
Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 229, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

INTEGRAL BOUNDARY-VALUE PROBLEM FOR IMPULSIVE
FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH INFINITE DELAY

ARCHANA CHAUHAN, JAYDEV DABAS, MUKESH KUMAR

Abstract. In this article, we establish a general framework for finding so-
lutions for impulsive fractional integral boundary-value problems. Then, we
prove the existence and uniqueness of solutions by applying well known fixed
point theorems. The obtained results are illustrated with an example for their
feasibility.

1. Introduction

The purpose of this article is to establish the existence and uniqueness of solution
to an integral boundary-value problem for impulsive fractional functional integro-
differential equation with infinite delay of the form:

cDα
t x(t) = f(t, xt, Bx(t)), t ∈ J = [0, T ], t 6= tk,

∆x(tk) = Qk(x(t−k )), k = 1, 2, . . . ,m,

∆x′(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(t) = φ(t), t ∈ (−∞, 0],

ax′(0) + bx′(T ) =
∫ T

0

q(x(s))ds,

(1.1)

where T > 0, α ∈ (1, 2), a, b ∈ R such that a + b 6= 0. cDα
t is the Caputo

fractional derivative. The functions f : J × Bh × X → X and q : X → X
are given functions that satisfy certain assumptions, where Bh is a phase space
defined in details in Section 2. Here 0 = t0 < t1 < · · · < tm < tm+1 = T ,
Qk, Ik ∈ C(X,X), (k = 1, 2, . . . ,m), are bounded functions, ∆x(tk) = x(t+k )−x(t−k )
and ∆x′(tk) = x′(t+k )−x′(t−k ). We assume that xt : (−∞, 0] → X, xt(s) = x(t+s),
s ≤ 0, belong to an abstract phase space Bh. The term Bx(t) is given by

Bx(t) =
∫ t

0

K(t, s)x(s)ds,
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where K ∈ C(D,R+), the set of all positive functions which are continuous on
D = {(t, s) ∈ R2 : 0 ≤ s ≤ t < T} and B∗ = supt∈[0,t]

∫ t

0
K(t, s)ds <∞.

Fractional differential equations have attracted considerable interest because of
their ability to model complex phenomena. Due to the extensive applications of
fractional differential equations in engineering and science, research in this area has
grown significantly all around the world. For more details about fractional calculus
and fractional differential equations we refer the interested readers to the books by
Podlubny [14], Hilfer [9] and the papers [1, 3, 4, 10, 13, 15, 16, 17, 20] and references
there in.

The impulsive differential equations arising from the real world problems to
describe the dynamics of processes in which sudden, discontinuous jumps occurs.
Such processes are naturally seen in biology, physics, engineering, etc. Due to
their significance, many authors have been established the solvability of impulsive
differential equations. For the general theory and applications of such equations we
refer the interested reader to see the papers [4, 16, 20] and references therein.

Integral boundary conditions have various applications in applied fields such as
blood flow problems, chemical engineering, thermoelasticity, underground water
flow, population dynamics etc. For a detailed description of the integral boundary
conditions, we refer the reader to some recent papers [2, 3, 4, 6] and the references
therein. On the other hand, we know that delay arises naturally in practical systems
due to the transmission of signal or the mechanical transmission. Moreover, the
Cauchy problem for various delay equations in Banach spaces has been receiving
more and more attention during the past decades, see [10, 11, 13, 15, 19] and for
boundary value problem with infinite delay one can see these papers[5, 12] and
references therein.

Recently, Michal Feckan et al [7] gave a counter example to show that the formula
of solutions for impulsive fractional differential equations used in previous papers
are incorrect. Since the authors used that the Caputo derivative cDα

t restricted
on (a, b], 0 < a < b, is cDα

a,t, but unfortunately it does not hold. In [7], the
authors introduced a correct formula of solutions for a impulsive Cauchy problem
with Caputo fractional derivative. In [18], the author discussed some existence
results for boundary value problems for impulsive fractional differential equations.
However, the theory of boundary value problem for impulsive fractional differential
equations is still in the initial stages. Our work is motivated by these papers
[7, 8, 18].

