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SOLVABILITY OF FRACTIONAL-ORDER MULTI-POINT
BOUNDARY-VALUE PROBLEMS AT RESONANCE

ON THE HALF-LINE

YI CHEN, ZHANMEI LV

Abstract. In this article, we study a fractional differential equation. By
constructing two special Banach spaces and establishing an appropriate com-
pactness criterion, we present some existence results about the boundary-value
problem at resonance via Mawhin’s continuation theorem of coincidence degree
theory.

1. Introduction

In this article, we are concerned with the existence of solutions to the m-point
boundary value problems involving Caputo fractional derivative

CDα
0+

(
a(t)u′(t)

)
= f(t, u(t), CDα

0+u(t), u′(t)), t ∈ [0,+∞),

u′(0) = 0,

m−1∑
j=1

σju(ξj) = lim
t→+∞

u(t),
(1.1)

where CDα
0+ is the Caputo fractional derivative, 0 < α < 1, f : [0,+∞)× R3 → R

satisfies α-Carathéodory conditions, a(t) ∈ C1[0,+∞), a(t) > 0, σj ∈ R, σj > 0,
ξj > 0, j = 1, 2, . . . ,m− 1, m ∈ N, m > 1, and

m−1∑
j=1

σj = 1, (1.2)

which implies that (1.1) is at resonance. Problem (1.1) is at resonance in the sense
that the kernel of the linear operator CDα

0+ is not less than one-dimensional under
the boundary value conditions.

Let ν > 0 and n = [ν] + 1, where [ν] denotes the largest integer less than ν.
Then then the Riemann-Liouville fractional integral and derivative of order ν for a
function h : (0,∞) → R is defined by (see [8, 16, 17])

D−ν
0+h(t) = Iν

0+h(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1h(s)ds, (1.3)
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and

Dν
0+h(t) =

1
Γ(n− ν)

(
d

dt

)n ∫ t

0

(t− s)n−ν−1h(s)ds, (1.4)

respectively. Additionally, we have the Caputo fractional derivatives (see [8, 17])
of order ν

CDν
0+h(t) =

1
Γ(n− ν)

∫ t

0

(t− s)n−ν−1h(n)(s)ds. (1.5)

Sequential fractional derivatives were defined by Podlubny [17] as

Dνh(t) = Dν1Dν2 . . . Dνph(t), p ∈ N, p > 0, (1.6)

where the symbol Dνi (i = 1, 2, . . . p) is the Riemann-Liouville derivative, or the
Caputo derivative. It is obvious that (1.6) is a generalized expression presented by
Miller and Ross in [16].

Fractional calculus is a generalization of the ordinary differentiation and inte-
gration. It has played a significant role in science, engineering, economy, and other
fields. For recent publication on on fractional calculus and fractional differential
equations, we refer the reader to see[3, 4, 19, 7, 21, 2, 14, 18, 5, 10, 12, 13, 20].

In [2], the researchers studied the existence of solutions to boundary-value prob-
lems for fractional-order differential equation of the form

CDα
0+y(t) = f(t, y(t)), t ∈ [0,+∞),

y(0) = y0, y is bounded in [0,+∞),

where 1 < α ≤ 2 and f : [0,+∞)×R → R is continuous. And the results are based
on a fixed point theorem of Schauder combined with the diagonalization method.
Then, Mouffak Benchohra and Naima Hamidi are concerned with the differential
inclusions of the form above in [5].

Liu and Jia [14] studied the existence of multiple solutions of nonlocal boundary
value problems of fractional order with integral boundary conditions on the half-line
applying the fixed point theory and the upper and lower solutions method.

Su and Zhang [18] studied the following fractional differential equations on the
half-line, using Schauder’s fixed point theorem,

Dα
0+u(t) = f(t, u(t), Dα−1

0+ u(t)), t ∈ (0,+∞), 1 < α ≤ 2,

u(0) = 0, lim
t→∞

Dα−1
0+ u(t) = u∞.

In paper [10] and [20], the authors investigated the existence of global solutions
for fractional differential equations on the half-axis. Liang and Shi [12] obtained
some existence results of multiple positive solutions for m-point fractional boundary
value problems with p-Laplacian operator on infinite interval by means of the prop-
erties of the Green function and some fixed-point theorems. And in [13], by a fixed
point theorem due to Leggett-Williams, Liang and Zhang studied the existence of
three positive solutions for the boundary value problem on the half-line.

