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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS
FOR M-POINT NONLINEAR FRACTIONAL DIFFERENTIAL
EQUATIONS ON THE HALF LINE

KAZEM GHANBARI, YOUSEF GHOLAMI

ABSTRACT. In this article we find sufficient conditions for existence and multi-
plicity of positive solutions for an m-point nonlinear fractional boundary-value
problem on an infinite interval. Moreover, we prove that the set of positive
solutions is compact. Nonexistence results for the boundary-value problem
also are obtained.

1. INTRODUCTION

Fractional calculus has played a significant role in engineering, science, economy,
and other fields. The monographs [3] [7, [6, 5] are commonly cited for the theory
of fractional derivatives and integrals and applications to differential equations of
fractional order. Recently, there have been some papers dealing with the exis-
tence and multiplicity of positive solutions of nonlinear boundary value problems
of fractional order using the techniques of nonlinear analysis (fixed point theorem,
Leray-Schauder theory, etc). See [4], 2, @] [8, [TT] for more details.

In this article we investigate existence and nonexistence results for a boundary-
value problem of nonlinear fractional differential equation with m-point boundary
conditions on an infinite interval of the form

Dfiu(t) + Aa(t) f(t,u(t)) =0, te(0,00), a€(2,3), (1.1)
u(0) +u/(0) =0, tggloo Dy u(t) = z_: B (&), (1.2)

0<&<E < <€pa<oo, BieRTU{O}, i=1,2,....m—2 (13)

where D, is the fractional Riemann-Liouville derivative of order a > 0 and A is a
positive parameter. We assume the following conditions:

(H1) f € C((0,00) x [0,00),[0,00)), f(t,0) # 0 on any subinterval of (0,400),
also when u is bounded f(t, (1 + t*!)u) is bounded on [0, +00).
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(H2) a € C((0,00),[0,00)) and a(t) is not identically zero on any interval of the
form (tg,00). Also assume that

0< /0 a(s)ds < oo.
(H3) 0< X" (a— 1) % < T(a).

2. PRELIMINARIES

In this section we introduce some fundamental tools of fractional calculus. We
also remind the well known fixed point theorem due to Krasnosel’skii for operators
acting on cones in Banach spaces.

Definition 2.1. The Riemann-Liouville fractional integral of order @ > 0 of a
function w : (0,00) — R is given by
I 1
I§iu(t) = =— t—s)* tu(s)ds
peult) = e [ =97 al)

Definition 2.2. The Riemann-Liouville fractional derivative of order a > 0 for a
function w : (0,00) — R is defined by

1 d"

Dgult) = L(n—a)dt®

¢
/ (t —s)" " lu(s)ds
0
where n = [a] + 1.
Lemma 2.3 ([3]). Let u € C(0,00) N L'(0,00), B> a >0, then
DS I5 u(t) = IV u(t)
Lemma 2.4 ([3]). Let a > 0 then
i) Ifu>-1, pAa—iwthi=1,2,...;[a]+1,t>0 then
P(p+1)
IM'p—a+1)
(ii) Fori=1,2,...,[a] + 1, we have DG, t*~* = 0.
(iii) For every t € (0,00), u € L'(0, 00)

ot = p—o

Dg IS u(t) = u(t), 15y Dvu(t) = u(t) + Zcito‘_i, ¢ €R, n=la]+1.
i=1

iv) D& u(t) =0 if and only if u(t) = i, cit*%, ¢; €ER, n = [a] + 1.
0 i=1

Lemma 2.5. Let h € C[0,00) such that 0 < fOJrOO h(s)ds < 400, then the fractional
boundary-value problem

D§iu(t) +h(t) =0, te(0,00), a€(2,3), (2.1)
u(0) +u'(0) =0, tiigloo Dy tu(t) = z_: B (&) (2.2)

has a unique solution
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where
G(t,s) = Hi(t,s) + Ha(t, s) (2.4)
with
1 [l —(t—s5)21l 0<s<t<+o0
Hi(t,s) = =—— - , 2.5
i(t:9) I'(a) {tal, 0<t<s<+4oo (25)
m—2 1
. it H,(t
Hy(t,s) = Liz1 B OHL(t, s) (2.6)

D) = S (e —1)p272 Ot e,
The function G(t,s) is called Green’s function of boundary-value problem (2.1)-
(22).