To the best of our knowledge, this is the first paper dealing with integral bound-
ary value problem involving impulsive nonlinear integro-differential equations of
fractional order α ∈ (1, 2) with infinite delay. We organize the rest of this paper as
follows: in Section 2, we present some necessary definitions and preliminary results
that will be used to prove our main results. The proofs of our main results are
given in Section 3. Section 4 contains an illustrative example.

2. Preliminaries and assumptions

In this section, we shall introduce some basic definitions, properties and lemmas
which are required for establishing our results. Let (X, ‖ · ‖X) be a real Banach
space.

To describe fractional order functional differential equations with infinite delay,
we need to discuss the abstract phase space Bh in a convenient way (see for instance
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in [20]). Assume that h : (−∞, 0] → (0,∞) is a continuous functions with l =∫ 0

−∞ h(t)dt <∞. For any a > 0, we define B = {ψ : [−a, 0] → X such that ψ(t) is
bounded and measurable} and equip the space B with the norm

‖ψ‖[−a,0] = sup
s∈[−a,0]

‖ψ(s)‖X , ∀ ψ ∈ B.

Let us define Bh = {ψ : (−∞, 0] → X, such that for any c > 0, ψ|[−c,0] ∈ B and∫ 0

−∞ h(s)‖ψ‖[s,0]ds <∞}. If Bh is endowed with the norm

‖ψ‖Bh
=

∫ 0

−∞
h(s)‖ψ‖[s,0]ds, ∀ ψ ∈ Bh,

then it is clear that (Bh, ‖ · ‖Bh
) is a Banach space. Now we consider the space

B′
h = {x : (−∞, T ] → X such that x|Jk

∈ C(Jk, X) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = φ ∈ Bh, k = 1, . . . ,m},
where x|Jk

is the restriction of x to Jk = (tk, tk+1], k = 0, 1, 2, . . . ,m. Set ‖ · ‖B′
h

to
be a seminorm in B′

h defined by

‖x‖B′
h

= sup{‖x(s)‖X : s ∈ [0, T ]}+ ‖φ‖Bh
, x ∈ B′

h.

Assume that x ∈ B′
h, then for t ∈ J, xt ∈ Bh. Moreover,

l‖x(t)‖X ≤ ‖xt‖Bh
≤ l sup

0<s<t
‖x(s)‖X + ‖x0‖Bh

,

where l =
∫ 0

−∞ h(t)dt.

Definition 2.1. The Riemann-Liouville fractional integral operator for order α >
0, of a function f : R+ → R and f ∈ L1(R+, X) is defined by

J0
t f(t) = f(t), Jα

t f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, α > 0, t > 0, (2.1)

where Γ(·) is the Euler gamma function.

Definition 2.2. Caputo’s derivative of order α for a function f : [0,∞) → R is
defined as

Dα
t f(t) =

1
Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds = Jn−αf (n)(t), (2.2)

for n− 1 ≤ α < n, n ∈ N . If 0 < α ≤ 1, then

Dα
t f(t) =

1
Γ(1− α)

∫ t

0

(t− s)−αf (1)(s)ds. (2.3)

Obviously, Caputo’s derivative of a constant is equal to zero.

Definition 2.3. A function x ∈ B′
h is said to be a solution of the problem-(1.1) if

x satisfies the differential equation cDα
t x(t) = f(t, xt, Bx(t)) a.e. on J \{t1, . . . , tm}

and the following conditions:

∆x(tk) = Qk(x(t−k )), k = 1, 2, . . . ,m,

∆x′(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(t) = φ(t), t ∈ (−∞, 0],

ax′(0) + bx′(T ) =
∫ T

0

q(x(s))ds.

(2.4)
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Lemma 2.4 ([18, lemma 2.5]). For α > 0, the general solution of fractional dif-
ferential equation cDα

t x(t) = 0 is given by x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,
where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [α] + 1) and [α] denotes the integer part of
the real number α.

Note that

x(t) = x0 − ct−
∫ ω

0

(ω − s)α−1

Γ(α)
h(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds (2.5)

is the solution of the Cauchy problem
cDα

t x(t) = h(t), t ∈ J, α ∈ (1, 2),

x(0) = x0 −
∫ ω

0

(ω − s)α−1

Γ(α)
h(s)ds.

