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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO
HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL

EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

CHENXING ZHOU

Abstract. In this article, we consider the nonlinear fractional order three-
point boundary-value problem

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(n−2)(1) =

Z η

0
u(s)ds,

where Dα
0+ is the standard Riemann-Liouville fractional derivative, n − 1 <

α ≤ n, n ≥ 3. By using a fixed-point theorem in partially ordered sets, we
obtain sufficient conditions for the existence and uniqueness of positive and
nondecreasing solutions to the above boundary value problem.

1. Introduction

Fractional differential equations arise in many engineering and scientific disci-
plines as the mathematical models of systems and processes in the fields of physics,
chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology,
Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-
analytical chemistry, biology, control theory, fitting of experimental data, and so
on, and involves derivatives of fractional order. Fractional derivatives provide an
excellent tool for the description of memory and hereditary properties of various
materials and processes. This is the main advantage of fractional differential equa-
tions in comparison with classical integer-order models. For an extensive collection
of such results, we refer the readers to the monographs by Samko et al [27], Pod-
lubny [25] and Kilbas et al [14]. For the basic theory and recent development of the
subject, we refer a text by Lakshmikantham [17]. For more details and examples,
see [1, 2, 4, 6, 7, 15, 16, 17, 29] and the references therein. However, the theory
of boundary value problems for nonlinear fractional differential equations is still in
the initial stages and many aspects of this theory need to be explored.

Zhang [28] considered the singular fractional differential equation

Dα
0+u(t) + a(t)f(t, u(t), u′(t), . . . , u(n−2)(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,
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where Dα
0+ is the standard Riemann-Liouville fractional derivative of order n−1 <

α ≤ n, n ≥ 2. They used a fixed-point theorem for the mixed monotone operator
to show the existence of positive solutions for the above fractional boundary value
problem. But the uniqueness is not treated.

In [8], the authors obtained the existence and multiplicity of positive solutions
for a class of higher-order nonlinear fractional differential equations with integral
boundary conditions by applying Krasnoselskii’s fixed-point theorem in cones. But
the uniqueness is also not treated.

On the other hand, the study of the existence of solutions of multi-point bound-
ary value problems for linear second-order ordinary differential equations was ini-
tiated by Il’in and Moiseev [13]. Then Gupta [9] studied three-point boundary
value problems for nonlinear second-order ordinary differential equations. Since
then, nonlinear second-order three-point boundary value problems have also been
studied by several authors. We refer the reader to [10, 12, 20, 21, 22] and the
references therein. However, all these papers are concerned with problems with
three-point boundary condition restrictions on the slope of the solutions and the
solutions themselves, for example,

u(0) = 0, αu(η) = u(1);

u(0) = βu(η), αu(η) = u(1);

u′(0) = 0, αu(η) = u(1);

u(0)− βu′(0) = 0, αu(η) = u(1);

αu(0)− βu′(0) = 0, u′(η) + u′(1) = 0; etc.

In this article, we study the higher-order three-point boundary-value problem of
fractional differential equation.

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, (1.1)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(n−2)(1) =
∫ η

0

u(s)ds, (1.2)

where Dα
0+ is the standard Riemann-Liouville fractional derivative. n − 1 < α ≤

n, n ≥ 3, 0 < ηα < α(α − 1)(α − 2) . . . (α − n + 2). We will prove the existence
and uniqueness of a positive and nondecreasing solution for the boundary value
problems (1.1)-(1.2) by using a fixed point theorem in partially ordered sets.

We note that the new three-point boundary conditions are related to the area
under the curve of solutions u(t) from t = 0 to t = η. Existence of fixed point in
partially ordered sets has been considered recently in [5, 11, 23, 24, 26]. This work
is motivated by papers [5, 19].

2. Some definitions and fixed point theorems

The following definitions and lemmas will be used for proving our the main
results.

Definition 2.1. Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed, convex
set P ⊂ E is said to be a cone provided the following are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P ;
(b) if y ∈ P and −y ∈ P , then y = 0.
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If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y if
and only if y − x ∈ P .

Definition 2.2 ([25]). The integral

Is
0+f(x) =

1
Γ(s)

∫ x

0

f(t)
(x− t)1−s

dt, x > 0,

where s > 0, is called Riemann-Liouville fractional integral of order s and Γ(s) is
the Euler gamma function defined by

Γ(s) =
∫ +∞

0

ts−1e−tdt, s > 0.

Definition 2.3 ([14]). For a function f(x) given in the interval [0,∞), the expres-
sion

Ds
0+f(x) =

1
Γ(n− s)

(
d

dx
)n

∫ x

0

f(t)
(x− t)s−n+1

dt,

where n = [s] + 1, [s] denotes the integer part of number s, is called the Riemann-
Liouville fractional derivative of order s.

