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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS
FOR M-POINT NONLINEAR FRACTIONAL DIFFERENTIAL

EQUATIONS ON THE HALF LINE

KAZEM GHANBARI, YOUSEF GHOLAMI

Abstract. In this article we find sufficient conditions for existence and multi-
plicity of positive solutions for an m-point nonlinear fractional boundary-value
problem on an infinite interval. Moreover, we prove that the set of positive
solutions is compact. Nonexistence results for the boundary-value problem
also are obtained.

1. Introduction

Fractional calculus has played a significant role in engineering, science, economy,
and other fields. The monographs [3, 7, 6, 5] are commonly cited for the theory
of fractional derivatives and integrals and applications to differential equations of
fractional order. Recently, there have been some papers dealing with the exis-
tence and multiplicity of positive solutions of nonlinear boundary value problems
of fractional order using the techniques of nonlinear analysis (fixed point theorem,
Leray-Schauder theory, etc). See [4, 2, 9, 8, 11] for more details.

In this article we investigate existence and nonexistence results for a boundary-
value problem of nonlinear fractional differential equation with m-point boundary
conditions on an infinite interval of the form

Dα
0+u(t) + λa(t)f(t, u(t)) = 0, t ∈ (0,∞), α ∈ (2, 3), (1.1)

u(0) + u′(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

m−2∑
i=1

βiu
′(ξi), (1.2)

0 < ξ1 < ξ2 < · · · < ξm−2 < ∞, βi ∈ R+ ∪ {0}, i = 1, 2, . . . ,m− 2 (1.3)

where Dα
0+ is the fractional Riemann-Liouville derivative of order α > 0 and λ is a

positive parameter. We assume the following conditions:

(H1) f ∈ C((0,∞) × [0,∞), [0,∞)), f(t, 0) 6= 0 on any subinterval of (0,+∞),
also when u is bounded f(t, (1 + tα−1)u) is bounded on [0,+∞).
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(H2) a ∈ C((0,∞), [0,∞)) and a(t) is not identically zero on any interval of the
form (t0,∞). Also assume that

0 <

∫ ∞

0

a(s)ds < ∞.

(H3) 0 <
∑m−2

i=1 (α− 1)βiξ
α−2
i < Γ(α).

2. Preliminaries

In this section we introduce some fundamental tools of fractional calculus. We
also remind the well known fixed point theorem due to Krasnosel’skii for operators
acting on cones in Banach spaces.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a
function u : (0,∞) → R is given by

Iα
0+u(t) =

1
Γ(α)

∫ t

0

(t− s)α−1u(s)ds

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 for a
function u : (0,∞) → R is defined by

Dα
0+u(t) =

1
Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u(s)ds

where n = [α] + 1.

Lemma 2.3 ([3]). Let u ∈ C(0,∞) ∩ L1(0,∞), β ≥ α ≥ 0, then

Dα
0+Iβ

0+u(t) = Iβ−α
0+ u(t)

Lemma 2.4 ([3]). Let α > 0 then
(i) If µ > −1, µ 6= α− i with i = 1, 2, . . . , [α] + 1, t > 0 then

Dα
0+tµ =

Γ(µ + 1)
Γ(µ− α + 1)

tµ−α.

(ii) For i = 1, 2, . . . , [α] + 1, we have Dα
0+tα−i = 0.

(iii) For every t ∈ (0,∞), u ∈ L1(0,∞)

Dα
0+Iα

0+u(t) = u(t), Iα
0+Dα

0+u(t) = u(t) +
n∑

i=1

cit
α−i, ci ∈ R, n = [α] + 1.

(iv) Dα
0+u(t) = 0 if and only if u(t) =

∑n
i=1 cit

α−i, ci ∈ R, n = [α] + 1.

Lemma 2.5. Let h ∈ C[0,∞) such that 0 <
∫ +∞
0

h(s)ds < +∞, then the fractional
boundary-value problem

Dα
0+u(t) + h(t) = 0, t ∈ (0,∞), α ∈ (2, 3), (2.1)

u(0) + u′(0) = 0, lim
t→+∞

Dα−1
0+ u(t) =

m−2∑
i=1

βiu
′(ξi) (2.2)

has a unique solution

u(t) =
∫ +∞

0

G(t, s)h(s)ds, (2.3)
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where
G(t, s) = H1(t, s) + H2(t, s) (2.4)

with

H1(t, s) =
1

Γ(α)

{
tα−1 − (t− s)α−1, 0 ≤ s ≤ t < +∞
tα−1, 0 ≤ t ≤ s < +∞

, (2.5)

H2(t, s) =
∑m−2

i=1 βit
α−1

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∂H1(t, s)
∂t

∣∣
t=ξi

. (2.6)

The function G(t, s) is called Green’s function of boundary-value problem (2.1)-
(2.2).