(2.6)

Now, we can obtain the following result.

Lemma 2.5 ([7, lemma 2.6]). Let α ∈ (1, 2), c ∈ R and h : J → R be continuous
function. A function x ∈ C(J,R) is a solution of the fractional integral equation
(2.7)

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds−

∫ ω

0

(ω − s)α−1

Γ(α)
h(s)ds+ x0 − c(t− ω) (2.7)

if and only if x is a solution of the fractional Cauchy problem
cDα

t x(t) = h(t), t ∈ J,
x(ω) = x0, ω ≥ 0.

(2.8)

Lemma 2.6. Let α ∈ (1, 2) and f : J ×Bh×X → R be continuously differentiable
function. A piecewise continuously differentiable function x ∈ B′

h is a solution of
system (1.1) if and only if x ∈ B′

h is a solution of the fractional integral equation

x(t) =



φ(t), if t ∈ (−∞, 0],∫ t

0
(t−s)α−1

Γ(α) f(s, xs, Bx(s))ds+ φ(0)− bt
a+b

∑m
i=1 Ii(x(t

−
i ))

− bt
a+b

∫ T

0
(T−s)α−2

Γ(α−1) f(s, xs, Bx(s))ds+ t
a+b

∫ T

0
q(x(s))ds,

if t ∈ [0, t1],
. . . ,∫ t

0
(t−s)α−1

Γ(α) f(s, xs, Bx(s))ds+ φ(0) +
∑k

i=1(t− ti)Ii(x(t−i ))

+
∑k

i=1Qi(x(t−i ))− bt
a+b

∑m
i=1 Ii(x(t

−
i ))

− bt
a+b

∫ T

0
(T−s)α−2

Γ(α−1) f(s, xs, Bx(s))ds+ t
a+b

∫ T

0
q(x(s))ds,

if t ∈ (tk, tk+1],

(2.9)

where k = 1, . . . ,m.

Proof. Assume x satisfies (1.1). If t ∈ [0, t1], then
cDα

t x(t) = f(t, xt, Bx(t)), t ∈ (0, t1], x(0) = φ(0). (2.10)

By using Lemma 2.5, we can write the solution of (2.10) as

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds+ φ(0)− ct. (2.11)
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If t ∈ (t1, t2], then
cDα

t x(t) = f(t, xt, Bx(t)), t ∈ (t1, t2],

x(t+1 ) = x(t−1 ) +Q1(x(t−1 )), x′(t+1 ) = x′(t−1 ) + I1(x(t−1 )).
(2.12)

Again by lemma 2.5, we have the following form of the solution

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds−

∫ t1

0

(t1 − s)α−1

Γ(α)
f(s, xs, Bx(s))ds

+ x(t−1 ) +Q1(x(t−1 ))− d(t− t1)

=
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds+ φ(0)− ct1 +Q1(x(t−1 ))− d(t− t1).

Since x′(t+1 ) = x′(t−1 ) + I1(x(t−1 )), we obtain d = c− I1(x(t−1 )). Thus

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds+ φ(0) + (t− t1)I1(x(t−1 )) +Q1(x(t−1 ))− ct.

If t ∈ (t2, t3], then by similar way using the lemma 2.5, we have

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds−

∫ t2

0

(t2 − s)α−1

Γ(α)
f(s, xs, Bx(s))ds

+ x(t−2 ) +Q2(x(t−2 ))− e(t− t2).

=
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds+ φ(0)− ct2 + (t2 − t1)I1(x(t−1 ))

+Q1(x(t−1 )) +Q2(x(t−2 ))− e(t− t2).

Since x′(t+2 ) = x′(t−2 ) + I2(x(t−2 )), we obtain e = c− I1(x(t−1 ))− I2(x(t−2 )). Thus

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds+ φ(0) + (t− t1)I1(x(t−1 ))

+ (t− t2)I2(x(t−2 )) +Q1(x(t−1 )) +Q2(x(t−2 ))− ct.

Similarly, if t ∈ (tk, tk+1], then again from lemma 2.5, we have

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds+ φ(0) +

k∑
i=1

(t− ti)Ii(x(t−i ))

+
k∑

i=1

Qi(x(t−i ))− ct.

