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SOLUTIONS TO FOURTH-ORDER RANDOM DIFFERENTIAL
EQUATIONS WITH PERIODIC BOUNDARY CONDITIONS

XIAOLING HAN, XUAN MA, GUOWEI DAI

Abstract. Existence of solutions and of extremal random solutions are proved
for periodic boundary-value problems of fourth-order ordinary random differ-
ential equations. Our investigation is done in the space of continuous real-
valued functions defined on closed and bounded intervals. Also we study the
applications of the random version of a nonlinear alternative of Leray-Schauder
type and an algebraic random fixed point theorem by Dhage.

1. Introduction

Let R denote the real line and let J = [0, 1], a closed and bounded interval in R.
Let C1(J,R) denote the class of real-valued functions defined and continuously on
J . Given a measurable space (Ω,A) and a measurable function x : Ω → AC3(J,R),
we consider a fourth-order periodic boundary-value problem of ordinary random
differential equations (for short PBVP)

x(4)(t, ω) = f(t, x(t, ω), x′′(t, ω), ω) a.e. t ∈ J

x(i)(0, ω) = x(i)(1, ω), i = 0, 1, 2, 3
(1.1)

for all ω ∈ Ω, where f : J × R× R× Ω → R.
By a random solution of equation (1.1) we mean a measurable function x :

Ω → AC(3)(J,R) that satisfies the equation (1.1), where AC(3)(J,R) is the space
of real-valued functions whose 3rd derivative exists and is absolutely continuously
differentiable on J .

When the random parameter ω is absent, the random (1.1) reduce to the fourth-
order ordinary differential equations,

x(4)(t) = f(t, x(t), x′′(t)) a.e. t ∈ J

x(i)(0) = x(i)(1), i = 0, 1, 2, 3
(1.2)

where, f : J × R → R.
Equation (1.2) has been studied by many authors for different aspects of so-

lutions. See for example [7, 8, 11, 12, 13]. Only a few authors have studied the
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random periodic boundary-value problem, see [5, 1, 14], Dhage [5] studied the pe-
riodic boundary-value problems for the random differential equation

−x′′(t, ω) = f(t, x(t, ω), ω) a.e. t ∈ J,
x(0, ω) = x(2π, ω), x′(0, ω) = x′(2π, ω) .

In this article, we study the existence of solutions and the existence of extremal
solutions for the fourth-order random equation (1.1), under suitable conditions. Our
work relays on the random versions of fixed point theorems based on the theorems
in [2, 3].

2. Existence result

Let E denote a Banach space with the norm ‖ · ‖ and let Q : E → E. We further
assume that the Banach space E is separable; i.e., E has a countable dense subset
and let βE be the σ-algebra of Borel subsets of E. We say a mapping x : Ω → E is
measurable if for any B ∈ βE ,

x−1(B) = {ω ∈ Ω : x(ω) ∈ B} ∈ A.
To define integrals of sample paths of random process, it is necessary to define a
map is jointly measurable, a mapping x : Ω× E → E is called jointlymeasurable,
if for any B ∈ βE , one has

x−1(B) = {(ω, x) ∈ Ω× E : x(ω, x) ∈ B} ∈ A × βE ,

where A× βE is the direct product of the σ-algebras A and βE those defined in Ω
and E respectively.

Let Q : Ω×E → E be a mapping. Then Q is called a random operator if Q(ω, x)
is measurable in ω for all x ∈ E and it is expressed as Q(ω)x = Q(ω, x). A random
operator Q(ω) on E is called continuous (resp. compact, totally bounded and
completely continuous) if Q(ω, x) is continuous (resp. compact, totally bounded
and completely continuous) in x for all ω ∈ Ω. We could get more details of
completely continuous random operators on Banach spaces and their properties in
Itoh [6]. In this article, we use the following lemma in proving the main result of
this paper, that lemma is an immediate corollary to the results in [2, 3].