The following two lemmas can be found in [3, 14] which are crucial in finding an
integral representation of fractional boundary value problem (1.1) and (1.2).

Lemma 2.4 ([3, 14]). Let α > 0 and u ∈ C(0, 1) ∩ L(0, 1). Then the fractional
differential equation

Dα
0+u(t) = 0

has

u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n, ci ∈ R, i = 0, 1, . . . , n, n = [α] + 1

as unique solution.

Lemma 2.5 ([3, 14]). Assume that u ∈ C(0, 1)∩L(0, 1) with a fractional derivative
of order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα
0+D

α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

for some ci ∈ R, i = 0, 1, . . . , n, n = [α] + 1.

The following fixed-point theorems in partially ordered sets are fundamental and
important to the proofs of our main results.

Theorem 2.6 ([11]). Let (E,≤) be a partially ordered set and suppose that there
exists a metric d in E such that (E, d) is a complete metric space. Assume that E
satisfies the following condition:

if {xn} is a nondecreasing sequence in E such that
xn → x, then xn ≤ x for all n ∈ N.

(2.1)

Let T : E → E be nondecreasing mapping such that

d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)), for x ≥ y,

where ψ : [0,+∞) → [0,+∞) is a continuous and nondecreasing function such that
ψ is positive in (0,+∞), ψ(0) = 0 and limt→∞ ψ(t) = ∞. If there exists x0 ∈ E
with x0 ≤ T (x0), then T has a fixed point.
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If we consider that (E,≤) satisfies the condition

for x, y ∈ E there exists z ∈ E which is comparable to x and y, (2.2)

then we have the following result.

Theorem 2.7 ([23]). Adding condition (2.2) to the hypotheses of Theorem 2.6, we
obtain uniqueness of the fixed point.

3. Related lemmas

The basic space used in this paper is E = C[0, 1]. Then E is a real Banach space
with the norm ‖u‖ = max0≤t≤1 |u(t)|. Note that this space can be equipped with
a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t), t ∈ [0, 1].

In [23] it is proved that (C[0, 1],≤) with the classic metric given by

d(x, y) = sup
0≤t≤1

{|x(t)− y(t)|}

satisfied condition (2.1) of Theorem 2.6. Moreover, for x, y ∈ C[0, 1] as the function
max{x, y} ∈ C[0, 1], (C[0, 1],≤) satisfies condition (2.2).

Lemma 3.1. Let 0 < ηα < α(α− 1)(α− 2) . . . (α− n+ 2). If h ∈ C[0, 1], then the
boundary-value problem

Dα
0+u(t) + h(t) = 0, 0 < t < 1, n− 1 < α ≤ n, (3.1)

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(n−2)(1) =
∫ η

0

u(s)ds, (3.2)

has a unique solution

u(t) =
∫ 1

0

G(t, s)h(s)ds, (3.3)

where

G(t, s) = G1(t, s) +G2(t, s), (3.4)

G1(t, s) =
1

Γ(α)

{
tα−1(1− s)α−n+1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1(1− s)α−n+1, 0 ≤ t ≤ s ≤ 1,

(3.5)

G2(t, s) =
αtα−1

α(α− 1)(α− 2) . . . (α− n+ 2)− ηα

∫ η

0

G1(t, s)dt. (3.6)

Proof. By Lemma 2.5, the solution of (3.1) can be written as

u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n −

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds.

From (3.2), we know that c2 = c3 = · · · = cn = 0 and

u(n−2)(t) = c1(α− 1)(α− 2) . . . (α− n+ 2)tα−n+1

− (α− 1)(α− 2) . . . (α− n+ 2)
∫ t

0

(t− s)α−n+1

Γ(α)
h(s)ds.

Thus, together with u(n−2)(1) =
∫ η

0
u(s)ds, we have

c1 =
1

(α− 1)(α− 2) . . . (α− n+ 2)

∫ η

0

u(s)ds+
∫ 1

0

(1− s)α−n+1

Γ(α)
h(s)ds.
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Therefore, the unique solution of boundary value problem (3.1)-(3.2) is

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds

+
tα−1

(α− 1)(α− 2) . . . (α− n+ 2)

∫ η

0

u(s)ds+ tα−1

∫ 1

0

(1− s)α−n+1

Γ(α)
h(s)ds

= −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds+

tα−1

(α− 1)(α− 2) . . . (α− n+ 2)