Proof. By Lemmas and and considering (2.1)), we have

= —¢ afl_c 0472_C a—3 _ tw s)ds
U(t) = 1t Qt 3t [) F(a) h( )d .
Then
u'(t) = —(a — D)ert® ™% — (@ — 2)cat® ™ — (@ — 3)est® ™ — /0 mh(s)ds.

Now by imposing the boundary condition «(0) 4+ »'(0) = 0 we conclude that ¢, =
c3 = 0, also using boundary condition

L, Do tu(t) = 3 fu (&)
i=1

we have

m—2 ng—S)QQ

1 +00
= (@) =37 (o — pe? [ Z ,51/ Tl)h(s)ds 7/0 h(s)ds}.

ta—l

—+o0
u = h(s)ds
P I S P Y e

- N[O G
CT(a) - X0 e - e [ ; ﬂi/o mh(S)dS]

=1

bt —s)t
7/0 Fih(s)ds

(@)
_ [ S e )aE [ e
G it D(a) — S (o — 1)3,6072 /0 F(a)h(s)ds
- Zj:lQ pite . (fi - S)szh s)ds
L(a) - Y (-5 Jo Tla—1) (5)
e Hi(t, s)h(s)ds
0
m—2 a— o o o
+ Lz it ST (G- s) 2h(5)ds

T(a) = XM a—1)8:6272 Jo T(a—1)
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22_12 Bit*—t too gas2
" I'(a) — Z;’;}2(a —1)8:272 /§L T(a— 1)h(8)ds
+oo
= Hl(tv S)h(S)ds
0
Yoy B! T OH\(t,s)
T(a) = X7 (a - )8 /0 ar =g i(s)ds
Foo +oo
= Hl(t75)h(s)ds + H2(t75)h(8)d5
0 0
+oo

= G(t,s)h(s)ds
0
where G(t, s) is Green’s function defined by (2.4). Now by uniqueness of constants
c1, 2, c3 we conclude that ([2.3)) is the unique solution of boundary value problem

(2.1)-(2.2). This completes the proof. O
Lemma 2.6. The function Hy(t,s) defined by (2.5)) has the following properties:

(i) Hi(t,s) is a nonnegative continuous function for t,s € [0,+00);
(ii) Hq(t,s) is increasing function with respect to the first variable;
(iil) Hi(t,s) is a concave function with respect to the first variable, for every
0<s<t<+oo.

Proof. Using (2.5) it is easy to see that property (i) obviously holds. Now we show
that (ii) holds. Considering (i) we know that Hi(t,s) € C([0,00) x [0,00), [0, 0)),
hence

ot I(a) |t>2, 0<t<s<+o0;

thus H(t, s) is an increasing function with respect to first variable.
To prove (iii) we note that

oM (t,s) (a—1) {tf” —(t—5)2"2 0<s<t<-4o0

O*Hi(t,s) 1 e 3 —(t—8)*3, 0<s<t<+o0
o2 T(a—2) |3, 0<t<s<+o0.
On the other hand « € (2,3), thus for 0 < s < t < 400,
O?H,(t,s)
I S A < 0
ot?
So H (t,s) is a concave function with respect to first variable, for 0 < s < ¢ < +o0.
This completes the proof. (I

Remark 2.7. According to definition of Hj (¢, s) in we have for ¢, s € [0, +00),
Hi(t,s) < 1 G(t,s)
14t =~ (o)’ 14ttt =77
L (14 Sy Bk )
Fla) V7 T(a) = X7 (o - 1)oigs 2
Lemma 2.8. There exist positive constant y; such that for every k > 1,
Hi(t,s) Hq(t,s)

min ——= > su —_—,
1/k<t<k 1 4to=1 = n ()St<goo 14ttt

L =
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where Hi(t, s) is defined by (2.5)).
Proof. Using ([2.5)), we have

Hy(t,s) 1 %, 0<s<t< 40
L+to=1 Tla) | 255, 0<t<s<+o0,
Now let
1ot —(t—s)!
hi(t = <t
1( ,S) F(Oé) 1 —I—ta_l y 8>
1 tafl
ha(t,s) = s.