Proof. By Lemmas 2.3 and 2.4 and considering (2.1), we have

u(t) = −c1t
α−1 − c2t

α−2 − c3t
α−3 −

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds.

Then

u′(t) = −(α− 1)c1t
α−2 − (α− 2)c2t

α−3 − (α− 3)c3t
α−4 −

∫ t

0

(t− s)α−2

Γ(α− 1)
h(s)ds.

Now by imposing the boundary condition u(0) + u′(0) = 0 we conclude that c2 =
c3 = 0, also using boundary condition

lim
t→+∞

Dα−1
0+ u(t) =

m−2∑
i=1

βiu
′(ξi)

we have

c1 =
1

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

[ m−2∑
i=1

βi

∫ ξi

0

(ξi − s)α−2

Γ(α− 1)
h(s)ds−

∫ +∞

0

h(s)ds
]
.

Thus

u(t) =
tα−1

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∫ +∞

0

h(s)ds

− tα−1

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

[ m−2∑
i=1

βi

∫ ξi

0

(ξi − s)α−2

Γ(α− 1)
h(s)ds

]
−

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds

=
∫ +∞

0

H1(t, s)h(s)ds +
∑m−2

i=1 (α− 1)βiξ
α−2
i

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∫ +∞

0

tα−1

Γ(α)
h(s)ds

−
∑m−2

i=1 βit
α−1

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∫ ξi

0

(ξi − s)α−2

Γ(α− 1)
h(s)ds

=
∫ +∞

0

H1(t, s)h(s)ds

+
∑m−2

i=1 βit
α−1

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∫ ξi

0

ξα−2
i − (ξi − s)α−2

Γ(α− 1)
h(s)ds
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+
∑m−2

i=1 βit
α−1

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∫ +∞

ξi

ξα−2
i

Γ(α− 1)
h(s)ds

=
∫ +∞

0

H1(t, s)h(s)ds

+
∑m−2

i=1 βit
α−1

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∫ +∞

0

∂H1(t, s)
∂t

∣∣
t=ξi

h(s)ds

=
∫ +∞

0

H1(t, s)h(s)ds +
∫ +∞

0

H2(t, s)h(s)ds

=
∫ +∞

0

G(t, s)h(s)ds

where G(t, s) is Green’s function defined by (2.4). Now by uniqueness of constants
c1, c2, c3 we conclude that (2.3) is the unique solution of boundary value problem
(2.1)-(2.2). This completes the proof. �

Lemma 2.6. The function H1(t, s) defined by (2.5) has the following properties:
(i) H1(t, s) is a nonnegative continuous function for t, s ∈ [0,+∞);
(ii) H1(t, s) is increasing function with respect to the first variable;
(iii) H1(t, s) is a concave function with respect to the first variable, for every

0 < s < t < +∞.

Proof. Using (2.5) it is easy to see that property (i) obviously holds. Now we show
that (ii) holds. Considering (i) we know that H1(t, s) ∈ C([0,∞)× [0,∞), [0,∞)),
hence

∂H1(t, s)
∂t

=
(α− 1)
Γ(α)

{
tα−2 − (t− s)α−2, 0 ≤ s ≤ t < +∞
tα−2, 0 ≤ t ≤ s < +∞;

thus H1(t, s) is an increasing function with respect to first variable.
To prove (iii) we note that

∂2H1(t, s)
∂t2

=
1

Γ(α− 2)

{
tα−3 − (t− s)α−3, 0 ≤ s ≤ t < +∞
tα−3, 0 ≤ t ≤ s < +∞.