However, the papers on the existence of solutions of fractional differential equa-
tions on the half-line are only handling with the problems under nonresonance
conditions. And as far as we know, there is no paper dealing with the differential
equations of sequential fractional order under resonance conditions on the half-line.
Motivated by the papers [2, 14, 18, 5, 10, 12, 13, 20, 6, 11, 9], in this paper, we are
concerned with the existence of the m-point boundary value problems (1.1).
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Our methods are based on the Mawhin’s continuation theorem of coincidence
degree theory, unlike any other papers, the function f in the problem (1.1) satisfies
the α-Carathéodory conditions, the definition of which will be given in Section 2.
And the main difficulties are that we have to construct suitable Banach spaces for
the problem and establish an appropriate compactness criterion.

The rest of the paper is organized as follows. Section 2, we give some re-
sults about fractional differential equations and an abstract existence theorem and
present the special Banach spaces that will be used in the paper. Section 3, we
obtain some existence results of the solutions for the problem (1.1) by applying the
coincidence degree continuation theorem. Then an example is given in Section 4 to
demonstrate the application of our results.

2. Preliminaries

First of all, we present some fundamental facts on the fractional calculus theory
which we’ll use in the next section. These can be found in [8, 16, 19].

Lemma 2.1 ([19]). Let ν > 0; then the differential equation CDν
0+h(t) = 0 has

solutions h(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,
n = [ν] + 1.

Lemma 2.2 ([19]). Let ν > 0; then Iν
0+

CDν
0+h(t) = h(t) + c0 + c1t + c2t

2 + · · ·+
cn−1t

n−1, for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n = [ν] + 1.

Lemma 2.3 ([8, 16]). If ν1, ν2, ν > 0, t ∈ [0, 1] and h(t) ∈ L[0, 1], then we have

Iν1
0+Iν2

0+h(t) = Iν1+ν2
0+ h(t), CDν

0+Iν
0+h(t) = h(t). (2.1)

Now let us recall some notation about the coincidence degree continuation the-
orem.

Let X, Z be real Banach spaces. Consider an operation equation Lu = Nu, where
L : dom L ⊂ X → Z is a linear operator, N : X → Z is a nonlinear operator. If
dim kerL = codim Im L < +∞ and Im L is closed in Z, then L is called a Fredholm
mapping of index zero. And if L is a Fredholm mapping of index zero, there exist
linear continuous projectors P : X → X and Q : Z → Z such that kerL = Im P ,
Im L = kerQ and X = kerL ⊕ ker P , Z = Im L ⊕ Im Q. Then it follows that
LP = L|dom L∩ker P : dom L ∩ ker P → Im L is invertible. We denote the inverse of
this map by KP . If Ω is an open bounded subset of X, the map N will be called L-
compact on Ω if QN(Ω) is bounded and KP,QN = KP (I−Q)N : Ω → X is compact.
For Im Q is isomorphic to kerL, there exists an isomorphism J

NL
: Im Q → ker L.

Then we will give the the coincidence degree continuation theorem which is proved
in [15].

Theorem 2.4. Let L be a Fredholm operator of index zero and N be L-compact on
Ω, where Ω is an open bounded subset of X. Suppose that the following conditions
are satisfied:

(1) Lx 6= λNx for each (x, λ) ∈ [(dom L\ ker L) ∩ ∂Ω]× (0, 1);
(2) Nx 6∈ Im L for each x ∈ ker L ∩ ∂Ω;
(3) deg(JNLQN |ker L, Ω ∩ ker L, 0) 6= 0, where Q : Z → Z is a continuous

projection as above with Im L = ker Q and JNL : Im Q → ker L is any
isomorphism.

Then the equation Lx = Nx has at least one solution in dom L ∩ Ω.
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Definition 2.5. We say that f : [0,+∞) × R3 → R satisfies the α-Carathéodory
conditions if

(1) for each (x, y, z) ∈ R3, the function t → f(t, x, y, z) is Lebesgue measurable;
(2) for almost every t ∈ [0,+∞), the function t → f(t, x, y, z) is continuous in

R3;
(3) for each r > 0, there exists ϕr(t) ∈ L1[0,+∞) ∩ C[0,+∞) subject to

limt→+∞ Iα
0+ϕr(t) < +∞ such that for a.e. t ∈ [0,+∞) and all (x, y, z) ∈

R3 with ‖(x, y, z)‖ ≤ r,

|f(t, x, y, z)| ≤ ϕr(t)

where ‖ · ‖ is the norm in R3.

The assumptions on a(t) are as follows:
(A1) a(t) ∈ C1[0,+∞), a(t) > 0, for all t ∈ [0,+∞), and

La :=
∫ +∞

0

1
a(t)

dt < +∞;

(A2)

Ia := lim
t→+∞

I1−α
0+

1
a(t)

= 0.

If condition (A1) holds, then

Ma := sup
t≥0

1
a(t)

< +∞.