- t<
I(a) 1+ tet -
First of all we must note that, h; is decreasing and hs is increasing with respect to
t, respectively, also h; is increasing with respect to s. So by a direct computation,
we conclude that

(ka—l _ (k‘ _ S)a—l) - k2(a—1) _ (k‘2 _ 1)04—1

i hy(t > > hi(k) =
i () 2 A e 2 W = T ey
1
su hi(t,s) < ——
0§t<£)~oo 1(t,9) I'a)
1
in  ha(t,s) > he(l/k) =
| min 2(t,s) = ha(1/k) @) 1 ko)’
1
sup ho(t,s) = ——.
O§t<5)-m 2(t,9) I'(a)
Now defining
. {k2<a*1> — (k2 — 1)t 1 } \ 1
my1 = min = —
! L)k T(1+ k1) "T(@) 1+ k-0JS" 7' T(a)
and setting
my ) k2(a71) _ (k2 _ 1)(171 1
=— = 2.
A Va mm{ ko—1(1 + ko—1) ’(1+ka—1)} (2.7)
we conclude that
H(t Hy(t
min 2108 o Hibs)
1/k<t<k 1 +to—1 0<t<too L+ ta1
This completes the proof. ([

Lemma 2.9. For Hs(t,s), defined by (2.6) there exist positive constant v2 such

that
H>(t H>(t
min 2( 75) Z’YZ sup 2( ,S) ’
1/k<t<k 1 4 to—1 0<t<too L+ ta1

Proof. Considering Hs(t, s) in (2.6)) we have
Hy(ts) 1 > B OH\(t, 5

)
l/glgl?gk 1+ ta—l 1+ ]{;Ot—l F(a) _ ZZ,;EQ(OC _ 1)61’6?_2 ot |t:fi
wp 123 St B OH.(t, ) -
osicteo LHIUTH Do) = X (0 - DA o

k>1.

= ma,

M.
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Now setting

- mo - 1
’YQ_MQ_1+]€JO‘_17
we conclude that
Hy(t Hs(t
min h(ts) > vy sup Ha(ts) )
1/k<t<k 1 +to-1 0<t<too L +to71
The proof is complete. U
Lemma 2.10. Let k > 1 be fized and G(t,s) be defined by (2.4)-(2.6). Then
G(t G(t
min 203 s 3y gy GBS
1/k<t<k 1 +to-1 0<t<too L+ ta1

A(k) = min{y1, 72} = 7.
Definition 2.11. We introduce the Banach space
B = {ue C[0,400) : |Jul]| < +o0}

which is equipped with the norm

u(t
= sup 0L
te[0,400) 1 +1
Also we define the cone P C B as follows
u(t)

P={ueB:u(t) >0, min ——— > A(k .
{u u(t) = L e 2 ()l
Lemma 2.12. Let conditions (H1)—(H3) be satisfied and define the Hammerstein
integral operator T : P — B by
+oo

Tu(t) = A | G(t,8)a(s)f(s,u(s))ds. (2.8)

Then TP C P.

Proof. Let uw € P. Considering conditions (H1), (H2) and Lemma it is clear
that

—+oo
Tu(t) = A G(t,s)a(s)f(s,u(s))ds > 0.
0
Also we have
Tu(t) A LTOG(t, s)a(s) f(s,u(s))ds
min ———— = min
1/k<t<k 1 +to=1  1/k<i<k 14 ta-1

+0o0 s
> /\/0 min Ma(s)f(s,u(s))ds

1/k§1t§k 14 ta-1
e G(t,s)
> /\/0 A(k)ogiiﬁm W“(S)f(&u(s))ds
" Gt 5)als) f (s, u(s))ds

> AM(k) su 0
= M )O§t<5)~oo 14 ¢t

= A(k)[[Tu]|.
This shows that TP C P. O
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Definition 2.13 ([4]). Let
VefueB:|lu<ii>0p, we{—2) ey
’ ’ 1+ttt
The set W is called equiconvergent at infinity if for each € > 0 there exists p(e) > 0,
such that for all w € W and all t1,t2 > pu, we have

‘ u(tl) _ ’U,(tg)

L4971 149!
Lemma 2.14 ([]). Assume

| <e.

t
V={ueB:|u <L, z>0},W:{1f:L

pro lu eV}

If V' is equicontinuous on any compact interval of [0,4+00) and equiconvergent at
infinity, then V is relatively compact on B.