By using the integral boundary condition ax′(0)+bx′(T ) =
∫ T

0
q(x(s))ds, we obtain

c =
b

a+ b

∫ T

0

(T − s)α−1

Γ(α− 1)
f(s, xs, Bx(s))ds

+
b

a+ b

m∑
i=1

Ii(x(t−i ))− 1
a+ b

∫ T

0

q(x(s))ds.

Thus for t ∈ [0, t1],

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds+ φ(0)− bt

a+ b

m∑
i=1

Ii(x(t−i ))
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− bt

a+ b

∫ T

0

(T − s)α−2

Γ(α− 1)
f(s, xs, Bx(s))ds+

t

a+ b

∫ T

0

q(x(s))ds,

and for t ∈ (tk, tk+1], k = 1, 2, . . . ,m, we have

x(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, xs, Bx(s))ds+ φ(0) +

k∑
i=1

(t− ti)Ii(x(t−i ))

+
k∑

i=1

Qi(x(t−i ))− bt

a+ b

m∑
i=1

Ii(x(t−i ))

− bt

a+ b

∫ T

0

(T − s)α−2

Γ(α− 1)
f(s, xs, Bx(s))ds+

t

a+ b

∫ T

0

q(x(s))ds.

Conversely, assume that x satisfies (2.9). By a direct computation, it follows that
the solution given in (2.9) satisfies the system (1.1). This completes the proof of
the lemma. �

Further we introduce the following assumptions to establish our results.

(H1) There exists constants µ1, µ2 > 0, such that

‖f(t, ϕ, x)− f(t, ψ, y)‖X ≤ µ1‖ϕ− ψ‖Bh
+ µ2‖x− y‖X ,

t ∈ J , ϕ,ψ ∈ Bh, x, y ∈ X.
(H2) The function q : X → X is continuous and there exists constant Lq > 0,

such that

‖q(x(s))− q(y(s))‖X ≤ Lq‖x− y‖X .

(H3) For each k = 1, . . . ,m, there exists L,L > 0, such that

‖Qk(x)−Qk(y)‖X ≤ L‖x− y‖X , ∀x, y ∈ X.
‖Ik(x)− Ik(y)‖X ≤ L‖x− y‖X , ∀x, y ∈ X.

(H4) The function f : J×Bh×X → X is continuous and there exist two contin-
uous functions µ1, µ2 : J → (0,∞) such that ‖f(t, ψ, x)‖X ≤ µ1(t)‖ψ‖Bh

+
µ2(t)‖x‖X and µ∗1 = supt∈[0,T ] µ1(t), µ∗2 = supt∈[0,T ] µ2(t).

(H5) The functions q : X → X, Ik : X → X and Qk : X → X, k = 1, . . . ,m are
continuous and there exist constants C, ρ,Ω such that ‖q(x)‖X ≤ C, x ∈ X,
ρ = max1≤k≤m,x∈Br{‖Ik(x)‖X} and Ω = max1≤k≤m,x∈Br{‖Qk(x)‖X}.

3. Existence and uniqueness results

Theorem 3.1. Suppose that the assumptions (H1)–(H3) hold and

Λ =
[ (a+ (1 + α)b)(µ1l + µ2B

∗)Tα

(a+ b)Γ(α+ 1)
+

(a+ 2b)LTm+ LqT
2

a+ b
+ Lm

]
< 1.

Then (1.1) has an unique solution.
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Proof. Consider the operator N : B′h → B′h defined by

Nx(t) =



φ(t), if t ∈ (−∞, 0],∫ t

0
(t−s)α−1

Γ(α) f(s, xs, Bx(s))ds+ φ(0)− bt
a+b

∑m
i=1 Ii(x(t

−
i ))

− bt
a+b

∫ T

0
(T−s)α−2

Γ(α−1) f(s, xs, Bx(s))ds+ t
a+b

∫ T

0
q(x(s))ds,

if t ∈ [0, t1],
. . . ,∫ t

0
(t−s)α−1

Γ(α) f(s, xs, Bx(s))ds+ φ(0) +
∑k

i=1(t− ti)Ii(x(t−i ))