Set

X =
{
x ∈ C1[0,+∞) : lim

t→+∞
x(t), lim

t→+∞
CDα

0+x(t) and lim
t→+∞

x′(t) exist
}
,

equipped with the norm

‖x‖X = sup
t≥0

|x(t)|+ sup
t≥0

|CDα
0+x(t)|+ sup

t≥0
|x′(t)| .

Since x(t) ∈ C1[0,+∞) implies that CDα
0+x(t) ∈ C[0,+∞), the space (X, ‖ · ‖X) is

well defined. It is easy to show that (X, ‖ · ‖X) is a Banach space.
Define

Z =
{
z ∈ C[0,+∞) ∩ L1[0,+∞) : lim

t→+∞
Iα
0+z(t) exists

}
,

equipped with the norm

‖z‖Z = sup
t≥0

|z(t)|+ sup
t≥0

|Iα
0+z(t)|+

∫ +∞

0

|z(t)|dt .

The space (Z, ‖ · ‖Z) is well defined in virtue of the fact that z(t) ∈ C[0,+∞) ∩
L1[0,+∞) leads to limt→+∞ z(t) = 0 and Iα

0+z(t) ∈ C[0,+∞). Also, (Z, ‖ · ‖Z) is
a Banach space.

Let

dom L =
{

u : CDα
0+

(
a(t)u′(t)

)
∈ L1[0,+∞) ∩ C[0,+∞), lim

t→+∞
a(t)u′(t) exists,

u′(0) = 0,

m−1∑
j=1

σju(ξj) = lim
t→+∞

u(t)
}
∩X.
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Define

L : dom L → Z, u 7→ CDα
0+

(
a(t)u′(t)

)
, (2.2)

N : X → Z, u 7→ f(t, u(t), CDα
0+u(t), u′(t)). (2.3)

Then the multi-point boundary-value problem (1.1) can be written as

Lu = Nu, u ∈ dom L.

Definition 2.6. A function u ∈ X is called a solution of (1.1) if u ∈ dom L and u
satisfies (1.1).

Next, similar to the compactness criterion in [1], we establish the following cri-
terion.

Lemma 2.7. The set U is relatively compact in X if and only if the following
conditions are satisfied:

(a) U is uniformly bounded; that is, there exists a constant R > 0, such that
for each u ∈ U , ‖u‖X ≤ R;

(b) functions in U are equicontinuous on any compact subinterval of [0,+∞);
that is, let J be a compact subinterval of [0,+∞), then, ∀ ε > 0, there exists
δ = δ(ε) > 0 such that for t1, t2 ∈ J , |t1 − t2| < δ,

|u(t1)− u(t2)| < ε, |u′(t1)− u′(t2)| < ε, |CDα
0+u(t1)− CDα

0+u(t2)| < ε,

for all u ∈ U ;
(c) functions from U are equiconvergent; that is, given ε > 0, there exists

T = T (ε) > 0, such that for s1, s2 > T , for all u ∈ U ,

|u(s1)− u(s2)| < ε, |u′(s1)− u′(s2)| < ε, |CDα
0+u(s1)− CDα

0+u(s2)| < ε.

Proof. We can prove the results by the fact that U is a relatively compact set in X
if and only if U is totally bounded. The proof is analogous to the proof of the [21,
Lemma 2.2]. Here we omit it. �

3. Main Results

In this section, we establish the existence of solutions for (1.1) on the half-line.
To prove our main results, we need the following lemmas.

Lemma 3.1. Let g ∈ Z. Suppose that the condition (A1) holds. Then u ∈ X is
the solution of the fractional differential equation

CDα
0+

(
a(t)u′(t)

)
= g(t), t ∈ [0,+∞),

u′(0) = 0,

m−1∑
j=1

σju(ξj) = lim
t→+∞

u(t),
(3.1)

if and only if u satisfies

u(t) = c +
1

Γ(α)

∫ t

0

1
a(s)

∫ s

0

(s− τ)α−1g(τ) dτ ds, c ∈ R, (3.2)

and∫ +∞

0

1
a(s)

∫ s

0

(s− τ)α−1g(τ) dτ ds−
m−1∑
j=1

σj

∫ ξj

0

1
a(s)

∫ s

0

(s− τ)α−1g(τ) dτ ds = 0.

(3.3)
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Proof. “Necessity”. Assume that u is a solution of (3.1). By Lemma 2.2, we have

a(t)u′(t) = c1 +
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds, c1 ∈ R.

Since u′(0) = 0 and a(t) > 0, we have

u′(t) =
1

a(t)
1

Γ(α)

∫ t

0

(t− s)α−1g(s)ds.

Then we obtain

u(t) = c +
1

Γ(α)

∫ t

0

1
a(s)

∫ s

0

(s− τ)α−1g(τ) dτ ds, c ∈ R.

