <0,
y(0) = 0.
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Considering the Cauchy problem
¥ +ycotwy =0, w € (0, %)
y(0) =0,

it implies y(w1) = 0. Using the Chaplygin comparison principle [6], we obtain that
y(w1) < 0. Hence from (8.10) it follows that

vz AN, we (0.5),

y(0) = 0.
Now, we consider the Cauchy problem
2 =22 - AA+1), w €(0, %)7
z(0) = 0.
Solving this problem we have
2(wn) = —y/AD+ 1) tan(wr A+ 1).

Thus, using again the Chaplygin comparison principle we finally obtain

—V A+ 1) tan(wi A+ 1)) < y(wi) <0, wy €0, %}.
Let
wo
= AA+1), 0<wy<m. (8.13)
From the boundary condition
A
tan s > X070
AA+1)
Determining the value A > 0 from (8.13)), we obtain A = /1 + % — 1. Therefore,
wo 1 4%2 1
tanse > 22 ( 1*73‘5)’«)”0] (8.14)

where 79 > 0, xo > 0, wp € (0, 7).
By the graphic method (see Figure , we obtain that 0 < s* < 3, where »* is

the smallest positive solution of (8.14)). Because of (8.13)), we obtain

1 72 1
O< AN < |-+ ——= 8.15
4+w8 2 (8.15)

for 0 < wy < 7, where \* is the smallest positive solution of .
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FIGURE 2. Smallest positive solution of (8.14)
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