+
∑k

i=1Qi(x(t−i ))− bt
a+b

∑m
i=1 Ii(x(t

−
i ))

− bt
a+b

∫ T

0
(T−s)α−2

Γ(α−1) f(s, xs, Bx(s))ds+ t
a+b

∫ T

0
q(x(s))ds,

if t ∈ (tk, tk+1],

where k = 1, 2, . . . ,m. Let y(.) : (−∞, T ] → X be the function defined by

y(t) =

{
φ(t), t ∈ (−∞, 0];
0, t ∈ J,

then y0 = φ. For each z ∈ C([0, T ],R) with z(0) = 0, we denote

z(t) =

{
0, t ∈ (−∞, 0];
z(t), t ∈ J.

If x(.) satisfies (2.9) then we can decompose x(·) as x(t) = y(t)+z(t), which implies
xt = yt + zt for t ∈ J and the function z(·) satisfies

z(t) =



∫ t

0
(t−s)α−1

Γ(α) f(s, ys + zs, B(y(s) + z(s)))ds+ φ(0)

− bt
a+b

∑m
i=1 Ii(z(t

−
i )) + t

a+b

∫ T

0
q(y(s) + z(s))ds

− bt
a+b

∫ T

0
(T−s)α−2

Γ(α−1) f(s, ys + zs, B(y(s) + z(s)))ds, t ∈ [0, t1],

. . . ,∫ t

0
(t−s)α−1

Γ(α) f(s, ys + zs, B(y(s) + z(s)))ds+ φ(0)

+
∑k

i=1(t− ti)Ii(z(t−i )) +
∑k

i=1Qi(z(t−i ))
− bt

a+b

∑m
i=1 Ii(z(t

−
i )) + t

a+b

∫ T

0
q(y(s) + z(s))ds

− bt
a+b

∫ T

0
(T−s)α−2

Γ(α−1) f(s, ys + zs, B(y(s) + z(s)))ds, t ∈ (tk, tk+1],

where k = 1, 2, . . . ,m. Set B′′
h = {z ∈ B′

h such that z0 = 0} and let ‖ · ‖B′′
h

be the
seminorm in B′′

h defined by

‖z‖B′′
h

= sup
t∈J

‖z(t)‖X + ‖z0‖Bh
= sup

t∈J
‖z(t)‖X , z ∈ B′′

h.
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Thus (B′′
h, ‖ · ‖B′′

h
) is a Banach space. We define the operator P : B′′

h → B′′
h by

Pz(t) =



∫ t

0
(t−s)α−1

Γ(α) f(s, ys + zs, B(y(s) + z(s)))ds+ φ(0)

− bt
a+b

∑m
i=1 Ii(z(t

−
i )) + t

a+b

∫ T

0
q(y(s) + z(s))ds

− bt
a+b

∫ T

0
(T−s)α−2

Γ(α−1) f(s, ys + zs, B(y(s) + z(s)))ds, t ∈ [0, t1],

. . . ,∫ t

0
(t−s)α−1

Γ(α) f(s, ys + zs, B(y(s) + z(s)))ds+ φ(0)

+
∑k

i=1(t− ti)Ii(z(t−i )) +
∑k

i=1Qi(z(t−i ))
− bt

a+b

∑m
i=1 Ii(z(t

−
i )) + t

a+b

∫ T

0
q(y(s) + z(s))ds

− bt
a+b

∫ T

0
(T−s)α−2

Γ(α−1) f(s, ys + zs, B(y(s) + z(s)))ds, t ∈ (tk, tk+1],

where k = 1, 2, . . . ,m. It is clear that the operator N has a unique fixed point if
and only if P has a unique fixed point. So let us prove that P has a unique fixed
point. Let z, z∗ ∈ B′′

h and t ∈ [0, t1] we have

‖(Pz)(t)− (Pz∗)(t)‖X

≤
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, ys + zs, B(y(s) + z(s)))− f(s, ys + z∗s, B(y(s)

+ z∗(s)))‖X ds+
bt

a+ b

m∑
i=1

‖Ii(z(t−i ))− Ii(z∗(t−i ))‖X

+
t

a+ b

∫ T

0

‖q(y(s) + z(s))− q(y(s) + z∗(s))‖X ds

+
bt

a+ b

∫ T

0

(T − s)α−2

Γ(α− 1)
‖f(s, ys + zs, B(y(s) + z(s)))− f(s, ys + z∗s, B(y(s)

+ z∗(s))‖X ds

≤
[ (µ1l + µ∗B)(a+ (1 + α)b)Tα

(a+ b)Γ(α+ 1)
+
T (bLm+ LqT )

a+ b

]
‖z − z∗‖B′′

h
.