∫ η

0

u(s)dx

+
∫ t

0

tα−1(1− s)α−n+1

Γ(α)
h(s)ds+

∫ 1

t

tα−1(1− s)α−n+1

Γ(α)
h(s)ds

=
1

Γ(α)

∫ t

0

(tα−1(1− s)α−n+1 − (t− s)α−1)h(s)ds

+
1

Γ(α)

∫ 1

t

tα−1(1− s)α−n+1h(s)ds

+
tα−1

(α− 1)(α− 2) . . . (α− n+ 2)

∫ η

0

u(s)ds

=
∫ 1

0

G1(t, s)h(s)ds+
tα−1

(α− 1)(α− 2) . . . (α− n+ 2)

∫ η

0

u(s)ds,

(3.7)

where G1(t, s) is defined by (3.5). From (3.7), we have∫ η

0

u(t)dt =
∫ η

0

∫ 1

0

G1(t, s)h(s) ds dt+
ηα

α(α− 1)(α− 2) . . . (α− n+ 2)

∫ η

0

u(s)ds.

It follows that∫ η

0

u(t)dt =
α(α− 1)(α− 2) . . . (α− n+ 2)

α(α− 1)(α− 2) . . . (α− n+ 2)− ηα

∫ η

0

∫ 1

0

G1(t, s)h(s) ds dt. (3.8)

Substituting (3.8) into (3.7), we obtain

u(t) =
∫ 1

0

G1(t, s)h(s)ds

+
αtα−1

α(α− 1)(α− 2) . . . (α− n+ 2)− ηα

∫ η

0

∫ 1

0

G1(t, s)h(s) ds dt

=
∫ 1

0

G1(t, s)h(s)ds+
∫ 1

0

G2(t, s)h(s)ds

=
∫ 1

0

G(t, s)h(s)ds,

where G(t, s), G1(t, s) and G2(t, s) are defined by (3.4), (3.5), (3.6), respectively.
The proof is complete. �

Lemma 3.2. The function G1(t, s) defined by (3.5) satisfies
(i) G1 is a continuous function and G1(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1];
(ii)

sup
t∈[0,1]

∫ 1

0

G1(t, s)ds =
n− 2

(α− n+ 2)Γ(α+ 1)
.
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Proof. (i) The continuity of G1 is easily checked. On the other hand, for 0 ≤ t ≤
s ≤ 1 it is obvious that

G1(t, s) =
tα−1(1− s)α−n+1

Γ(α)
≥ 0.

In the case 0 ≤ s ≤ t ≤ 1 (s 6= 1), we have

G1(t, s) =
1

Γ(α)

[
tα−1(1− s)α−1

(1− s)n−2
− (t− s)α−1

]
≥ 1

Γ(α)
[
tα−1(1− s)α−1 − (t− s)α−1

]
=

1
Γ(α)

[
(t− ts)α−1 − (t− s)α−1

]
≥ 0.

Moreover, as G1(t, 1) = 0, then we conclude that G1(t, s) ≥ 0 for all (t, s) ∈
[0, 1]× [0, 1].

(ii) Since∫ 1

0

G1(t, s)ds =
∫ t

0

G1(t, s)ds+
∫ 1

t

G1(t, s)ds

=
1

Γ(α)

∫ t

0

(tα−1(1− s)α−n+1 − (t− s)α−1)ds

+
1

Γ(α)

∫ 1

t

tα−1(1− s)α−n+1ds

=
1

Γ(α)

( tα−1

α− n+ 2
− 1
α
tα

)
.

On the other hand, let

ρ(t) =
∫ 1

0

G1(t, s)ds =
1

Γ(α)

( tα−1

α− n+ 2
− 1
α
tα

)
,

then, as n ≥ 3, we have

ρ′(t) =
1

Γ(α)

( α− 1
α− n+ 2

tα−2 − tα−1
)
> 0, for t > 0,

the function ρ(t) is strictly increasing and, consequently,

sup
t∈[0,1]

ρ(t) = sup
t∈[0,1]

∫ 1

0

G1(t, s)ds = ρ(1) =
1

Γ(α)

( 1
α− n+ 2

− 1
α

)
=

n− 2
α(α− n+ 2)Γ(α)

=
n− 2

(α− n+ 2)Γ(α+ 1)
.

The proof is complete. �

Remark 3.3. Obviously, by Lemma 3.1 and 3.2, we have u(t) ≥ 0 if h(t) ≥ 0 on
t ∈ [0, 1].

Lemma 3.4. G1(t, s) is strictly increasing in the first variable.