On the other hand α ∈ (2, 3), thus for 0 < s < t < +∞,

∂2H1(t, s)
∂t2

< 0

So H1(t, s) is a concave function with respect to first variable, for 0 < s < t < +∞.
This completes the proof. �

Remark 2.7. According to definition of H1(t, s) in (2.5) we have for t, s ∈ [0,+∞),

H1(t, s)
1 + tα−1

≤ 1
Γ(α)

,
G(t, s)

1 + tα−1
≤ L,

L =
1

Γ(α)

(
1 +

∑m−2
i=1 βiξ

α−1
m−2

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

)
.

Lemma 2.8. There exist positive constant γ1 such that for every k > 1,

min
1/k≤t≤k

H1(t, s)
1 + tα−1

≥ γ1 sup
0≤t<+∞

H1(t, s)
1 + tα−1

,
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where H1(t, s) is defined by (2.5).

Proof. Using (2.5), we have

H1(t, s)
1 + tα−1

=
1

Γ(α)

{
tα−1−(t−s)α−1

1+tα−1 , 0 ≤ s ≤ t < +∞
tα−1

1+tα−1 , 0 ≤ t ≤ s < +∞ .

Now let

h1(t, s) =
1

Γ(α)
tα−1 − (t− s)α−1

1 + tα−1
, s ≤ t

h2(t, s) =
1

Γ(α)
tα−1

1 + tα−1
, t ≤ s.

First of all we must note that, h1 is decreasing and h2 is increasing with respect to
t, respectively, also h1 is increasing with respect to s. So by a direct computation,
we conclude that

min
1/k≤t≤k

h1(t, s) ≥
(kα−1 − (k − s)α−1)

Γ(α)(1 + kα−1)
≥ h1(k) =

k2(α−1) − (k2 − 1)α−1

Γ(α)kα−1(1 + kα−1)
,

sup
0≤t<+∞

h1(t, s) ≤
1

Γ(α)

min
1/k≤t≤k

h2(t, s) ≥ h2(1/k) =
1

Γ(α)(1 + kα−1)
,

sup
0≤t<+∞

h2(t, s) =
1

Γ(α)
.

Now defining

m1 = min
{k2(α−1) − (k2 − 1)α−1

Γ(α)kα−1(1 + kα−1)
,

1
Γ(α)(1 + kα−1)

}
, M1 =

1
Γ(α)

,

and setting

γ1 =
m1

M1
= min

{k2(α−1) − (k2 − 1)α−1

kα−1(1 + kα−1)
,

1
(1 + kα−1)

}
(2.7)

we conclude that

min
1/k≤t≤k

H1(t, s)
1 + tα−1

≥ γ1 sup
0≤t<+∞

H1(t, s)
1 + tα−1

This completes the proof. �

Lemma 2.9. For H2(t, s), defined by (2.6) there exist positive constant γ2 such
that

min
1/k≤t≤k

H2(t, s)
1 + tα−1

≥ γ2 sup
0≤t<+∞

H2(t, s)
1 + tα−1

, k > 1 .

Proof. Considering H2(t, s) in (2.6) we have

min
1/k≤t≤k

H2(t, s)
1 + tα−1

=
1

1 + kα−1

∑m−2
i=1 βi

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∂H1(t, s)
∂t

∣∣
t=ξi

= m2,

sup
0≤t<+∞

H2(t, s)
1 + tα−1

=
∑m−2

i=1 βi

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∂H1(t, s)
∂t

∣∣
t=ξi

= M2.
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Now setting

γ2 =
m2

M2
=

1
1 + kα−1

,

we conclude that

min
1/k≤t≤k

H2(t, s)
1 + tα−1

≥ γ2 sup
0≤t<+∞

H2(t, s)
1 + tα−1

.

The proof is complete. �

Lemma 2.10. Let k > 1 be fixed and G(t, s) be defined by (2.4)-(2.6). Then

min
1/k≤t≤k

G(t, s)
1 + tα−1

≥ λ(k) sup
0≤t<+∞

G(t, s)
1 + tα−1

,

λ(k) = min{γ1, γ2} = γ1.

Definition 2.11. We introduce the Banach space

B = {u ∈ C[0,+∞) : ‖u‖ < +∞}

which is equipped with the norm

‖u‖ = sup
t∈[0,+∞)

| u(t) |
1 + tα−1

.

Also we define the cone P ⊂ B as follows

P = {u ∈ B : u(t) ≥ 0, min
t∈[ 1

k ,k]

u(t)
1 + tα−1

≥ λ(k)‖u‖}.