Lemma 2.15. If conditions (H1)-(H3) hold, then integral operator T : P — P is
completely continuous.

Proof. First we prove that the operator T is uniformly bounded on P. Considering
real Banach space B, we choose a positive constant ry such that for every u € P,
lul| < ro. Let

By, = sup{£(t, (1 +1°1)u) : (£, ) € [0, +00) x [0, o]}

and Q be a bounded subset of P. Thus there exist a positive constant r such that
lull <.
Using Definition [2.11] we have
+oo
G(t, , d
=y sy do G s,u(s)
t€[0,4-00) I+t

s oo
< /\LBT/ a(s)ds < +00.
0

Thus T is bounded. Now we show that operator T is continuous. We consider
{un}se, C P, such that w, — u as n — o0, so by the Lebesgue dominated
convergence theorem we find that

+oo “+o0
[ o) suntsnds [ a()f(s,u(s)ds
0 0
as n — o0o. Hence by we have

+oo “+o0
T, — Tul| < L)\|/0 a(3) £ (5, n ())ds —/0 a(s)f (s, u(s))ds| — 0,

as n — oo. Hence T is a continuous operator. Now we show that operator T': P —
P is an equiconvergent operator at infinity. For each u € €2, we have

+0o0 +oo
/ a(s)f(s,u(s))ds < Br/ a(s)ds < +o0.
0 0

Since
—+oo

1
t_léinoo = Hi(t,s)a(s)f(s,u(s))ds =0
and for t =1,2,...,m — 2, § < 00, also by condition (H2), we conclude that
Tu(t
lim |A|
t—doo 1 4 t—1
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—+oo

A G(t,s)a(s)f(s,u(s))ds

lim ———
t—+oo 1+ to—1" [,

. 1 e
= t_]}?_loo W)\ ; Hi(t,s)a(s)f(s,u(s))ds
A boyingl

+ lim
t=oo L+t D) — S % (o — 1) ;6072

T 9H, (t, 5)
<[ el (s uls)as)

- AL " om(ts)
 T(a) -~ Y7 (e - 1)@5?-2/ or g () (5, u(s))ds.

Then
| Tu(t)
14 ¢t

Thus T2 is equiconvergent at infinity.
Finally we prove that T is an equicontinuous operator. For every s € (0, +00),
let t1,ts € [O, S], with t; < t. Then we have

| Tu(ts)  Tu(t) < /+°O’ G(tz,s)  G(ti,s) la(s
I I T+t 149t
—+oo
Hy(ta,s)  Hi(ty,s)
< ABT/ | a—1 a—1 |a’(8)d8
o 1415 1+

oo Hy(ta,s)  Ha(ty,s)

2\42, 21,
+>\Br/ | a—1 a—1

o 1+1t5 1419

oo Hl(tz,s) Hl(tl,s)
< )\Br/ ’ a—1 a—1
o 14+t 1+

‘<—|—oo

t——+oo

|la(s)ds

la(s)ds

oo Hi(ty,s) Hi(ts,s)
1(02, 1\02,
+)\BT/ ’ a—1 a—1 |a(8)d8
o 1413 1+
\B iy B
+ T m—2 a—2
L) = X5 (= 1)
o1 ot T 9H, (t
|t~ T L |t & a(s)ds.
1+t2 1+t1 0 a v
On the other hand
oo H(t H(t
[y S ),
0 1447 1447
2 Hl(tQ,S) Hl(tl,s)
S/ ’ a—1 a—1 |a(s)d5
o 1418 1+
+/t2 ‘Hl(t278) _ Hl(tl,s) |a(s)d8
N
N /+oo ‘Hl(tg,s) B Hl(tl,s) ’a(s)ds
R
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/ (G R R e U el IS

149t
to a—1 a—1 a—1 —+o00 a—1 a—1
t —t — (tg — t —t
_|_/ |(2 1 )a_(12 8) |(Z(S)d8—|—/ |(2 a_ll Na(s)ds
t 1+t t 1+t
Thus when t; — t5, we conclude that
teo Hy(t Hi(t
/ 3 :L(ti’fl) - ftﬂ |a(s)ds — 0 (2.9)
0 1 1