Lemma 2.1 ([5]). Let BR(0) and B̄R(0) be the open and closed balls centered at
origin of radius R in the separable Banach space E and let Q : Ω × B̄R(0) → E
be a compact and continuous random operator. Further suppose that there does
not exists an u ∈ E with ‖u‖ = R such that Q(ω)u = αu for all α ∈ Ω, where
α > 1. Then the random equation Q(ω)x = x has a random solution; i.e., there is
a measurable function ξ : Ω → B̄R(0) such that Q(ω)ξ(ω) = ξ(ω) for all ω ∈ Ω.

Lemma 2.2 ([5]). Let Q : Ω×E → E be a mapping such that Q(·, x) is measurable
for all x ∈ E and Q(ω, ·) is continuous for all ω ∈ Ω. Then the map (ω, x) →
Q(ω, x) is jointly measurable.

We need the following definitions in the sequel.

Definition 2.3. A function f : J ×R×R×Ω → R is called random Carathéodory
if

• the map (t, ω) → f(t, x, y, ω) is jointly measurable for all (x, y) ∈ R2, and
• the map (x, y) → f(t, x, y, ω) is continuous for almost all t ∈ J and ω ∈ Ω.
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Definition 2.4. A function f : J×R×R×Ω → R is called random L1-Carathéodory
if

• for each real number r > 0 there is a measurable and bounded function
qr : Ω → L1(J,R) such that

|f(t, x, y, ω)| ≤ qr(t, ω) a.e. t ∈ J

whenever |x|, |y| ≤ r, and for all ω ∈ Ω.

Now we seek the random solutions of (1.1) in the Banach space C(J,R) of con-
tinuous real-valued functions defined on J . We equip this space with the supremum
norm

‖x‖ = sup
t∈J

|x(t)|.

It is know that the Banach space C(J,R) is separable. We use L1(J,R) denote the
space of Lebesque measurable real-valued functions defined on J , and the usual
norm in L1(J,R) defined by

‖x‖L1 =
∫ 1

0

|x(t)|dt.

For a given real number M ∈ (0, 4π4), h ∈ C(J,R), consider the linear PBVP

x(4)(t) +Mx(t) = h(t) t ∈ J

x(i)(0) = x(i)(1), i = 0, 1, 2, 3.
(2.1)

By the theorem of [10], the unique solution of problem

x(4)(t) +Mx(t) = 0 t ∈ J

x(i)(0) = x(i)(1), i = 0, 1, 2

x(3)(0)− x(3)(1) = 1

(2.2)

has a unique solution r(t) ∈ C4(J,R) satisfying r(t) > 0. Then the unique solution
of (2.1) is

x(t) =
∫ 1

0

G(t, s)h(s)ds, (2.3)

where

G(t, s) =

{
r(t− s), 0 ≤ s ≤ t ≤ 1;
r(1 + t− s), 0 ≤ t < s ≤ 1.

(2.4)

We consider the following set of hypotheses:
(H1) The function f is random Carathéodory on J × R× R× Ω.
(H2) There exists a measurable and bounded function γ : Ω → L2(J,R) and a

continuous and nondecreasing function ψ : R+ → (0,∞) such that

|f(s, x, x′′, ω) +Mx| ≤ γ(t, ω)ψ(|x|) a.e. t ∈ J

for all ω ∈ Ω and x ∈ R.
Our main existence result is as follows.

Theorem 2.5. Assume that (H1)–(H2) hold. Suppose that there exists a real num-
ber R > 0 such that

R > rM‖γ(ω)‖L1ψ(R) (2.5)
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for all t ∈ J and ω ∈ Ω, where rM = maxt∈[0,1] r(t), r(t) is in the Green’s function
(2.4). Then (1.1) has a random solution defined on J .

Proof. Set E = C(J,R) and define a mapping Q : Ω× E → E by

Q(ω)x(t) =
∫ 1

0

G(t, s)(f(s, x(s, ω), x′′(s, ω), ω) +Mx(s, ω))ds (2.6)

for all t ∈ J , ω ∈ Ω. Then the solutions of (1.1) are fixed points of operator Q.
Define a closed ball B̄R(0) in E centered at origin 0 of radius R, where the real

number R satisfies the inequality (2.5). We show that Q satisfies all the conditions
of Lemma2.1 on B̄R(0).