Proof. For s fixed, we let

g1(t) =
1

Γ(α)
(
tα−1(1− s)α−n+1 − (t− s)α−1

)
for s ≤ t,



EJDE-2012/234 EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS 7

g2(t) =
1

Γ(α)
tα−1(1− s)α−n+1 for t ≤ s.

It is easy to check that g1(t) is strictly increasing on [s, 1] and g2(t) is strictly
increasing on [0, s]. Then we have the following cases:

Case 1: t1, t2 ≤ s and t1 < t2. In this case, we have g2(t1) < g2(t2), i.e.
G1(t1, s) < G2(t2, s).

Case 2: s ≤ t1, t2 and t1 < t2. In this case, we have g1(t1) < g1(t2), i.e.
G1(t1, s) < G1(t2, s).

Case 3: t1 ≤ s ≤ t2 and t1 < t2. In this case, we have g2(t1) ≤ g2(s) = g1(s) ≤
g1(t2). We claim that g2(t1) < g1(t2). In fact, if g2(t1) = g1(t2), then g2(t1) =
g2(s) = g1(s) = g1(t2), from the monotone of g1 and g2, we have t1 = s = t2, which
contradicts with t1 < t2. This fact implies that G1(t1, s) < G1(t2, s). The proof is
complete. �

Remark 3.5. Obviously, by Lemma 3.4, we have∫ 1

0

G2(t, s)ds ≤
η(n− 2)

Γ(α)[α(α− 1)(α− 2) . . . (α− n+ 2)− ηα](α− n+ 2)
. (3.9)

Proof. In fact, from Lemma 3.4 and (3.6), we have

G2(t, s) ≤ G2(1, s) =
αηG1(1, s)

α(α− 1)(α− 2) . . . (α− n+ 2)− ηα

=
αη((1− s)α−n+1 − (1− s)α−1)

Γ(α)[α(α− 1)(α− 2) . . . (α− n+ 2)− ηα]
.

Thus,∫ 1

0

G2(t, s)ds ≤
αη

∫ 1

0
((1− s)α−n+1 − (1− s)α−1)ds

Γ(α)[α(α− 1)(α− 2) . . . (α− n+ 2)− ηα]

=
η(n− 2)

Γ(α)[α(α− 1)(α− 2) . . . (α− n+ 2)− ηα](α− n+ 2)
,

for s, t ∈ [0, 1]× [0, 1]. �

4. Main Result

For notational convenience, we denote

L :=
n− 2

(α− n+ 2)Γ(α+ 1)

+
η(n− 2)

Γ(α) [α(α− 1)(α− 2) . . . (α− n+ 2)− ηα] (α− n+ 2)
> 0.

The main result of this paper is the following.

Theorem 4.1. The boundary value problem (1.1)-(1.2) has a unique positive and
strictly increasing solution u(t) if the following conditions are satisfied:

(i) f : [0, 1] × [0,+∞) → [0,+∞) is continuous and nondecreasing respect to
the second variable and f(t, u(t)) 6≡ 0 for t ∈ Z ⊂ [0, 1] with µ(Z) > 0 (µ
denotes the Lebesgue measure);

(ii) There exists 0 < λ < 1
L such that for u, v ∈ [0,+∞) with u ≥ v and

t ∈ [0, 1]
f(t, u)− f(t, v) ≤ λ ln(u− v + 1).
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Proof. Consider the cone

K = {u ∈ C[0, 1] : u(t) ≥ 0}.
As K is a closed set of C[0, 1], K is a complete metric space with the distance given
by d(u, v) = supt∈[0,1] |u(t)− v(t)|. Now, we consider the operator T defined by

Tu(t) =
∫ 1

0

G(t, s)f(s, u(s))ds,

where G(t, s) is defined by (3.4). By Lemma 3.2 and condition (i), we have that
T (K) ⊂ K.

We now show that all the conditions of Theorem 2.6 and Theorem 2.7 are satis-
fied.

Firstly, by condition (i), for u, v ∈ K and u ≥ v, we have

Tu(t) =
∫ 1

0

G(t, s)f(s, u(s))ds ≥
∫ 1

0

G(t, s)f(s, v(s))ds = Tv(t).

This proves that T is a nondecreasing operator.
On the other hand, for u ≥ v and by condition (ii) we have

d(Tu, Tv) = sup
0≤t≤1

|(Tu)(t)− (Tv)(t)| = sup
0≤t≤1

((Tu)(t)− (Tv)(t))

= sup
0≤t≤1

∫ 1

0

G(t, s)(f(s, u(s))− f(s, v(s)))ds

≤ sup
0≤t≤1

∫ 1

0

G(t, s)λ · ln(u(s)− v(s) + 1)ds.