Since
∑m−1

j=1 σju(ξj) = limt→+∞ u(t), we have∫ +∞

0

1
a(s)

∫ s

0

(s− τ)α−1g(τ) dτ ds =
m−1∑
j=1

σj

∫ ξj

0

1
a(s)

∫ s

0

(s− τ)α−1g(τ) dτ ds.

due to the fact that
∑m−1

j=1 σj = 1.
“Sufficiency”. Conversely, suppose that (3.2) and (3.3) hold. In view of Lemma

2.3, we can easily certify that u is the solution of the equation (3.1). The proof is
complete. �

Lemma 3.2. Assume that the condition (A1) holds. Then L is a Fredholm mapping
of index zero. Moreover,

ker L = {u : u = c, c ∈ R} ⊂ X, (3.4)

and
Im L = {g ∈ Z : g satisfies condition (3.3)} ⊂ Z. (3.5)

Proof. It is obvious that Lemma 3.1 implies (3.4) and (3.5). Now, let us focus our
minds to prove that L is a Fredholm mapping of index zero.

Define an auxiliary mapping Q1 : Z → R:

Q1g =
∫ +∞

0

1
a(s)

∫ s

0

(s−τ)α−1g(τ) dτ ds−
m−1∑
j=1

σj

∫ ξj

0

1
a(s)

∫ s

0

(s−τ)α−1g(τ) dτ ds,

where g ∈ Z. It is obvious that Q1 is a continuous linear mapping.
Take an element µ(t) ∈ Z satisfying µ(t) > 0 on [0,+∞), for example, µ(t) =

e−at, a > 0. In view of
∑m−1

i=1 σj = 1 and σj > 0, j = 1, 2, . . . ,m− 1, we have

Q1µ =
∫ +∞

0

1
a(s)

∫ s

0

(s− τ)α−1µ(τ) dτ ds

−
m−1∑
j=1

σj

∫ ξj

0

1
a(s)

∫ s

0

(s− τ)α−1µ(τ) dτ ds

=
m−1∑
j=1

σj

∫ +∞

ξj

1
a(s)

∫ s

0

(s− τ)α−1µ(τ) dτ ds > 0.

Let the mapping Q : Z → Z be defined by

(Qg)(t) =
Q1g

Q1µ
µ(t), (3.6)
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where g ∈ Z. Evidently,

Im Q = {g : g = c µ(t), c ∈ R},
and Q : Z → Z is a continuous linear projector. In fact, for an arbitrary g ∈ Z, we
have

Q1(Qg) = Q1

(Q1g

Q1µ
µ(t)

)
=

Q1g

Q1µ
Q1(µ) = Q1g,

Q2g = Q(Qg) =
Q1(Qg)

Q1µ
µ(t) =

Q1g

Q1µ
µ(t) = Qg;

that is to say, Q : Z → Z is idempotent.
Observe that g ∈ Im L leads to Q1g = 0, then we can get that Qg = θ, and

g ∈ ker Q, where we denote θ the zero element in Z. Conversely, if g ∈ ker Q, we
can have that Q1g = 0, that is to say, g ∈ Im L. So, ker Q = Im L.

Let g = g − Qg + Qg = (I − Q)g + Qg, where g ∈ Z is an arbitrary element.
Since Qg ∈ Im Q and (I − Q)g ∈ ker Q, we obtain that Z = Im Q + kerQ. Take
z0 ∈ Im Q ∩ ker Q, then z0 can be written as z0 = c µ(t), c ∈ R, for z0 ∈ Im Q.
Since z0 ∈ ker Q = Im L, by (3.5), we get that Q1(z0) = Q1(c µ(t)) = cQ1(µ) = 0,
which implies that c = 0 and z0 = θ. Therefore Im Q ∩ ker Q = {θ}, thus Z =
Im Q⊕ ker Q = Im Q⊕ Im L.

Now, dim ker L = 1 = dim Im Q = codim kerQ = codim Im L < +∞, and
observing that Im L is closed in Z, so L is a Fredholm mapping of index zero. �

Let P : X → X be defined by

(Pu)(t) = u(0), u ∈ X. (3.7)

It is clear that P : X → X is a linear continuous projector and

Im P = {u
∣∣u = c, c ∈ R} = kerL.

Also, proceeding as the proof of Lemma 3.2, we can show that X = Im P ⊕ker P =
ker L⊕ ker P .

Consider the mapping KP : Im L → dom L ∩ ker P ,

(KP g)(t) =
1

Γ(α)

∫ t

0

1
a(s)

∫ s

0

(s− τ)α−1g(τ) dτ ds, g ∈ Im L.

