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ANTI-PERIODIC SOLUTIONS TO RAYLEIGH-TYPE
EQUATIONS WITH TWO DEVIATING ARGUMENTS

MEIQIANG FENG, XUEMEI ZHANG

Abstract. In this article, the Rayleigh equation with two deviating argu-
ments

x′′(t) + f(x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t)

is studied. By using Leray-Schauder fixed point theorem, we obtain the ex-
istence of anti-periodic solutions to this equation. The results are illustrated
with an example, which can not be handled using previous results.

1. Introduction

Consider the Rayleigh equation with two deviating arguments

x′′(t) + f(x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t), (1.1)

where f ∈ C(R, R), gi ∈ C(R×R, R), i = 1, 2, e, τi ∈ C(R, R), i = 1, 2, gi(t+T, x) =
gi(t, x), gi(t + T

2 ,−x) = −gi(t, x), τi(t + T ) = τi(t), τi(t + T
2 ) = −τi(t), i = 1, 2,

and e(t + T ) = e(t), e(t + T
2 ) = −e(t).

The dynamic behavior of Rayleigh equation have been widely investigated due
to their applications in many fields such as physics, mechanics and the engineer-
ing technique fields. For example, an excess voltage of ferro-resonance known as
some kind of nonlinear resonance having long duration arises from the magnetic
saturation of inductance in an oscillating circuit of a power system, and a boosted
excess voltage can give rise to some problems in relay protection. To probe this
mechanism, a mathematical model was proposed in [12, 17, 26], which is a special
case of the Rayleigh equation with two delays. This implies that (1.1) can repre-
sent analog voltage transmission. In a mechanical problem, f usually represents a
damping or friction term, gi represents the restoring force, e is an externally applied
force and τi is the time lag of the restoring force (see [4]). Some other examples
in practical problems concerning physics and engineering technique fields can be
found in [15, 19, 28].

Arising from problems in applied sciences, it is well-known that anti-periodic
problems of nonlinear differential equations have been extensively studied by many
authors during the past twenty years, see [3, 7, 21, 22, 23, 29] and references therein.
For example, anti-periodic trigonometric polynomials are important in the study of
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interpolation problems [8, 11], and anti-periodic wavelets are discussed in [6]. Re-
cently, anti-periodic boundary conditions have been considered for the Schrödinger
and Hill differential operator [9, 10]. Also anti-periodic boundary conditions ap-
pear in the study of difference equations [5, 27]. Moreover, anti-periodic boundary
conditions appear in physics in a variety of situations [1, 2, 18]. There exist only
few results for the existence of anti-periodic solutions for Rayleigh equation and
Rayleigh type equations with and without deviating arguments in the literature.
The main difficulty lies in the middle term f(x′(t)) of (1.1), the existence of which
obstructs the usual method of finding a priori bounds for delay Duffing or Liénard
equations from working. Thus, it is worthwhile to continue to investigate the anti-
periodic solutions of Rayleigh equation in this case.

At the same time, the periodic solutions for Rayleigh equations with two devi-
ating arguments have been studied by authors [20, 16, 25]. But all the results of
[20, 16, 25] are periodic solutions, not anti-periodic solutions. Thus, it is worth
discussing the existence of the anti-periodic solutions of Rayleigh equations with
two deviating arguments in this case.

The main purpose of this paper is to establish sufficient conditions for the exis-
tence of anti-periodic solution of (1.1) by using the Leray-Schauder fixed theorem.
We remark that our methods are different from those used in [20, 16, 25] to some
degree. In particular, one example is also given to illustrate the effectiveness of our
results.

For ease of exposition, we assume that T > 0, and define the following assump-
tions to be used in this article.

(H1) f ∈ C(R, R), gi ∈ C(R2, R), τi ∈ C(R, R), i = 1, 2, e ∈ C(R, R), gi(t +
T, x) = gi(t, x), τi(t + T ) = τi(t), gi(t + T

2 ,−x) = −gi(t, x), τi(t + T
2 ) =

−τi(t), i = 1, 2, and e(t + T ) = e(t), e(t + T
2 ) = −e(t).