Since the function h(x) = ln(x + 1) is nondecreasing, by Lemma 3.2 (ii), Remark
3.5 and condition (ii), we have

d(Tu, Tv)

≤ λ ln(‖u− v‖+ 1)
(

sup
0≤t≤1

∫ 1

0

G1(t, s)ds+ sup
0≤t≤1

∫ 1

0

G2(t, s)ds
)

≤ λ ln(‖u− v‖+ 1) · L
≤ ‖u− v‖ − (‖u− v‖ − ln(‖u− v‖+ 1)).

Let ψ(x) = x− ln(x+ 1). Obviously ψ : [0,+∞) → [0,+∞) is continuous, nonde-
creasing, positive in (0,+∞), ψ(0) = 0 and limx→+∞ ψ(x) = +∞. Thus, for u ≥ v,
we have

d(Tu, Tv) ≤ d(u, v)− ψ(d(u, v)).

As G(t, s) ≥ 0 and f ≥ 0, (T0)(t) =
∫ 1

0
G(t, s)f(s, 0)ds ≥ 0 and by Theorem 2.6

we know that problem (1.1)-(1.2) has at least one nonnegative solution. As (K,≤)
satisfies condition (2.2), thus, Theorem 2.7 implies that uniqueness of the solution.

Finally, we will prove that this solution u(t) is strictly increasing function. As
u(0) =

∫ 1

0
G(0, s)f(s, u(s))ds and G(0, s) = 0 we have u(0) = 0.

Moreover, if we take t1, t2 ∈ [0, 1] with t1 < t2, we can consider the following
cases.

Case 1: t1 = 0, in this case, u(t1) = 0 and, as u(t) ≥ 0, suppose that u(t2) = 0.
Then

0 = u(t2) =
∫ 1

0

G(t2, s)f(s, u(s))ds.
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This implies that
G(t2, s) · f(s, u(s)) = 0, a.e. (s)

and as G(t2, s) 6= 0 a.e.(s) we get f(s, u(s)) = 0 a.e. (s). On the other hand, f is
nondecreasing respect to the second variable, then we have

f(s, 0) ≤ f(s, u(s)) = 0, a.e. (s)

which contradicts the condition (i) f(t, 0) 6= 0 for t ∈ Z ⊂ [0, 1](µ(Z) 6= 0). Thus
u(t1) = 0 < u(t2).

Case 2: 0 < t1. In this case, let us take t2, t1 ∈ [0, 1] with t1 < t2, then

u(t2)− u(t1) = (Tu)(t2)− (Tu)(t1)

=
∫ 1

0

(G(t2, s)−G(t1, s))f(s, u(s))ds.

Taking into account Lemma 3.4 and the fact that f ≥ 0, we get u(t2)− u(t1) ≥ 0.
Suppose that u(t2) = u(t1) then∫ 1

0

(G(t2, s)−G(t1, s))f(s, u(s))ds = 0

and this implies

(G(t2, s)−G(t1, s))f(s, u(s)) = 0 a.e. (s).

Again, Lemma 3.4 gives us

f(s, u(s)) = 0 a.e. (s)

and using the same reasoning as above we have that this contradicts condition (i)
f(t, 0) 6= 0 for t ∈ Z ⊂ [0, 1](µ(Z) 6= 0). Thus u(t1) = 0 < u(t2). The proof is
complete. �

5. Example

The fractional boundary-value problem

D
7/2
0+ u(t) + (t2 + 1) ln(2 + u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) =
∫ 1/2

0

u(s)ds.
(5.1)

has a unique and strictly increasing solution.
In this case, n = 4, α = 7/2, η = 1/2, f(t, u) = (t2 + 1) ln(2 + u(t)) for

(t, u) ∈ [0, 1] × [0,∞). Note that f is a continuous function and f(t, u) 6= 0 for
t ∈ [0, 1]. Moreover, f is nondecreasing respect to the second variable since ∂f

∂u =
1

u+2 (t2 + 1) > 0. On the other hand, for u ≥ v and t ∈ [0, 1], we have

f(t, u)− f(t, v) = (t2 + 1) ln(2 + u)− (t2 + 1) ln(2 + v) = (t2 + 1) ln
(2 + u

2 + v

)
= (t2 + 1) ln

(2 + v + u− v

2 + v

)
= (t2 + 1) ln

(
1 +

u− v

2 + v

)
≤ (t2 + 1) ln(1 + (u− v)) ≤ 2 ln(1 + u− v).

In this case, λ = 2. By simple computation, we have 0 < λ < 1/L. Thus,
Theorem 4.1 implies that boundary value problem (1.1)-(1.2) has a unique and
strictly increasing solution.
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