If t ∈ (tk, tk+1], k = 1, 2, . . . ,m, then

‖(Pz)(t)− (Pz∗)(t)‖X

≤
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, ys + zs, B(y(s) + z(s)))− f(s, ys + z∗s, B(y(s)

+ z∗(s)))‖X ds+
k∑

i=1

(t− ti)‖Ii(z(t−i ))− Ii(z∗(t−i ))‖X

+
k∑

i=1

‖Qi(z(t−i ))−Qi(z∗(t−i ))‖X

+
bt

a+ b

m∑
i=1

‖Ii(z(t−i ))− Ii(z∗(t−i ))‖X

+
t

a+ b

∫ T

0

‖q(y(s) + z(s))− q(y(s) + z∗(s))‖X ds

+
bt

a+ b

∫ T

0

(T − s)α−2

Γ(α− 1)
‖f(s, ys + zs, B(y(s) + z(s)))− f(s, ys + z∗s, B(y(s)
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+ z∗(s)))‖X ds

≤
[ (a+ (1 + α)b)(µ1l + µ2B

∗)Tα

(a+ b)Γ(α+ 1)
+

(a+ 2b)LTm+ LqT
2

a+ b
+ Lm

]
‖z − z∗‖B′′

h
.

Thus for all t ∈ [0, T ], we have the estimate

‖P (z)− P (z∗)‖B′′
h

≤
[ (a+ (1 + α)b)(µ1l + µ2B

∗)Tα

(a+ b)Γ(α+ 1)
+

(a+ 2b)LTm+ LqT
2

a+ b
+ Lm

]
‖z − z∗‖B′′

h

≤ Λ‖z − z∗‖B′′
h
.

Since Λ < 1, the map P is a contraction map and has a unique fixed point z ∈ B′′
h,

which is obviously a solution of the system (1.1) on (−∞, T ]. This completes the
proof of the theorem. �

Our second existence result is based on the following Krasnoselkii’s fixed point
theorem.

Theorem 3.2. Let B be a closed convex and nonempty subset of a Banach space
X. Let P and Q be two operator such that (i) Px + Qy ∈ B, whenever x, y ∈ B.
(ii) P is compact and continuous. (iii) Q is a contraction mapping. Then there
exists z ∈ B such that z = Pz +Qz.

Theorem 3.3. Suppose that assumptions (H1), (H4), (H5) are satisfied with

∆ =
(µ1l + µ2B

∗)(a+ (1 + α)b)Tα

(a+ b)Γ(α+ 1)
< 1.

Then (1.1) has at least one solution on (−∞, T ].

Proof. Choose

r ≥
[
‖φ(0)‖+ (ρT + Ω)m+

(bρm+ TC)T
a+ b

+
(µ∗1(‖φ‖+ lr) + µ∗2B

∗r)(a+ (1 + α)b)Tα

(a+ b)Γ(α+ 1)

]
.

Define Br = {z ∈ B′′
h : ‖z‖B′′

h
≤ r}, then Br is a bounded, closed convex subset in

B′′
h. Let P1 : Br → Br and P2 : Br → Br be defined as

(P1z)(t) = φ(0) +
t

a+ b

∫ T

0

q(y(s) + z(s))ds+
k∑

i=1

Qi(z(t−i ))

− bt

a+ b

m∑
i=1

Ii(z(t−i )) +
k∑

i=1

(t− ti)Ii(z(t−i )), t ∈ Jk.