Similar to (2.9), when t; — t3, we have
/m ]Hl(tQ’ s) _ Haltz,s) la(s)ds — 0 (2.10)
R

From (2.9) and(2.10)) when ¢; — t5, we obtain that
Tu(tg) Tu(tl)
’ a—1 a—1 ‘ — 0.
1415 1+t

Thus T is equicontinuous on (0, +00). Using Lemma we attain that operator
T : P — P is completely continuous. This complete the proof. ([

Theorem 2.16 ([8]). Let X be a real Banach space and P C X be a cone in X
. AssumEQl,Qg are two open bounded subsets of X with 0 € Q1, Q1 C Qo and
T: PN (Q\Q) — P be a completely continuous operator such that

(i) |1Tu]| < ||lull, w € PN and [|[Tul] > ||ul], w € PNINs , or
(i) |[Tul] < ||u|l, w € PN O and || Tu| > |Jul], w € PNOQ;.

Then T has a fized point in PN (Q2\Q1).

3. MAIN RESULTS

We introduce the following notation:

a—1 a—1
fOZIimuH_l)iglJr (1+¢ u)f(t,u), foozlimug_ii_nOo (1+¢ u)f(t,u)’ te [%,k]
a—1 a—1
u—0~+ U u——+00 u
o ! N(k) [ -1
A= L/ a(s)ds , B= / a(s)ds .
(1] at)as) (51 ], o)

The following theorem rely on Theorem [2.16| which has two possibilities that may
occur.

Theorem 3.1. Let conditions (H1)—(H3) hold. Then (L.1))-(1.2) has at least one
positive solution on P in each one of the two cases:

(C1) For every A € (fE A such that fo, f € (0,00) with A(k)fo > >, or

o’ fo°
(C2) For every X € (f%, fi) such that foo, f° € (0,00) with AM(k)fso > f°.

Proof. Let
Qi = {u € B: ||UH < Rz}'7 1=1,2, Ry < Rs.
Then 1, Qs are two open bounded subset of B such that 0 € ;,Q; C Qo.
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Casel: Let fy, f € (0,00) and \(k)fy > £, also X € (%, f%) Let € > 0 be
chosen such that

<A<

fo—c¢ f*+e
Since fo € (0,00), thus there exist a positive constant R; such that for every
te[1/k,k] and u € [0, Ry],

(3.1)

a—1
£t = 76, S 2 (- 9y
So if u € P with |lu|]| = Ry, then
ft,u) = (fo—e)lthcy 7 2 AK)(fo—@ull, € [1/k K]

hence from we have
+oo
Tu(t) = )\/ G(t,s)a(s)f(s,u(s))ds
0

+oo
= ME)(fo=allull | Gt s)als)ds.

Thus
oo Gt s)
Tl = R o -l [ 2 atsyas
Hl(t,S)
> _ A\ 2T
> A (k) (fo — €)|ull P a(s)ds
k k
A fo — o)lul| k:a( 1) //k a(s)ds
= Afo — ) B~ ] > |lull.
Therefore,
(ITu|l > Ju|| Yue PN oD. (3.2)

On the other hand, since f*° € (0, 00), there exist a positive constant R such that
for all u > R, we have

At Duy oo %
= <
(e = 100, B < (4 9 < %+ 9l
Let Ry = max{1+ Ry, RA"1(k)} and v € P N 9Qy. Using (3.1) we have
+o0o

Tu(t) = A ; G(t,s)a(s)f(s,u(s))ds

+oo
A(f +e)||u|\/0 G(t,s)a(s)ds.
So

+o0 G(t
Tl <A< ollll [ s SE5
te[0,400) L+ 1

+oo
A + Ollull / a(s)ds

<A+ A ull < [Jull-

a(s)ds
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Thus we find that
|Tul| < |lu|l Yue PnNoQs. (3.3)
Hence, using the Theorem and , we conclude that the boundary
value problem (L.I)-(1.2) has at least one positive solution in P N (Q2\€2;).
Case 2: Let foo, f° € (0,00), A(k)foo > fO and X € (f%, ]‘%) Similar to the
casel, let € > 0 be chosen such that

foo7€<)\<m. (3.4)

We can choose positive constants Ro > R; such that
([Tu|l > Jul| Yue PNoQy, (3.5)
1Tu]| < ul| Yue PN o. (3.6)
Considering Theorem and , we conclude that the boundary value
problem (L.I)-(1.2) has at least one positive solution in P N (Q2\). O

To prove multiplicity of positive solutions for (1.1)-(L.2)), we need following con-
dition.