(H2) f(0) = 0, and there exists γ > 0 such that xf(x) ≥ γ|x|2, for all x ∈ R (or
xf(x) ≤ −γ|x|2, for all x ∈ R).

(H3) gi is differentiable with respect to t, and there exist ai > 0, bi > 0, i = 1, 2,
such that

|g′it(t, x)| ≤ ai + bi|x|, ∀(t, x) ∈ R2, i = 1, 2.

(H4) There exist li > 0 such that |gi(t, x1) − gi(t, x2)| ≤ li|x1 − x2|, ∀t ∈
R, x1, x2 ∈ R, i = 1, 2.

(H5) There exist integers ni such that δi := maxt∈[0,T ] |τi(t)−niT | ≤ T , i = 1, 2.

The main result in this article is the following theorem, which will be proved in
Section 3.

Theorem 1.1. If (H1)–(H5) hold, and (b1 + b2)γ−1T 2 + 8
√

2(l1δ1 + l2δ2)π2γ−1 <
8π2, then (1.1) has at least one anti-periodic solution.

2. Preliminaries

In this section, to establish the existence of anti-periodic solutions for (1.1), we
provide some background definitions and some well-known results, which are crucial
in our arguments.

Let X be a real Banach space, and A : X → X be a completely continuous
operator.
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Definition 2.1. Let u : R → R be continuous. u(t) is said to be anti-periodic on
R if

u(t + T ) = u(t), u(t +
T

2
) = −u(t), ∀t ∈ R.

Lemma 2.2 (Leray-Schauder Fixed point theorem [14, 30]). Let X be a real Banach
space, and A : X → X be a completely continuous operator. If{

x ∈ X : x = λAx, 0 < λ < 1
}

is bounded, then A has a fixed point x∗ ∈ Ω, where

Ω =
{
x ∈ X : ‖x‖ ≤ l

}
, l = sup

{
x ∈ X : x = λAx, 0 < λ < 1

}
.

Lemma 2.3 (Wirtinger inequality [24]). Suppose that x(t) ∈ C1(R, R), x is T -
periodic and

∫ T

0
x(t)dt = 0. Then

∫ T

0
|x(t)|2dt ≤ T 2

4π2

∫ T

0
|x′(t)|2dt.

Lemma 2.4 ([13]). Let 0 ≤ α ≤ T be constant, s ∈ C(R, R) be periodic with period
T , and maxt∈[0,T ] |s(t)| ≤ α. Then for any u ∈ C1(R, R) which is periodic with
period T , we have∫ T

0

|u(t)− u(t− s(t))|2dt ≤ 2α2

∫ T

0

|u′(t)|2dt.

3. Proof of Theorem 1.1

In this section, we will use Lemma 2.2 to prove Theorem 1.1. Let

X =
{
x ∈ C(R, R) : x(t + T ) = x(t), x(t +

T

2
) = −x(t)

}
,

Y =
{
x ∈ C1(R, R) : x(t + T ) = x(t), x(t +

T

2
) = −x(t)

}
.

Then X and Y are real Banach space endowed with the norms

‖x‖∞ = max
t∈[0,T ]

|x(t)| and ‖x‖ = ‖x‖∞ + ‖x′‖∞,

respectively.
Choosing m > 0 with m 6= (2kπ

T )2 (k = 1, 2, . . . ), then equation

x′′(t) + mx(t) = 0

has only the trivial solution in Y . In fact, it is easy to see the general solution of
x′′(t) + mx(t) = 0 is

x(t) = c1 sin
√

mt + c2 cos
√

mt.

By the periodic properties we obtain that x = 0 is its unique solution in Y . Then
for h ∈ X,

−x′′(t)−mx(t) = h(t)
has unique solution x ∈ Y . Writing x = Kh, then K : X → Y is a completely
continuous operator.

Define an operator G : Y → X by

(Gx)(t) = f(x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))−mx(t)− e(t), x ∈ Y.

Then G : Y → X is continuous and bounded. Let A = KG : Y → Y . Then A is
also a completely continuous operator. By Lemma 2.2, if{

x ∈ Y : x = λAx, 0 < λ < 1
}
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is bounded in Y , then A has a fixed point in Y . Thus (1.1) has anti-periodic
solution.