(P2z)(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s, ys + zs, B(y(s) + z(s)))ds

− bt

a+ b

∫ T

0

(T − s)α−2

Γ(α− 1)
f(s, ys + zs, B(y(s) + z(s)))ds, t ∈ Jk,

where J0 = [0, t1] and Jk = (tk, tk+1], k = 1, . . . ,m. Now, we proceed the proof in
following steps:
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Step 1. Let z, z∗ ∈ Br, then we show that P1z + P2z
∗ ∈ Br for t ∈ Jk, k =

0, 1, . . . ,m. We have

‖(P1z)(t) + (P2z
∗)(t)‖X

≤ ‖φ(0)‖X +
t

a+ b

∫ T

0

‖q(y(s) + z(s))‖X ds

+
k∑

i=1

‖Qi(z(t−i ))‖X +
bt

a+ b

m∑
i=1

‖Ii(z(t−i ))‖X +
k∑

i=1

(t− ti)‖Ii(z(t−i ))‖X

+
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, ys + z∗s, B(y(s) + z∗(s)))‖X ds

+
bt

a+ b

∫ T

0

(T − s)α−2

Γ(α− 1)
‖f(s, ys + z∗s, B(y(s) + z∗(s)))‖X ds,

(3.1)

we estimate the inequality (3.1), by using (H4) and (H5), as

‖(P1z)(t) + (P2z
∗)(t)‖X ≤

[
‖φ(0)‖+ (ρT + Ω)m+

(bρm+ TC)T
a+ b

+
(µ∗1(‖φ‖+ lr) + µ∗2B

∗r)(a+ (1 + α)b)Tα

(a+ b)Γ(α+ 1)

]
,

which implies that ‖P1z + P2z
∗‖B′′

h
≤ r.

Step 2. Now, we shall show that the mapping (P1z)(t) is continuous on Br.
For this purpose, let {zn}∞n=1 be a sequence in Br with lim zn → z in Br. Then for
t ∈ Jk, k = 0, 1, . . . ,m, we have

‖(P1z
n)(t)− (P1z)(t)‖X

≤ t

a+ b

∫ T

0

‖q(y(s) + zn(s))− q(y(s) + z(s))‖X ds

+
k∑

i=1

‖Qi(zn(t−i ))−Qi(z(t−i ))‖X +
bt

a+ b

m∑
i=1

‖Ii(zn(t−i ))− Ii(z(t−i ))‖X

+
k∑

i=1

(t− ti)‖Ii(zn(t−i ))− Ii(z(t−i ))‖X .

Since the functions q,Qk, Ik, k = 0, 1, . . . ,m, are continuous, hence limn→∞ P1z
n =

P1z in Br. Which implies that the mapping P1 is continuous on Br.
Step 3 (P1z)(t) is uniformly bounded follows by the following inequality. For

t ∈ Jk, k = 0, 1, . . . ,m, we have

‖(P1z)(t)‖X ≤ ‖φ(0)‖X +
t

a+ b

∫ T

0

‖q(y(s) + z(s))‖X ds+
k∑

i=1

‖Qi(z(t−i ))‖X

+
bt

a+ b

m∑
i=1

‖Ii(z(t−i ))‖X +
k∑

i=1

(t− ti)‖Ii(z(t−i ))‖X

≤ ‖φ(0)‖X +
T (TC + bρm)

a+ b
+ Ωm+ ρmT.
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Step 4 To show that P1(Br) is equicontinuous. Let τ1, τ2 ∈ Jk, tk ≤ τ1 < τ2 ≤
tk+1, k = 0, 1, . . . ,m, z ∈ Br, we have

‖(P1z)(τ2)− (P2z)(τ1)‖X ≤ (τ2 − τ1)[
1

a+ b

∫ T

0

‖q(y(s) + z(s))‖X ds

+
k∑

i=1

‖Ii(z(t−i ))‖X +
b

a+ b

m∑
i=1

‖Ii(z(t−i ))‖X ],

which implies that P1(Br) is equicontinuous. Finally, combing Step 2 to Step 4
together with the Ascol’s theorem, we conclude that the operator P1 is a compact.

