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SOLUTIONS TO FOURTH-ORDER RANDOM DIFFERENTIAL
EQUATIONS WITH PERIODIC BOUNDARY CONDITIONS

XIAOLING HAN, XUAN MA, GUOWEI DAI

ABSTRACT. Existence of solutions and of extremal random solutions are proved
for periodic boundary-value problems of fourth-order ordinary random differ-
ential equations. Our investigation is done in the space of continuous real-
valued functions defined on closed and bounded intervals. Also we study the
applications of the random version of a nonlinear alternative of Leray-Schauder
type and an algebraic random fixed point theorem by Dhage.

1. INTRODUCTION

Let R denote the real line and let J = [0, 1], a closed and bounded interval in R.
Let C'(J,R) denote the class of real-valued functions defined and continuously on
J. Given a measurable space (2,.4) and a measurable function z : Q — AC3(J,R),
we consider a fourth-order periodic boundary-value problem of ordinary random
differential equations (for short PBVP)

W (t,w) = f(t,z(t,w), 2" (t,w),w) ae teJ
tD(0,w) =29(1,w), i=0,1,2,3
for all w € ), where f: I X RXxR xQ —R.
By a random solution of equation (1.1) we mean a measurable function z :
Q — AC®)(J,R) that satisfies the equation (L.1)), where AC®)(J,R) is the space
of real-valued functions whose 3rd derivative exists and is absolutely continuously
differentiable on J.
When the random parameter w is absent, the random (/1.1]) reduce to the fourth-
order ordinary differential equations,
e@ () = f(t,x(t),2"(t) ae teJ

2D(0) =2(1), i=0,1,2,3

(1.1)

(1.2)

where, f: J xR — R.
Equation (1.2) has been studied by many authors for different aspects of so-
lutions. See for example [7, 8, [1T], 12, 13]. Only a few authors have studied the
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random periodic boundary-value problem, see [5] [Il [14], Dhage [5] studied the pe-
riodic boundary-value problems for the random differential equation

-2 (t,w) = f(t,z(t,w),w) ae. teJ,
z(0,w) = z(2m,w), 2'(0,w)=12'(2m, w).

In this article, we study the existence of solutions and the existence of extremal
solutions for the fourth-order random equation (1.1]), under suitable conditions. Our
work relays on the random versions of fixed point theorems based on the theorems
in |2, 3].

2. EXISTENCE RESULT

Let E denote a Banach space with the norm |- || and let Q : E — E. We further
assume that the Banach space E is separable; i.e., E has a countable dense subset
and let Sg be the o-algebra of Borel subsets of . We say a mapping z : } — F is
measurable if for any B € Og,

' B)={weQ:x(w)e B} A

To define integrals of sample paths of random process, it is necessary to define a
map is jointly measurable, a mapping  :  x E — FE is called jointlymeasurable,
if for any B € (g, one has

7 HB) = {(w,r) €2 x E: 2(w,r) € B} € Ax fg,

where A X (g is the direct product of the o-algebras A and g those defined in €2
and FE respectively.

Let Q : Qx E — E be a mapping. Then @ is called a random operator if Q(w, x)
is measurable in w for all € F and it is expressed as Q(w)z = Q(w, z). A random
operator Q(w) on E is called continuous (resp. compact, totally bounded and
completely continuous) if Q(w,x) is continuous (resp. compact, totally bounded
and completely continuous) in z for all w € Q. We could get more details of
completely continuous random operators on Banach spaces and their properties in
Ttoh [6]. In this article, we use the following lemma in proving the main result of
this paper, that lemma is an immediate corollary to the results in [2} [3].

Lemma 2.1 ([5]). Let Br(0) and Br(0) be the open and closed balls centered at
origin of radius R in the separable Banach space E and let Q : Q x Br(0) — E
be a compact and continuous random operator. Further suppose that there does
not exists an u € E with ||ul| = R such that Q(w)u = au for all o € Q, where

a > 1. Then the random equation Q(w)x = x has a random solution; i.e., there is
a measurable function & : Q — Bgr(0) such that Q(w)é(w) = &(w) for all w € Q.

Lemma 2.2 ([5]). Let Q : Q@ x E — E be a mapping such that Q(-, x) is measurable
for all x € E and Q(w,-) is continuous for all w € Q. Then the map (w,z) —
Q(w, x) is jointly measurable.

We need the following definitions in the sequel.