First we show that Q is a random operator in B̄R(0), since f(t, x, x′′, ω) is ran-
dom Carathéodory and x(t, ω) is measurable, the map ω → f(t, x, x′′, ω) +Mx is
measurable. Similarly, the production G(t, s)[f(s, x(s, ω), x′′(s, ω), ω) + Mx(s, ω)]
of a continuous and measurable function is again measurable. Further, the integral
is a limit of a finite sum of measurable functions, therefore, the map

ω 7→
∫ 1

0

G(t, s)(f(s, x(s, ω), x′′(s, ω), ω) +Mx(s, ω))ds = Q(ω)x(t)

is measurable. As a result, Q is a random operator on Ω× B̄R(0) into E.
Next we show that the random operator Q(ω) is continuous on B̄R(0). Let xn

be a sequence of points in B̄R(0) converging to the point x in B̄R(0). Then it is
sufficiente to prove that

lim
n→∞

Q(ω)xn(t) = Q(ω)x(t) for all t ∈ J, ω ∈ Ω.

By the dominated convergence theorem, we obtain

lim
n→∞

Q(ω)xn(t) = lim
n→∞

∫ 1

0

G(t, s)(f(s, xn(s, ω), x′′n(s, ω), ω) +Mxn(s, ω))ds

=
∫ 1

0

G(t, s) lim
n→∞

[f(s, xn(x, ω), x′′n(s, ω), ω) +Mxn(s, ω)]ds

=
∫ 1

0

G(t, s)[f(s, x(s, ω), x′′(s, ω), ω) +Mxn(s, ω)]ds

= Q(ω)x(t)

for all t ∈ J, ω ∈ Ω. This shows that Q(ω) is a continuous random operator on
B̄r(0).

Now we show that Q(ω) is compact random operator on B̄R(0). To finish it, we
should prove that Q(ω)(B̄r(0)) is uniformly bounded and equi-continuous set in E
for each ω ∈ Ω. Since the map ω → γ(t, ω) is bounded and L2(J,R) ⊂ L1(J,R),
by (H2), there is a constant c such that ‖γ(ω)‖L1 ≤ c for all ω ∈ Ω. Let ω ∈ Ω be
fixed, then for any x : Ω → B̄R(0), one has

|Q(ω)x(t)| ≤
∫ 1

0

G(t, s)|(f(s, x(s, ω), x′′(s, ω), ω) +Mx(s, ω))|ds

≤
∫ 1

0

G(t, s)γ(s, ω)ψ(|x(s, ω)|)ds

≤ rMcψ(R) = K
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for all t ∈ J and each ω ∈ Ω. This shows that Q(ω)(B̄R(0)) is a uniformly bounded
subset of E for each ω ∈ Ω.

Next we show Q(ω)(B̄R(0)) is an equi-continuous set in E. For any x ∈ B̄R(0),
t1, t2 ∈ J , we have

|Q(ω)x(t1)−Q(ω)x(t2)| ≤
∫ 1

0

|(G(t1, s)−G(t2, s))|γ(s, ω)ψ(|x(s, ω)|)ds

≤
∫ 1

0

|(G(t1, s)−G(t2, s))|γ(s, ω)ψ(R)ds,

by hölder inequality,

|Q(ω)x(t1)−Q(ω)x(t2)|

≤
( ∫ 1

0

|G(t1, s)−G(t2, s)|2ds
)1/2( ∫ 1

0

|γ(s, ω)|2ds
)1/2

ψ(R).

Hence for all t1, t2 ∈ J ,

|Q(w)x(t1)−Q(ω)x(t2)| → 0 as t1 → t2

uniformly for all x ∈ B̄R(0). Therefore, Q(ω)B̄R(0) is an equi-continuous set in E,
then we know it is compact by Arzelá-Ascoli theorem for each ω ∈ Ω. Consequently,
Q(ω) is a completely continuous random operator on B̄R(0).