Now suppose that x ∈ Y , 0 < λ < 1 satisfying x = λAx. Then x(t) is a solution
of

x′′(t) + λf(x′(t)) + λg1(t, x(t− τ1(t))) + λg2(t, x(t− τ2(t))) + (1− λ)mx(t) = λe(t),
(3.1)

and x(t) satisfies∫ T

0

x(t)dt =
∫ T/2

0

x(t)dt +
∫ T

T
2

x(t)dt =
∫ T/2

0

x(t)dt +
∫ T/2

0

x(t +
T

2
)dt = 0.

Thus, there exists ξ ∈ [0, T ] such that x(ξ) = 0. So we have

|x(t)| = |x(ξ) +
∫ t

ξ

x′(s)ds| ≤
√

T‖x′‖L2 .

Then
‖x‖∞ ≤

√
T‖x′‖L2 ,

where ‖ · ‖L2 is the norm of L2[0, T ].
Multiplying (3.1) by x′(t) and integrating from 0 to T , we have

λ

∫ T

0

f(x′(t))x′(t)dt = −λ

∫ T

0

g1(t, x(t− τ1(t)))x′(t)dt

− λ

∫ T

0

g2(t, x(t− τ2(t)))x′(t)dt + λ

∫ T

0

e(t)x′(t)dt.

(3.2)

By (H2), we know that∫ T

0

f(x′(t))x′(t)dt ≥ γ

∫ T

0

|x′(t)|2dt. (3.3)

By Hölder’s inequality, from (3.2) and (3.3), we have

γ

∫ T

0

x′2(t)dt

≤ |
∫ T

0

g1(t, x(t− τ1(t)))x′(t)dt|+ |
∫ T

0

g2(t, x(t− τ2(t)))x′(t)dt|+ ‖e‖L2‖x′‖L2

≤
∫ T

0

|g1(t, x(t− τ1(t)))− g1(t, x(t))‖x′(t)|dt + |
∫ T

0

g1(t, x(t))x′(t)dt|

+
∫ T

0

|g2(t, x(t− τ2(t)))− g2(t, x(t))‖x′(t)|dt

+ |
∫ T

0

g2(t, x(t))x′(t)dt|+ ‖e‖L2‖x′‖L2 .

(3.4)
Since the functions

∫ x(t)

0
gi(t, v)dv, i = 1, 2 are T -periodic , differentiable and

d

dt

∫ x(t)

0

gi(t, v)dv = gi(t, x(t))x′(t) +
∫ x(t)

0

g′it(t, v)dv, i = 1, 2,

we have ∫ T

0

gi(t, x(t))x′(t)dt = −
∫ T

0

dt

∫ x(t)

0

g′it(t, v)dv, i = 1, 2. (3.5)
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Combining (3.4) and (3.5) with (H3) and (H4) we obtain

γ

∫ T

0

x′2(t)dt

≤ l1

∫ T

0

|x(t)− x(t− τ1(t))‖x′(t)|dt + l2

∫ T

0

|x(t)− x(t− τ2(t))‖x′(t)|dt

+
∫ T

0

dt

∫ |x(t)|

0

(a1 + b1|v|)dv +
∫ T

0

dt

∫ |x(t)|

0

(a2 + b2|v|)dv + ‖e‖L2‖x′‖L2

≤ l1‖x′‖L2

( ∫ T

0

|x(t)− x(t− τ1(t)− n1T )|2dt
)1/2

+ l2‖x′‖L2

( ∫ T

0

|x(t)− x(t− τ2(t)− n2T )|2dt
)1/2

+ (a1 + a2)
∫ T

0

|x(t)|dt +
b1 + b2

2

∫ T

0

|x(t)|2dt + ‖e‖L2‖x′‖L2 .

(3.6)
By Lemma 2.2 we have ∫ T

0

|x(t)|2dt ≤ T 2

4π2
‖x′‖2

L2 . (3.7)

By (H5) and Lemma 2.3, we have( ∫ T

0

|x(t)−x(t−τi(t)−niT )|2dt
)1/2

≤
√

2δi

( ∫ T

0

|x′(t)|2dt
)1/2

, i = 1, 2. (3.8)

By Hölder’s inequality and (3.7), we have∫ T

0

|x(t)|dt ≤
√

T (
∫ T

0

|x(t)|2dt)1/2 ≤
√

T
T

2π
(
∫ T

0

|x′(t)|2dt)1/2 =
T 3/2

2π
‖x′‖L2 .