Definition 2.3. A function f: J xR xR x ) — R is called random Carathéodory
if
e the map (t,w) — f(t,z,y,w) is jointly measurable for all (z,y) € R?, and
e the map (z,y) — f(¢,z,y,w) is continuous for almost all ¢t € J and w € Q.
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Definition 2.4. A function f : JxRxRx — R is called random L!-Carathéodory
if
e for each real number r > 0 there is a measurable and bounded function
qr : Q — LY(J,R) such that
lf(t, z,y,w)| < qr(t,w) ae ted

whenever |z|, |y| < r, and for all w € .

Now we seek the random solutions of (1.1)) in the Banach space C(J,R) of con-
tinuous real-valued functions defined on J. We equip this space with the supremum
norm

l]| = sup [z(2)].
teJ

It is know that the Banach space C(J,R) is separable. We use L!(J,R) denote the
space of Lebesque measurable real-valued functions defined on J, and the usual
norm in L*(J,R) defined by

1
Jellr = [ la(olar
For a given real number M € (0,47%), h € C(J,R), consider the linear PBVP
eW(t) + Ma(t) = h(t) teJ 21)
2D(0) = 29(1), i=0,1,2,3. '
By the theorem of [10], the unique solution of problem
@)+ Ma(t) =0 teJ
zD(0)=29(1), i=0,1,2 (2.2)
z®0) —2®(1) =1
has a unique solution 7(t) € C*(J,R) satisfying r(¢) > 0. Then the unique solution
of is
x(t) = /01 G(t, s)h(s)ds, (2.3)

where
t— 0<s<t<1;
G(t,S) _ T( 8)7 SSsxix L
r(l+t—s), 0<t<s<l.
We consider the following set of hypotheses:
(H1) The function f is random Carathéodory on J x R x R x Q.
(H2) There exists a measurable and bounded function v : © — L?(J,R) and a
continuous and nondecreasing function ) : Ry — (0, 00) such that
F(5,2,2",w) + M| < y(t,w)b(lal) ae. te.]
for all w € Q and x € R.

Our main existence result is as follows.

(2.4)

Theorem 2.5. Assume that (H1)—(H2) hold. Suppose that there exists a real num-
ber R > 0 such that

R>ry|y(w)llzrd(R) (2.5)
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for allt € J and w € Q, where ryy = maxye(o,1)7(t),7(t) is in the Green’s function

(2.4). Then (1.1) has a random solution defined on J.
Proof. Set E = C(J,R) and define a mapping @ : @ x E — E by

Qw)z(t) = /0 G(t,s)(f(s,x(s,w), 2" (s,w),w) + Mz(s,w))ds (2.6)

for all t € J, w € Q. Then the solutions of are fixed points of operator Q.

Define a closed ball Bg(0) in E centered at origin 0 of radius R, where the real
number R satisfies the inequality . We show that @ satisfies all the conditions
of Lemma2.1 on Bg(0).

First we show that @ is a random operator in Br(0), since f(t,z,z”,w) is ran-
dom Carathéodory and z(t,w) is measurable, the map w — f(t,z,2",w) + Mz is
measurable. Similarly, the production G(t, s)[f (s, z(s,w), 2" (s,w),w) + Mz(s,w)]
of a continuous and measurable function is again measurable. Further, the integral
is a limit of a finite sum of measurable functions, therefore, the map

1
W / Gt 8)(F (5, 2(s,0), 2" (5,w), w) + Ma(s,w))ds = Qw)z(t)

is measurable. As a result, @ is a random operator on 2 x Br(0) into E.

Next we show that the random operator Q(w) is continuous on Bg(0). Let z,
be a sequence of points in Br(0) converging to the point z in Br(0). Then it is
sufficiente to prove that

lim Q(w)x,(t) = Q(w)x(t) forallte Jw e .

n—oo
By the dominated convergence theorem, we obtain

1
lim Q(w)x,(t) = lim G(t,s)(f(s,zn(s,w), 2 (s,w),w) + Mz, (s,w))ds

n—oo n—oo

0
:/0 G(t,s) lim [f(s, zn(z,w), 20 (s,w),w) + Mz, (s,w)]ds

n— o0

1
:/0 G(t,s)[f(s,2(s,w), 2" (s,w),w) + Mz, (s,w)|ds
= Q(w)z(t)

for all ¢ € J,w € Q. This shows that Q(w) is a continuous random operator on
B,(0).