Note that
(KP L)u = KP (Lu) = u, ∀u ∈ dom L ∩ ker P, (3.8)

and
(LKP )g = L(KP g) = g, ∀ g ∈ Im L.

Thus, KP =
(
LP

)−1, where LP = L|dom L∩ker P : dom L ∩ ker P → Im P .

Lemma 3.3. Assume that (A1) and (A2) hold. Then, the operator KP : Im L →
dom L ∩ ker L is completely continuous. Further,∥∥KP g

∥∥
X

≤ (La + 2Ma)
∥∥g

∥∥
Z

, (3.9)

for each g ∈ Im L.

Proof. We know that KP is linear, we only need to prove that KP is compact and
(3.9) holds. For each g ∈ Im L and t ∈ [0,+∞), we have∣∣(KP g)(t)

∣∣ =
∣∣ ∫ t

0

1
a(s)

Iα
0+g(s)ds

∣∣ ≤ ∫ t

0

1
a(s)

|Iα
0+g(s)|ds
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≤ sup
t≥0

|Iα
0+g(s)|

∫ t

0

1
a(s)

ds ≤ La · ‖g‖Z ,

∣∣(KP g)′(t)
∣∣ =

∣∣ 1
Γ(α)

1
a(t)

∫ t

0

(t− s)α−1g(s)ds
∣∣ =

1
a(t)

|Iα
0+g(t)| ≤ Ma · ‖g‖Z ,

and∣∣∣CDα
0+(KP g)(t)

∣∣∣ =
∣∣∣CDα

0+

( ∫ t

0

1
a(s)

Iα
0+g(s)ds

)∣∣∣ =
∣∣∣I1−α

0+

( 1
a(t)

Iα
0+g(t)

)∣∣∣
=

∣∣∣ 1
Γ(1− α)Γ(α)

∫ t

0

(t− s)−α 1
a(s)

∫ s

0

(s− τ)α−1g(τ)dτ ds
∣∣∣

=
∣∣∣ 1
Γ(1− α)Γ(α)

∫ t

0

g(τ)
∫ t

τ

(s− τ)α−1(t− s)−α 1
a(s)

ds dτ
∣∣∣

=
∣∣∣ 1
Γ(1− α)Γ(α)

∫ t

0

g(τ)
∫ 1

0

sα−1(1− s)−α 1
a(τ + s(t− τ))

ds dτ
∣∣∣

≤ Ma

∫ t

0

|g(τ)|dτ ≤ Ma · ‖g‖Z .

Hence, ∥∥KP g
∥∥

X
= sup

t≥0
|(KP g)(t)|+ sup

t≥0
|CDα

0+(KP g)(t)|+ sup
t≥0

|(KP g)′(t)|

≤ (La + 2Ma)
∥∥g

∥∥
Z

.

Next, we show that KP is compact. Let G be a bounded set in Z; i.e., there
exists r > 0 such that ‖g‖Z ≤ r, ∀g ∈ G. Then we need to validate that KP (G) is
relatively compact via Lemma 2.7.

First, KP (G) is bounded in view of (3.9).
Second, KP (G) is equicontinuous on any compact subinterval J of [0,+∞).

There exist two positive constants T1, T2(T1 < T2) such that J ⊂ [T1, T2]. Since
1/a(t) is uniformly continuous on [0, T2], for all ε > 0, there exists δ1 = δ1(ε) > 0
such that for τ1, τ2 ∈ [0, T2], |τ1 − τ2| < δ1, we have that

∣∣ 1
a(τ1)

− 1
a(τ2)

∣∣ < ε
2r . Let

δ = min
{
δ1,

ε

2rMa
,

(εΓ(α + 1)
4rMa

)1/α}
.

Then for every pair t1, t2 ∈ J and |t1 − t2| < δ (t1 < t2) we have∣∣(KP g)(t1)− (KP g)(t2)
∣∣ ≤ ∫ t2

t1

1
a(s)

|Iα
0+g(s)|ds ≤ rMa(t2 − t1) ≤

ε

2
< ε,

∣∣CDα
0+(KP g)(t1)− CDα

0+(KP g)(t2)
∣∣

≤ 1
Γ(1− α)Γ(α)

∣∣∣ ∫ t1

0

g(τ)
∫ 1

0

sα−1(1− s)−α
( 1

a(τ + s(t1 − τ))

− 1
a(τ + s(t2 − τ))

)
ds dτ

∣∣∣
+

1
Γ(1− α)Γ(α)