Lemma 2.12. Let conditions (H1)–(H3) be satisfied and define the Hammerstein
integral operator T : P → B by

Tu(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds. (2.8)

Then TP ⊂ P .

Proof. Let u ∈ P . Considering conditions (H1), (H2) and Lemma 2.6 it is clear
that

Tu(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds ≥ 0.

Also we have

min
1/k≤t≤k

Tu(t)
1 + tα−1

= min
1/k≤t≤k

λ
∫ +∞
0

G(t, s)a(s)f(s, u(s))ds

1 + tα−1

≥ λ

∫ +∞

0

min
1/k≤t≤k

G(t, s)
1 + tα−1

a(s)f(s, u(s))ds

≥ λ

∫ +∞

0

λ(k) sup
0≤t<+∞

G(t, s)
1 + tα−1

a(s)f(s, u(s))ds

≥ λλ(k) sup
0≤t<+∞

∫ +∞
0

G(t, s)a(s)f(s, u(s))ds

1 + tα−1

= λ(k)‖Tu‖.

This shows that TP ⊂ P . �



EJDE-2012/238 EXISTENCE AND MULTIPLICITY OF SOLUTIONS 7

Definition 2.13 ([4]). Let

V = {u ∈ B : ‖u‖ < l, l > 0}, W = { u(t)
1 + tα−1

: u ∈ V }.

The set W is called equiconvergent at infinity if for each ε > 0 there exists µ(ε) > 0,
such that for all u ∈ W and all t1, t2 ≥ µ, we have

| u(t1)
1 + tα−1

1

− u(t2)
1 + tα−1

2

| < ε.

Lemma 2.14 ([4]). Assume

V = {u ∈ B : ‖u‖ < l, l > 0},W = { u(t)
1 + tα−1

∣∣u ∈ V }.

If V is equicontinuous on any compact interval of [0,+∞) and equiconvergent at
infinity, then V is relatively compact on B.

Lemma 2.15. If conditions (H1)–(H3) hold, then integral operator T : P → P is
completely continuous.

Proof. First we prove that the operator T is uniformly bounded on P . Considering
real Banach space B, we choose a positive constant r0 such that for every u ∈ P ,
‖u‖ < r0. Let

Br0 = sup{f(t, (1 + tα−1)u) : (t, u) ∈ [0,+∞)× [0, r0]}
and Ω be a bounded subset of P . Thus there exist a positive constant r such that

‖u‖ ≤ r.

Using Definition 2.11, we have

‖Tu‖ = λ sup
t∈[0,+∞)

∫ +∞
0

G(t, s)a(s)f(s, u(s))ds

1 + tα−1
≤ λLBr

∫ +∞

0

a(s)ds < +∞.

Thus TΩ is bounded. Now we show that operator T is continuous. We consider
{un}∞n=1 ⊂ P , such that un → u as n → ∞, so by the Lebesgue dominated
convergence theorem we find that∫ +∞

0

a(s)f(s, un(s))ds →
∫ +∞

0

a(s)f(s, u(s))ds

as n →∞. Hence by (2.8) we have

‖Tun − Tu‖ ≤ Lλ
∣∣ ∫ +∞

0

a(s)f(s, un(s))ds−
∫ +∞

0

a(s)f(s, u(s))ds
∣∣ → 0,

as n →∞. Hence T is a continuous operator. Now we show that operator T : P →
P is an equiconvergent operator at infinity. For each u ∈ Ω, we have∫ +∞

0

a(s)f(s, u(s))ds ≤ Br

∫ +∞

0

a(s)ds < +∞.

Since

lim
t→+∞

1
1 + tα−1

∫ +∞

0

H1(t, s)a(s)f(s, u(s))ds = 0

and for i = 1, 2, . . . ,m− 2, ξi < ∞, also by condition (H2), we conclude that

lim
t→+∞

| Tu(t)
1 + tα−1

|
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= lim
t→+∞

1
1 + tα−1

λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds

= lim
t→+∞

1
1 + tα−1

λ

∫ +∞

0

H1(t, s)a(s)f(s, u(s))ds

+ lim
t→+∞

λtα−1

1 + tα−1

∑m−2
i=1 βi

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

×
∫ +∞

0

∂H1(t, s)
∂t

∣∣
t=ξi

a(s)f(s, u(s)ds)

=
λ

∑m−2
i=1 βi

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

∫ +∞

0

∂H1(t, s)
∂t

∣∣
t=ξi

a(s)f(s, u(s))ds.