(3.9)
Thus, it follows from (3.6),(3.7) (3.8) and (3.9) that

γ‖x′‖2
L2 ≤

√
2(l1δ1 + l2δ2)‖x′‖2

L2 +
(a1 + a2)T 3/2

2π
‖x′‖L2

+
(b1 + b2)T 2

8π2
‖x′‖2

L2 + ‖e‖L2‖x′‖L2 .

Combining this with (b1 + b2)γ−1T 2 + 8
√

2(l1δ1 + l2δ2)π2γ−1 < 8π2, we know that
there exists c1 such that ‖x′‖L2 ≤ c1. Then

‖x‖∞ ≤
√

Tc1 := M1. (3.10)

Multiplying (3.1) by x′′(t) and integrating from 0 to T , we have

‖x′′‖2
L2 ≤ | − λ

∫ T

0

g1(t, x(t− τ1(t)))x′′(t)dt− λ

∫ T

0

g2(t, x(t− τ2(t)))x′′(t)dt

− (1− λ)m
∫ T

0

x(t)x′′(t)dt + λ

∫ T

0

e(t)x′′(t)dt|

≤ (g1M1 + g2M1)
√

T‖x′′‖L2 + mM1

√
T‖x′′‖L2 + ‖e‖L2‖x′′‖L2 ,

where

g1M1 = max
t∈[0,T ],‖x‖∞≤M1

|g1(t, x(t))|, g2M1 = max
t∈[0,T ],‖x‖∞≤M1

|g2(t, x(t))|.
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Thus
‖x′′‖L2 ≤ (g1M1 + g2M1)

√
T + mM1

√
T + ‖e‖L2 := M2.

Selecting η ∈ [0, T ] such that x′(η) = 0, we have

|x′(t)| ≤
∫ T

0

|x′′(t)|dt ≤
√

TM2. (3.11)

Thus from (3.10) and (3.11), we know that ‖x‖ ≤ M1+
√

TM2 := M . It is following
that {

x ∈ Y : x = λAx, 0 < λ < 1
}

is bounded. Therefore, by Lemma 2.2, we obtain that A has a fixed point x∗ ∈ Ω,
where Ω = {x ∈ Y : ‖x‖ ≤ M}. Therefore, (1.1) has an anti-periodic solution.

An example

In this section, we give one example to demonstrate the results obtained in
previous sections. Consider the forced Rayleigh-type equation with period 2π,

x′′(t) + f(x′(t)) + g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = e(t), (3.12)

where

f(x) =

{
ex − 1, x ≥ 0,

1− e−x, x ≤ 0,
(3.13)

and

g1(t, x) =
1
9

sin2(t)x(t− θ cos t) + cos t,

g2(t, x) =
1
9

cos2(t)x(t− θ sin t) + sin t,

e(t) = sin t, τ1(t) = θ cos t, τ2(t) = θ sin t, θ ∈ (0, 1).

(3.14)

Then (3.12) has at least one anti-periodic solution with period 2π.
By (3.13) and (3.14), it is not difficult to see that condition (H1) holds, T = 2π,

|f(0)| = 0,

|g′1t(t, x)| = |1
9
x sin(2t)− sin t| ≤ 1

9
|x|+ 1, ∀(t, x) ∈ R2,

|g′2t(t, x)| = | − 1
9
x sin(2t) + cos t| ≤ 1

9
|x|+ 1, ∀(t, x) ∈ R2.

On the other hand, let γ = 1, δi = θ, li = 1
9 , bi = 1

9 , i = 1, 2. If θ ∈ (0,
√

2
2 ), then

xf(x) ≥ |x|2, for all x ∈ R,

(b1 + b2)γ−1T 2 + 8
√

2(l1δ1 + l2δ2)π2γ−1 < 8π2.

Hence, (H1)–(H5) are satisfied. Thus, by Theorem 1.1, Equation (3.12) has at least
one anti-periodic solution with period 2π.
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