(H4) Assume that function f(¢,u) is nondecreasing with respect to the second
variable; i.e., for all uj,us € B, if uy < wug then f(t,uy) < f(t, uz).
Theorem 3.2. Let conditions (H1)—(H4) hold. Assume that there exist positive

constants Ry > Ry, such that
BR AR
. - <A< 2 . (3.7)
mingei/n k) f (¢ A (k) R1) SUPseo,4-00) f (; RR2)
Then (1.1)-(1.2)) has at least two positive solutions vy, ve such that

R < H’U1|| < Ro, lim T”uo =wv;, ug= Ry, tE€ [0,+OO),
n—oo

Rl S ||’U2|| S RQ, lim T”wo = V2, wo = Rl, t e [0,+OO)
n—oo

Proof. We define
P[R1,R2] = {u eP:R < ||U|| < RQ}
First we prove that T'Pr, r,] C PlRr,,Rr,]- Let u € P|r, Rr,], thus obviously we have
t
MBR ARl < T () < Jull S Re, e (1/REL (39
Using (H4), (3.7) and (3.8)), we have

“+oo “+o0
Tu(t) = A G(t,s)a(s)f(s,u(s))ds < )\/0 G(t,s)a(s)f(s, Ra)ds.

0

Hence
Hoe G(t,s
il <x [ s S8 1G5, Ra)as
0 te0,too) 1+
<X sup f(t,R2)A™" < Ry
te[0,4+00)
Also considering (3.7)) and (3.8)), we have
+oo

Tu(t) > A ; G(t,s)a(s)f(s, \(k)Ry)ds.
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Thus

(|| > )\)\Q(k) /k a(s)ds min f(t, A\(k)Ry)
Tkt te[1/kk]) " !

=A i t, \(k)YR\)B~! > R;.
teﬁl/l}cl,k]f( ;A(K)R1)B™" > Ry
This implies TPg, r,] C Pir,,r,- For every t € (0,+00) and ug = Rp, clearly
ug € Pr, r,)- Now we consider the sequence {u, }nen in Pig, g, and define

Up = Tup_1 =T ug, i=1,2,3,.... (3.9)

Since, T is completely continuous, there exist a subsequence {u,x} of the sequence
{un }nen such that it converges uniformly to v; € B. On the other hand consid-
ering the condition (H4), we can see that the operator T': Pig, r,] — Plr, R 18
nondecreasing. Since for every ¢ € (0, +00)

0 <wui(t) < flurll < Re = uo(?).

Thus Tuy; < Twug. Considering we conclude that us < wy. Similarly by
induction we deduce that w, 1 < u,. Hence {u, }nen is a decreasing sequence, such
that has a subsequence {u,j} converges to v;. Thus {uy}nen converges uniformly
to v;. Letting n — 400 in yields

TUl = V1. (310)

Let wo = Ry for every t € (0,400). So wg € Pig, r,]- Now consider the sequence
{wn}nGN given by
Wy =Tw,—1, n=1,23,... (3.11)

From (3.11) we have {wy}nen C Pr, Rr,- Moreover, using definition (2.8, we
conclude that

+oo
wi (t) = Two(t) = A ; G(t, s)a(s)f(s,wo(s))ds
“+o0
> A ; G(t,s)a(s)f(s, \(k)Ry)ds
>Ry = U/o(t) te (O,+OO).

Thus using the same argument as above, we deduce that {w, }nen is & increasing

sequence with subsequence {w,} such that {w,x} converges uniformly to vy €

Pir, R, Thus {wy, }nen converges uniformly to va € Pig, gr,). Letting n — +oo,
from (3.11) we find that

TUQ = V3. (312)

Finally from (3.10) and (3.12]) we conclude that the boundary-value problem (|1.1])-
(1.2) has at least two positive solutions v, vs in P which completes the proof. O

We conclude this article with two nonexistence results stated in the following
theorems. Moreover, we show the compactness of the solutions set.