∣∣∣ ∫ t2

t1

g(τ)
∫ 1

0

sα−1(1− s)−α 1
a(τ + s(t2 − τ))

ds dτ
∣∣∣

<
ε

2r
·
∫ t1

0

|g(τ)|dτ + Ma

∫ t2

t1

|g(τ)|dτ
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<
ε

2r
· r + rMa(t2 − t1) ≤

ε

2
+

ε

2
= ε,

and∣∣(KP g)′(t1)− (KP g)′(t2)
∣∣

≤
∣∣∣( 1

a(t1)
− 1

a(t2)

)
Iα
0+g(t1)

∣∣∣ +
1

a(t2)

∣∣∣Iα
0+g(t1)− Iα

0+g(t2)
∣∣∣

≤ ε

2
+

Ma

Γ(α)

( ∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
|g(s)|ds +

∫ t2

t1

(t2 − s)α−1|g(s)|ds
)

≤ ε

2
+

rMa

Γ(α + 1)

(
t1

α − t2
α + 2(t2 − t1)α

)
≤ ε

2
+

rMa

Γ(α + 1)
2(t2 − t1)α ≤ ε

2
+

ε

2
= ε.

Thus, KP (G) is equicontinuous on the compact subinterval J of [0,+∞).
Third, KP (G) is equiconvergent. Since (A1) and (A2) hold, limt→+∞ 1/a(t) = 0.

For all ε1 > 0, there exists a constant T > 0 such that for all t, t1, t2 ≥ T (t1 < t2),
we have

0 <
1

a(t)
<

ε1

2r
, 0 <

∫ t2

t1

1
a(s)

ds <
ε1

2r
,

∣∣I1−α
0+

1
a(t)

∣∣ <
ε1

2r
.

So, for all t1, t2 ≥ T (t1 < t2), we have∣∣(KP g)(t1)− (KP g)(t2)
∣∣ ≤ ∫ t2

t1

1
a(s)

|Iα
0+g(s)|ds ≤ r

∫ t2

t1

1
a(s)

ds < r
ε1

2r
< ε1,

∣∣CDα
0+(KP g)(t1)− CDα

0+(KP g)(t2)
∣∣ ≤ r

∣∣∣I1−α
0+

1
a(t1)

∣∣∣ + r
∣∣∣I1−α

0+

1
a(t2)

∣∣∣
<

ε1

2
+

ε1

2
= ε1

and ∣∣(KP g)′(t1)− (KP g)′(t2)
∣∣ ≤ 1

a(t1)
|Iα

0+g(t1)|+
1

a(t2)
|Iα

0+g(t2)|

<
ε1

2r
r +

ε1

2r
r = ε1.

Hence, by Lemma 2.7, KP (G) is relatively compact, and the proof is complete. �

Lemma 3.4. Let f : [0,+∞) × R3 → R satisfies the α-Carathéodory conditions.
Assume that the condition (A1) and (A2) hold. Then KP,QN = KP (I − Q)N :
X → X is completely continuous.

Proof. In view of the continuity of Kp, I−Q and the boundedness of N , combining
with the Lemma 3.3, we can conclude that the claim of the lemma is true. �

The following assumptions that will be used later.
(H1) There exist four functions β1, β2, β3, β4 ∈ Z such that βi(t) ≥ 0, t ∈ [0,+∞)

(i = 1, 2, 3, 4), and for t ∈ [0,+∞) and (x, y, z) ∈ R3, we have

|f(t, x, y, z)| ≤ β1(t)|x|+ β2(t)|y|+ β3(t)|z|+ β4(t); (3.10)
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(H2)
0 < η1(2La + 2Ma) < 1, (3.11)

where η1 is defined by η1 = ‖β1‖Z + ‖β2‖Z + ‖β3‖Z ;
(H3) There exists a constant Λ1 > 0 such that

Q1(Nu) 6= 0, (3.12)

for each u ∈ dom L \ ker L satisfying
∣∣u(t)

∣∣ > Λ1;
(H4) There exists a constant S > 0 such that for any c ∈ R, if |c| > S, then

either
cQ1

(
N(c)

)
< 0, (3.13)

or
cQ1

(
N(c)

)
> 0. (3.14)

Lemma 3.5. Set Ω1 =
{

u ∈ dom L \ ker L
∣∣Lu = λNu, λ ∈ [0, 1]

}
. Suppose that

(H1), (H2), (H3) hold. Then, Ω1 is bounded.

Proof. Take u ∈ Ω1, then u ∈ dom L \ ker L and Lu = λNu, so λ 6= 0 and
Nu ∈ Im L = kerQ ⊂ Z. Hence, Q(Nu) = θ; that is, Q1(Nu) = 0. From (H3), we
have that there exists t1 ∈ [0,+∞) such that |u(t1)| ≤ Λ1.