Finally, we suppose there exists such an element u in E with ‖u‖ = R satisfying
Q(ω)u(t) = αu(t, ω) for some ω ∈ Ω, where α > 1. Now for this ω ∈ Ω, we have

|u(t, ω)| ≤ 1
α
|Q(ω)u(t)|

≤
∫ 1

0

G(t, s)|f(s, u(s, ω), u′′(s, ω), ω) +Mu(s, ω)|ds

≤ rM

∫ 1

0

γ(s, ω)ψ(|u(s, ω)|)ds

≤ rM‖γ(ω)‖L1ψ(‖u(ω)‖) for all t ∈ J.
Taking supremum over t in the above inequality yields

R = ‖u(ω)‖ ≤ rM‖γ(ω)‖L1ψ(R)

for some ω ∈ Ω. This contradicts to condition (2.5).
Thus, all the conditions of Lemma2.1 are satisfied. Hence the random equation

Q(ω)x(t) = x(t, ω)

has a random solution in B̄R(0); i.e., there is a measurable function ξ : Ω → B̄R(0)
such that Q(ω)ξ(t) = ξ(t, ω) for all t ∈ J, ω ∈ Ω. As a result, the random (1.1) has
a random solution defined on J . This completes the proof. �

3. Extremal random solutions

It is sometimes desirable to know the realistic behavior of random solutions of
a given dynamical system. Therefore, we prove the existence of extremal positive
random solution of (1.1) defined on Ω× J .

We introduce an order relation ≤ in C(J,R) with the help of a cone K defined
by

K = {x ∈ C(J,R) : x(t) ≥ 0 on J}.
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Let x, y ∈ X, then x ≤ y if and only if y − x ∈ K. Thus, we have

x ≤ y ⇔ x(t) ≤ y(t) for all t ∈ J.

It is known that the cone K is normal in C(J,R). For any function a, b : Ω →
C(J,R) we define a random interval [a, b] in C(J,R) by

[a, b] = {x ∈ C(J,R) : a(ω) ≤ x ≤ b(ω)∀ω ∈ Ω} = ∩ω∈Ω[a(ω), b(ω)].

Definition 3.1. An operator Q : Ω × E → E is called nondecreasing if Q(ω)x ≤
Q(ω)y for all ω ∈ Ω, and for all x, y ∈ E for which x ≤ y.

We use the following random fixed point theorem of Dhage in what follows.

Lemma 3.2 (Dhage [2]). Let (Ω,A) be a measurable space and let [a, b] be a random
order interval in the separable Banach space E. Let Q : Ω × [a, b] → [a, b] be a
completely continuous and nondecreasing random operator. Then Q has a minimal
fixed point x∗ and a maximal random fixed point y∗ in [a, b]. Moreover, the sequences
{Q(ω)xn} with x0 = a and {Q(ω)yn} with y0 = b converge to x∗ and y∗ respectively.

We need the following definitions in the sequel.

Definition 3.3. A measurable function α : Ω → C(J,R) is called a lower random
solution of (1.1) if

α(4)(t, ω) ≤ f(t, α(t, ω), α(t, ω), ω) a.e. t ∈ J.

α(i)(0, ω) = α(i)(1, ω), i = 0, 1, 2.

α(3)(0, ω) ≤ α(3)(1, ω)

for all ω ∈ Ω. Similarly, a measurable function β : Ω → C(J,R) is called an upper
random solution of (1.1) if

β(4)(t, ω) ≥ f(t, α(t, ω), α(t, ω), ω) a.e. t ∈ J.

β(i)(0, ω) = β(i)(1, ω), i = 0, 1, 2.

β(3)(0, ω) ≥ β(3)(1, ω)

for all t ∈ J and ω ∈ Ω.

Definition 3.4. A random solution θ of (1.1) is called maximal if for all random
solutions of (1.1), one has x(t, ω) ≤ θ(t, ω) for all t ∈ J and ω ∈ Ω.