Now we show that Q(w) is compact random operator on Br(0). To finish it, we
should prove that Q(w)(B,(0)) is uniformly bounded and equi-continuous set in E
for each w € Q. Since the map w — 7(¢,w) is bounded and L?(J,R) C L'(J,R),
by (Hs), there is a constant ¢ such that ||y(w)||z1 < cfor all w € Q. Let w € §2 be
fixed, then for any x : Q — Br(0), one has

1
Q(w)x(t)] S/O G(t,5)|(f (s, x(s,w), 2" (s, w),w) + Ma(s,w))lds

< / G(t, s)yy(s,w)p(|2(s, w)|)ds
0
<rpycp(R) =K
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for all t € J and each w € . This shows that Q(w)(Br(0)) is a uniformly bounded
subset of E for each w € (2.

Next we show Q(w)(Bgr(0)) is an equi-continuous set in E. For any = € Bg(0),
t1,t2 € J, we have

Q) ~ QEIr(t)| < [ 1(G(1,5) — G, s )1 s
< [ 1@01.9) - Dt pvims

by hoélder inequality,

QW) (t1) — Q(w)x(t2)]

/2
/|th7 G(ta, s |ds /|75w|d8 P(R).

Hence for all t1,t5 € J,
|Q(w)z(t1) — Q(w)z(t2)] = 0 asty —

uniformly for all x € Bg(0). Therefore, Q(w)Bg(0) is an equi-continuous set in E,
then we know it is compact by Arzela-Ascoli theorem for each w € Q. Consequently,
Q(w) is a completely continuous random operator on Bg(0).

Finally, we suppose there exists such an element v in F with ||u|| = R satisfying
Q(w)u(t) = au(t,w) for some w € Q, where o > 1. Now for this w € Q, we have

u(t,)] < ~Q)ulo)

< / G(t,s)|f(s,u(s,w),u’(s,w),w) + Mu(s,w)|ds
0

<rar / (s, w)(Juls, ) [)ds
< rarl @)l b(u(@)ll) for all £ € .

Taking supremum over ¢ in the above inequality yields

= u)[l < rarlly(@)lLre(R)
for some w € Q. This contradicts to condition (2.5)).
Thus, all the conditions of LemmaZ2.1 are satisfied. Hence the random equation

Qw)x(t) = z(t,w)
has a random solution in Bg(0); i.e., there is a measurable function ¢ : Q — Br(0)

such that Q(w)&(t) = £(¢t,w) for all t € J,w € Q. As a result, the random ({1.1)) has
a random solution defined on J. This completes the proof. (]

3. EXTREMAL RANDOM SOLUTIONS

It is sometimes desirable to know the realistic behavior of random solutions of
a given dynamical system. Therefore, we prove the existence of extremal positive
random solution of defined on 2 x J.
We introduce an order relation < in C(J,R) with the help of a cone K defined
by
K={xecC(JR):z(t) >0on J}.
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Let z,y € X, then = < y if and only if y — x € K. Thus, we have
r<y & z(t) <y() forall t € J.

It is known that the cone K is normal in C(J,R). For any function a,b : Q —
C(J,R) we define a random interval [a,b] in C(J,R) by

[a,0] = {z € C(J,R) : a(w) < z < b(w)Yw € O} = Nyeala(w), b(w)].

Definition 3.1. An operator @ : Q x E — F is called nondecreasing if Q(w)x <
Q(w)y for all w € Q, and for all z,y € F for which z < y.

We use the following random fixed point theorem of Dhage in what follows.

Lemma 3.2 (Dhage [2]). Let (2,.A) be a measurable space and let [a,b] be a random
order interval in the separable Banach space E. Let @ : Q X [a,b] — [a,b] be a
completely continuous and nondecreasing random operator. Then QQ has a minimal
fized point x, and a mazimal random fized point y* in [a,b]. Moreover, the sequences
{Q(w)xy} with xg = a and {Q(w)yn} with yo = b converge to x,. and y* respectively.

We need the following definitions in the sequel.

Definition 3.3. A measurable function « : & — C(J,R) is called a lower random

solution of (1.1f) if
oz(4)(t,w) < fta(t,w),alt,w),w) ae. te.
aD(0,w) = a?(1,w), i=0,1,2.
a®(0,w) < a®(1,w)

for all w € Q. Similarly, a measurable function §: Q — C(J,R) is called an upper
random solution of (1.1)) if

BW (t,w) > f(t,a(t,w), a(t,w),w) ae. te.
B9D0,w) = D(1,w), i=0,1,2.
5(3) (0,w) > ﬁ(?’)(l,w)
forall t € J and w € .