If t1 = 0, then |u(0)| ≤ Λ1. If t1 > 0, by the fact that

u′(t) =
1

a(t)
Iα
0+

CDα
0+

(
a(t)u′(t)

)
=

1
a(t)

Iα
0+(Lu)(t), t ∈ [0,+∞),

we obtain

|u(0)| =
∣∣∣u(t1)−

∫ t1

0

u′(s)ds
∣∣∣ =

∣∣∣u(t1)−
∫ t1

0

1
a(s)

Iα
0+(Lu)(s)ds

∣∣∣
≤ |u(t1)|+

∫ t1

0

1
a(s)

|Iα
0+(Lu)(s)|ds

≤ Λ1 + La‖Lu‖Z ≤ Λ1 + La‖Nu‖Z .

Again, for u ∈ Ω1, we obtain∥∥Pu
∥∥

X
= sup

t≥0
|(Pu)(t)|+ sup

t≥0
|CDα

0+(Pu)(t)|+ sup
t≥0

|(Pu)′(t)|

= |u(0)| ≤ Λ1 + La‖Nu‖Z .
(3.15)

In view of (I − P )u ∈ dom L ∩ ker P , by (3.8) and Lemma 3.3, we have∥∥(I − P )u
∥∥

X
=

∥∥KpL(I − P )u
∥∥

X
≤ (La + 2Ma)

∥∥L(I − P )u
∥∥

Z

= (La + 2Ma)
∥∥Lu

∥∥
Z
≤ (La + 2Ma)

∥∥Nu
∥∥

Z
.

(3.16)

Combining (3.15) and (3.16), we obtain∥∥u
∥∥

X
=

∥∥u− Pu + Pu
∥∥

X

≤
∥∥Pu

∥∥
X

+
∥∥(I − P )u

∥∥
X

≤ Λ1 + (2La + 2Ma)
∥∥Nu

∥∥
Z

.

(3.17)

From (H1), for each u ∈ Ω1, we have∫ +∞

0

|(Nu)(s)|ds
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≤
(∫ +∞

0

|β1(s)|ds +
∫ +∞

0

|β2(s)|ds +
∫ +∞

0

|β3(s)|ds

)
‖u‖X +

∫ +∞

0

|β4(s)|ds ,

∣∣f(t, u(t), CDα
0+u(t), u′(t))

∣∣
≤

(
sup
t≥0

|β1(t)|+ sup
t≥0

|β2(t)|+ sup
t≥0

|β3(t)|
)
‖u‖X + sup

t≥0
|β4(t)| ,

and∣∣∣Iα
0+f(t, u(t), CDα

0+u(t), u′(t))
∣∣∣

≤
(

sup
t≥0

|Iα
0+β1(s)|+ sup

t≥0
|Iα

0+β2(s)|+ sup
t≥0

|Iα
0+β3(s)|

)
‖u‖X + sup

t≥0
|Iα

0+β4(s)| .

Then, we can deduce that

‖Nu‖Z ≤
(
‖β1‖Z + ‖β2‖Z + ‖β3‖Z

)
‖u‖X + ‖β4‖Z

= η1‖u‖X + η2,
(3.18)

where we denote η2 = ‖β4‖Z . Thus, by (H2), (3.17) and (3.18) imply that

‖u‖X ≤ Λ1 + η2(2La + 2Ma)
1− η1(2La + 2Ma)

,

which clearly states that Ω1 is bounded. �

Lemma 3.6. Set Ω2 =
{

u ∈ ker L
∣∣N u ∈ Im L

}
. Assume that (H4) holds, then

Ω2 is bounded.

Proof. Let u ∈ Ω2, then u ∈ ker L and u = c, c ∈ R. Since Nu ∈ Im L = ker Q, we
have Q(Nu) = θ; that is, Q1

(
N(c)

)
= 0. Taking account of (H4), |c| ≤ S, which

implies that Ω2 is bounded. �

Lemma 3.7. If (3.13) holds, set

Ω3 =
{
u ∈ ker L

∣∣− λ u + (1− λ) J
NL

QNu = 0, λ ∈ [0, 1]
}
;

if (3.14) holds, set

Ω3 =
{
u ∈ ker L

∣∣λu + (1− λ)J
NL

QNu = 0, λ ∈ [0, 1]
}
,

where JNL : Im Q → ker L is a linear isomorphism defined as

J
NL

(c µ(t)) = c, c ∈ R, t ∈ [0,+∞). (3.19)

Assume that (H4) holds. Then Ω3 is bounded.

Proof. If (3.13) holds, for u ∈ Ω3, then we have u = c, c ∈ R and λu = (1 −
λ)JNLQNu. Thus,

λc = (1− λ)
Q1

(
N(c)

)
Q1(µ(t))

µ(t) .