A minimal random solution of (1.1) on J is defined similarly,

We consider the following set of assumptions:
(H3) Problem (1.1) has a lower random solution α and upper random solution

β with α ≤ β on J .
(H4) For any u2, u1 ∈ [α, β] and u2 > u1

f(t, u2, v, ω)− f(t, u1, v, ω) ≥ −M(u1 − u2)

for a.e. t ∈ [0, 1] and ω ∈ Ω.
(H5) The function q : J × Ω → R+ defined by

q(t, ω) = |f(t, α(t, ω), α′′(t, ω), ω)+Mα(t, ω)|+ |f(t, β(t, ω), β′′(t, ω), ω)+Mβ(t, ω)|

is Lebesgue integrable in t for all ω ∈ Ω.
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Hypotheses (H3) holds, in particular, when there exist measurable functions
u, v : Ω → C(J,R) such that for each ω ∈ Ω,

u(t, ω) ≤ f(t, x, y, ω) +Mx ≤ v(t, ω)

for all t ∈ J and x ∈ R. In this case, the lower and upper random solutions of (1.1)
are given by

α(t, ω) =
∫ 1

0

G(t, s)u(s, ω)ds

and

β(t, ω) =
∫ 1

0

G(t, s)v(s, ω)ds

respectively. The details about the lower and upper random solutions for different
types of random differential equations could be found in [9]. Hypotheses (H4) is
natural and used in several research papers. Finally, if f is L1-Carathéodory on
R× Ω, then (H5) remains valid.

Theorem 3.5. Assume that (H), (H3)–(H5) hold, then (1.1) has a minimal random
solution x∗(ω) and a maximal random solution y∗(ω) defined on J . Moreover,

x∗(t, ω) = lim
n→∞

xn(t, ω), y∗(t, ω) = lim
n→∞

yn(t, ω)

for all t ∈ J and ω ∈ Ω, where the random sequences {xn(ω)} and {yn(ω)} are
given by

xn+1(t, ω) =
∫ 1

0

G(t, s)(f(s, xn(s, ω), x′′n(s, ω), ω) +Mxn(s, ω))ds

for n ≥ 0 with x0 = α, and

yn+1(t, ω) =
∫ 1

0

G(t, s)(f(s, yn(s, ω), y′′n(s, ω), ω) +Myn(s, ω))ds

for n ≥ 0 with y0 = β, for all t ∈ J and ω ∈ Ω.

Proof. We Set E = C(J,R) and define an operator Q : Ω × [α, β] → E by (2.6).
We show that Q satisfies all the conditions of Lemma3.1 on [α, β].

It can be shown as in the proof of Theorem 2.1 that Q is a random operator
on Ω × [α, β]. We show that it is nondecreasing random operator on [α, β]. Let
x, y : Ω → [α, β] be arbitrary such that x ≤ y on Ω. Then

Q(ω)y(t)−Q(ω)x(t)

=
∫ 1

0

G(t, s)
[(
f(s, y(s, ω), y′′(s, ω), ω)− f(s, x(s, ω), x′′(s, ω), ω)

)
+M(y(s, ω)− x(s, ω))

]
ds

≥
∫ 1

0

G(t, s)[(−M(y(s, ω)− x(s, ω)) +M(y(s, ω)− x(s, ω)]ds = 0

for all t ∈ J and ω ∈ Ω. As a result, Q(ω)x ≤ Q(ω)y for all ω ∈ Ω and that Q is
nondecreasing random operator on [α, β].

Now, by (H4),

α(t, ω) ≤ Q(ω)α(t)
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=
∫ 1

0

G(t, s)[f(α(s, α′(s, ω), α′′(s, ω), ω), ω) +Mα(s, ω)]ds

≤
∫ 1

0

G(t, s)f(s, x′(s, ω), x′′(s, ω), ω) +Mx(s, ω)ds

= Q(ω)x(t)

≤ Q(ω)β(t)

=
∫ 1

0

G(t, s)[f(β(s, β′(s, ω), β′′(s, ω), ω), ω) +Mβ(s, ω)]ds

≤ β(t, ω)

for all t ∈ J and ω ∈ Ω. As a result Q defines a random operator Q : Ω× [α, β] →
[α, β].

Then, since (H5) holds, we replace γ(t, ω) and ψ(r) with γ(t, ω) = q(t, ω) for
all (t, ω) ∈ J × Ω and ψ(R) = 1 for all real number R ≥ 0. Now it can be show
as in the proof of Theorem 2.1 that the random operator Q(ω) satisfies all the
conditions of Lemma 3.1 and so the random operator equation Q(ω)x = x(ω) has
a least and a greatest random solution in [α, β]. Consequently, (1.1) has a minimal
and a maximal random solution defined on J . The proof is complete. �
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