Definition 3.4. A random solution 6 of (1.1) is called maximal if for all random
solutions of (1.1)), one has z(t,w) < 8(t,w) for all t € J and w € Q.

A minimal random solution of (1.1)) on J is defined similarly,

We consider the following set of assumptions:

(H3) Problem (1.1)) has a lower random solution « and upper random solution
[ with a < 3 on J.
(H4) For any ug,u; € [a, 8] and ug > ug

f(t,ug,v,w) - f(t,u1,v,w) > _M(ul - u2)

for a.e. t € [0,1] and w € .
(H5) The function ¢ : J x Q@ — R, defined by

q(t,w) = |f(t, a(t,w), " (t,w),w) + Ma(t,w)|+[f(t, B(t,w), 8" (t,w),w) + MB(t, w)]
is Lebesgue integrable in ¢ for all w € Q.
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Hypotheses (H3) holds, in particular, when there exist measurable functions
u,v: Q — C(J,R) such that for each w € Q,
u(t,w) < f(t,z,y,w) + Mz < v(t,w)

for all t € J and x € R. In this case, the lower and upper random solutions of (1.1
are given by

a(t,w):/o G(t, s)u(s,w)ds
and )
B(t,w):/o G(t, s)v(s,w)ds

respectively. The details about the lower and upper random solutions for different
types of random differential equations could be found in [9]. Hypotheses (H4) is
natural and used in several research papers. Finally, if f is L'-Carathéodory on
R x Q, then (H5) remains valid.

Theorem 3.5. Assume that (H), (H3)-(H5) hold, then (1.1) has a minimal random
solution x.(w) and a mazimal random solution y*(w) defined on J. Moreover,
To(t,w) = lIm 2 (tw), y*(Hw) = lim y,(t,w)

n

for allt € J and w € Q, where the random sequences {x,(w)} and {y,(w)} are
given by

Tpy1(t,w) = /0 G(t,s)(f(s,zn(s,w), 20 (s,w),w) + Mz, (s,w))ds

forn >0 with xg = «, and

1
a(t:0) = [ GlE5) (510 (50). 1 (5,0),0) + M (5,0
0
forn >0 with yo = 8, for allt € J and w € 2.

Proof. We Set E = C(J,R) and define an operator @ : 2 x [o, 8] — E by (2.6).
We show that @ satisfies all the conditions of Lemma3.1 on [«, 5].

It can be shown as in the proof of Theorem 2.1 that () is a random operator
on Q X [a, B]. We show that it is nondecreasing random operator on [a, §]. Let
x,y : 8 = [o, O] be arbitrary such that © <y on Q. Then

Qw)y(t) — Qw)x(t)
:/0 G(t,s)[(f(s,y(s,w),y"(s,w),w) — f(s,z(s,w), 2" (s,w),w))
+

M (y(s,w) — z(s, w))} ds

> /0 G(t, $)[(—M (y(s,w) — z(s,w)) + M(y(s,w) — z(s,w)]ds =0

forall t € J and w € Q. As a result, Q(w)z < Q(w)y for all w € Q and that Q is
nondecreasing random operator on [a, f3].
Now, by (H4),

a(t,w) < Q(w)a(t)
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G(t,s)[f(a(s,d/(s,w),d” (s,w),w),w) + Ma(s,w)]ds

1
G(t,s)f(s,2'(s,w),2"(s,w),w) + Ma(s,w)ds

S— —

IN

w)x(t)
w)B(t

1
/ G(t,
0
B(t,w)

for allt € J and w € Q. As a result Q defines a random operator Q : Q X [«, 3] —
[a, 5]

Then, since (H5) holds, we replace v(¢,w) and ¥ (r) with v(t,w) = ¢(t,w) for
all (t,w) € J x Q and ¢(R) = 1 for all real number R > 0. Now it can be show
as in the proof of Theorem 2.1 that the random operator (Q(w) satisfies all the

IN

I
2R

)
s)[f(B(s, B'(s,w), " (s,w),w),w) + MB(s,w)]ds

IN

)

conditions of Lemma 3.1 and so the random operator equation Q(w)x = z(w) has

a least and a greatest random solution in [«, §]. Consequently, (1.1]) has a minimal

and a maximal random solution defined on J. The proof is complete. O
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