Theorem 3.3. Let conditions (H1)—(H3) hold. If f°, f>° < oo, then there exist a
positive constant Ay, such that for every 0 < XA < Ag, the boundary value problem

(1.1)-(1.2) has no positive solution.
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Proof. Since f0, f* < oo, for every t € (0,400), there exist positive constants
c1,C9,T1, T2 With 71 < rg such that

u
f(t,u) < AT a1y UE [0,71]
fltu) < @ﬁ, u € [rg, +00).
Let )
1+t~ t
C =max {c1,c2, sup (1+ )/ ,u)}
r1<u<ry u
Thus we have
Assume w(t) is a positive solution of the boundary value problem (1.1 . We
will show that this leads to a contradiction for every 0 < A < Ag Wlth Ao = C
“+ o0 400
w(t) =Tw(t) = A G(t,s)a(s)f(s,w(s))ds < XC||lwl|| G(t,s)a(s)ds.
0 0
Hence
Feo G(t,s) AC
w|| < AC||lw sup ——a(s)ds = —||lwl|| < ||w],
Jull < ACu) mm+m)1+tw4 (s)ds = ~-llwl] < ]
which is a contradiction. Therefore, . ) has no positive solution. O

Theorem 3.4. Assume that conditions(H1)—(H3) hold. If fo, foo > 0, then there
exist a positive constant Ny, such that for every A > A\g, the boundary value problem

(1.1)-(L.2) has no positive solution.

Proof. Since fy, foo > 0, we conclude that for all ¢ € [1/k, k], there exist positive
constants my, mg, 1,79 With 1 < r9 such that

f(t7u) Z mi

f(tau) Z ma

u
e 0
1 +ta_17 € [ 7T1]

u
W, u e [T27+OO).

Assume that

L+t ) f(t
m =min {my, mg, min (L+ )/ ,u)}
r1<u<ry u

Hence we have

Ftw) > s = mAR) ul. u € [0,400). ¢ € [1/k. K.
Let w(t) be a positive solution of (1.1)-(1.2). We will show that this leads to a
contradiction for every A > Ag, with A\g = B/m.

+00 +oo
w(t) =Tw(t) =\ ; G(t, s)a(s)f(s,w(s))ds > mAX(k)||wl]| ; G(t, s)a(s)ds.
So

= mA% s 1 |w]| dS—fIIwII>HwII
k:

which is a contradiction. Therefore .—. has no positive solution. This com-
pletes the proof. O
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Theorem 3.5. Assume conditions (H1)—(H3) hold and that

B A
i
Then the set of positive solutions of — is nonempty and compact.

Jo, [7 €(0,400),  foA(k) > f%, Ae( )- (3.13)

Proof. Let S ={u € P:u=Tu}. Theorem implies that S is nonempty. It is
sufficient to show that S is compact in B. First of all we claim that S is closed in
B. Let {up }nen be sequence in S, such that lim,, .« ||un, — u|| = 0. Thus for every
t € (0,400), we have

“+o0
lu(t) — A ; G(t,s)a(s)f(s,u(s))ds|
“+oo
< un — ul + |un(t) — /\/O G(t,s)a(s) f(s,un(s))ds]|
+oo

A ]Gl al) (s u) — S a5,

Let n — oo, using the continuity of f and by dominated convergence theorem, we
deduce that for all ¢t € (0, +00)

+oo
u(t) = )\/O G(t,s)a(s)f(s,u(s))ds.

Thus u € S and S is closed in B.
It remains to check that S is relatively compact in B. Let hold. Choosing
e > 0 such that
B A

o o re )

we find that there exists a positive constant R such that for every u € [R, +00),

ftu) <(f~ +€)

Ae(

u
Tt < (f + )l

Hence for t € (0, +00), we have

ftu) < (f° +e)llull +,
v =max{f(t,u): t € [1/k, k], u € [0, R]}.

Thus for every u € S and t € (0,400), we have

+oo
u(t) = )\/O G(t,s)a(s)f(s,u(s))ds

“+ o0
S A=+ llull + 7] ; G(t,s)a(s)ds.
Then
(f> +e)llull + 7
1 .
Therefore, S is bounded in B. Now by compactness of the operator T': P — P we
deduce that S =TS is relatively compact, which completes the proof. O

[Jull < A(
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