Step 5. Now, we show that P2 is a contraction mapping. Let z, z∗ ∈ Br and
t ∈ Jk, k = 0, 1, . . . ,m, we have

‖(P2z)(t)− (P2z
∗)(t)‖X

≤
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, ys + zs, B(y(s) + z(s)))− f(s, ys + z∗s, B(y(s)

+ z∗(s)))‖X ds+
bt

a+ b

∫ T

0

(T − s)α−2

Γ(α− 1)
‖f(s, ys + zs, B(y(s)

+ z(s)))− f(s, ys + z∗s, B(y(s) + z∗(s)))‖X ds

≤ (µ1l + µ2B
∗)(a+ (1 + α)b)Tα

(a+ b)Γ(α+ 1)
‖z − z∗‖B′′

h

≤ ∆‖z − z∗‖B′′
h
,

where

∆ =
(µ1l + µ2B

∗)(a+ (1 + α)b)Tα

(a+ b)Γ(α+ 1)
.

As ∆ < 1, then P2 is a contraction map. Thus all the assumptions of the Theorem
3.2 are satisfied and the conclusion of the Theorem 3.2 implies that the system (1.1)
has at least one solution on (−∞, 0]. This completes the proof of the theorem. �

4. Application

We consider the model

CD
3/2
t u(t) =

1
(t+ 9)2

∫ 0

−∞
e2θ sin(‖u(t+ θ)‖X)dθ

+
1

(t+ 7)2
sin

(
‖

∫ t

0

(t− s)u(s)ds‖X

)
, t ∈ [0, 1], t 6= ti, i = 1, 2, 3,

u(t) = φ(t), t ∈ (−∞, 0],

∆u(ti) =
∫ 0

−∞
e2θ ‖u(ti + θ)‖X

25 + ‖u(ti + θ)‖X
dθ,

∆u′(ti) =
∫ 0

−∞
e2θ ‖u(ti + θ)‖X

27 + ‖u(ti + θ)‖X
dθ,

u′(0) + u′(1) =
∫ 1

0

sin(
1
2
‖u(s)‖X)ds,

(4.1)
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where X is a real Banach space, 0 < t1 < t2 < t3 < 1 are prefixed numbers
and φ ∈ Bh. Let h(s) = e2s, s < 0 then l =

∫ 0

−∞ h(s)ds = 1/2 and define

‖φ‖Bh
=

∫ 0

−∞ h(s) sups<θ<0 ‖φ(θ)‖X ds. Hence for t ∈ [0, 1] and φ ∈ Bh, we set

f(t, φ,Bu(t)) =
1

(t+ 9)2

∫ 0

−∞
h(θ) sin(‖φ(θ)‖X)dθ +

1
(t+ 7)2

sin(‖Bu(t)‖X),

Qi(φ) =
∫ 0

−∞
h(θ)

‖φ(θ)‖X

25 + ‖φ(θ)‖X
dθ,

Ii(φ) =
∫ 0

−∞
h(θ)

‖φ(θ)‖X

27 + ‖φ(θ)‖X
dθ,

where Bu(t) =
∫ t

0
(t − s)u(s)ds, now B∗ = supt∈[0,1]

∫ t

0
(t − s)ds = 1

2 < ∞. Then
the above equations (4.1) can be written in the abstract form as (1.1). Moreover,

‖f(t, φ,Bu(t))− f(t, ψ,Bv(t))‖X ≤ 1
81
‖φ− ψ‖Bh

+
1
49
‖Bu(t)−Bv(t)‖X ,

‖Qi(φ)−Qi(ψ)‖X ≤ 1
25
‖φ− ψ‖Bh

,

‖Ii(φ)− Ii(ψ)‖X ≤ 1
27
‖φ− ψ‖Bh

,

‖q(u)− q(v)‖X ≤ 1
2
‖u− v‖X ,

therefore, (H1),(H2) and (H3) are satisfied with µ1 = 1/81, µ2 = 1/49, Lq = 1/2,
L = 1/27, L = 1/25. Further,

(a+ (1 + α)b)(µ1l + µ2B
∗)Tα

(a+ b)Γ(α+ 1)
+

(a+ 2b)LTm+ LqT
2

a+ b
+ Lm ≈ 0.558 < 1.

Thus, all the assumptions of Theorem 3.1 are satisfied. Hence, the impulsive frac-
tional boundary-value problem (4.1) has a unique solution.
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