Therefore, via (H4) and (3.13), we have |c| ≤ S, which shows that Ω3 is bounded.
If (3.14) holds, the proof is similar. �

Next, let us give the main results of the paper.

Theorem 3.8. Let f : [0,+∞)×R3 → R satisfies the α-Carathéodory conditions.
Assume that the condition (A1), (A2), (H1), (H2), (H3), (H4) hold. Then problem
(1.1) has at least one solution in dom L.
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Proof. Let Ω be an bounded open set such that Ω ⊃ ∪3
i=1Ωi and we will prove that

deg(J
NL

QN |ker L,Ω ∩ ker L, 0) 6= 0.

The operator N is L-compact on Ω due to the fact that QN(Ω) is bounded and
KP,QN = KP (I −Q)N : Ω → X is compact by Lemma 3.4.

In view of Lemmas 3.5 and 3.6, we have that
(1) Lu 6= λNu for each (u, λ) ∈ [(dom L\ ker L) ∩ ∂Ω]× (0, 1);
(2) Nu 6∈ Im L for each u ∈ ker L ∩ ∂Ω.

Without loss of generality, we suppose that (3.14) holds. Define H(u, λ) =
λIu + (1 − λ)J

NL
QNu, where I is the identity operator in X. According to the

arguments in Lemma 3.7, we can get

H(u, λ) 6= 0, ∀u ∈ ker L ∩ ∂Ω,

and therefore, via the homotopy property of degree, we obtain that

deg (J
NL

QN |ker L,Ω ∩ ker L, 0) = deg (H(·, 0),Ω ∩ ker L, 0)

= deg (H(·, 1),Ω ∩ ker L, 0)

= deg (I,Ω ∩ ker L, 0) = 1,

which verifies the condition (3) of Theorem 2.4. Applying Theorem 2.4, we conclude
that (1.1) has at least one solution in dom L ∩ Ω. The proof is complete. �

For the next theorem, we use the assumption
(H3’) There exists a constant Λ2 > 0 such that

f(t, x, y, z) > 0, t ∈ [0,+∞), (3.20)

or
f(t, x, y, z) < 0, t ∈ [0,+∞), (3.21)

for each |x| > Λ2.

Theorem 3.9. Let f : [0,+∞) × R3 → R satisfy the α-Carathéodory conditions.
Assume that the condition (A1), (A2), (H1), (H2), (H4), (H3’) hold. Then (1.1)
has at least one solution in dom L.

Proof. We assume that (3.20) holds. Then, for each u ∈ Ω1, we have Q(Nu) =
θ, that is, Q1(Nu) = 0. So, there exists t2 ∈ [0,+∞) such that |u(t2)| ≤ Λ2.
Analogous to the proof of Lemma 3.5, we have that

‖u‖X ≤ 1− η1(2La + 2Ma)
2Λ1 + η2(La + 2Ma)

,

Then, Ω1 is bounded. Hence, similar to the proof of Theorem 3.8, we can conclude
that the problem (1.1) has at least one solution in dom L. �

4. Examples

To illustrate our main results, we present the following example.
CD0.6

0+

(
a(t)u′(t)

)
= f(t, u(t), CD0.6

0+u(t), u′(t)), t ∈ [0,+∞),

u′(0) = 0, lim
t→+∞

u(t) =
3∑

j=1

σju(ξj),
(4.1)
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where a(t) = et, and for (x, y, z) ∈ R3,

f(t, x, y, z) = ( 3
√
|x| − 10)

(
β1(t)

| sinx|
12 + x2 + y2

+ β2(t)
|y|

11 + y2 + x2

+ β3(t)
|z|e−|z|

(16 + x2)(1 + |z|)

)
;

β1(t) =
e−t(1 + t)−α

10(1 + t2)
, β2(t) =

e−2t(2 + t)−α

20(1 + t3)
, β3(t) =

e−3t(3 + t)−α

50(1 + t4)
,

for t ∈ [0,+∞); and ξ1 = 0.1, ξ2 = 0.2, ξ3 = 0.5, σ1 = 6, σ2 = 0.5, σ3 = 0.6.
It is easy to verify that a(t) satisfies conditions (A1) and (A2). Also, βi(t) ∈ Z

(i = 1, 2, 3). Note that

f(t, x, y, z) ≤ β1(t)|x|+ β2(t)|y|+ β3(t)|z|,

and that for |x| > 1000,
f(t, x, y, z) > 0,

Hence, (H1) and (H3’) hold.
Meanwhile, by simple computation we see that La = 1, Ma = 1, η1 < 0.1315,

which leads to the condition (H2’). Also for |c| > 1000, (H4) holds. Summing up
the points indicated above, by Theorem 3.9, problem (4.1) has at least one solution.
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