Then

lim
t→+∞

∣∣ Tu(t)
1 + tα−1

∣∣ < +∞.

Thus TΩ is equiconvergent at infinity.
Finally we prove that T is an equicontinuous operator. For every s ∈ (0,+∞),

let t1, t2 ∈ [0, s], with t1 < t2. Then we have

∣∣ Tu(t2)
1 + tα−1

2

− Tu(t1)
1 + tα−1

1

∣∣ ≤ λBr

∫ +∞

0

∣∣ G(t2, s)
1 + tα−1

2

− G(t1, s)
1 + tα−1

1

∣∣a(s)ds

≤ λBr

∫ +∞

0

∣∣H1(t2, s)
1 + tα−1

2

− H1(t1, s)
1 + tα−1

1

∣∣a(s)ds

+ λBr

∫ +∞

0

∣∣H2(t2, s)
1 + tα−1

2

− H2(t1, s)
1 + tα−1

1

∣∣a(s)ds

≤ λBr

∫ +∞

0

∣∣H1(t2, s)
1 + tα−1

1

− H1(t1, s)
1 + tα−1

1

∣∣a(s)ds

+ λBr

∫ +∞

0

∣∣H1(t2, s)
1 + tα−1

2

− H1(t2, s)
1 + tα−1

1

∣∣a(s)ds

+ λBr

∑m−2
i=1 βi

Γ(α)−
∑m−2

i=1 (α− 1)βiξ
α−2
i

×
∣∣ tα−1

2

1 + tα−1
2

− tα−1
1

1 + tα−1
1

∣∣ ∫ +∞

0

∂H1(t, s)
∂t

∣∣
t=ξi

a(s)ds.

On the other hand∫ +∞

0

∣∣H1(t2, s)
1 + tα−1

1

− H1(t1, s)
1 + tα−1

1

∣∣a(s)ds

≤
∫ t1

0

∣∣H1(t2, s)
1 + tα−1

1

− H1(t1, s)
1 + tα−1

1

∣∣a(s)ds

+
∫ t2

t1

∣∣H1(t2, s)
1 + tα−1

1

− H1(t1, s)
1 + tα−1

1

∣∣a(s)ds

+
∫ +∞

t2

∣∣H1(t2, s)
1 + tα−1

1

− H1(t1, s)
1 + tα−1

1

∣∣a(s)ds
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=
∫ t1

0

|(tα−1
2 − tα−1

1 ) + (t1 − s)α−1 − (t2 − s)α−1|
1 + tα−1

1

a(s)ds

+
∫ t2

t1

|(tα−1
2 − tα−1

1 )− (t2 − s)α−1|
1 + tα−1

1

a(s)ds +
∫ +∞

t2

|(tα−1
2 − tα−1

1 )|
1 + tα−1

1

a(s)ds.

Thus when t1 → t2, we conclude that∫ +∞

0

∣∣H1(t2, s)
1 + tα−1

1

− H1(t1, s)
1 + tα−1

1

∣∣a(s)ds → 0 (2.9)

Similar to (2.9), when t1 → t2, we have∫ +∞

0

∣∣H1(t2, s)
1 + tα−1

2

− H1(t2, s)
1 + tα−1

1

∣∣a(s)ds → 0 (2.10)

From (2.9) and(2.10) when t1 → t2, we obtain that∣∣ Tu(t2)
1 + tα−1

2

− Tu(t1)
1 + tα−1

1

∣∣ → 0.

Thus TΩ is equicontinuous on (0,+∞). Using Lemma 2.14 we attain that operator
T : P → P is completely continuous. This complete the proof. �

Theorem 2.16 ([8]). Let X be a real Banach space and P ⊂ X be a cone in X
. Assume Ω1,Ω2 are two open bounded subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2 and
T : P ∩ (Ω2\Ω1) → P be a completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2 , or
(ii) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1.

Then T has a fixed point in P ∩ (Ω2\Ω1).

3. Main Results

We introduce the following notation:

f0 = lim min
u→0+

(1 + tα−1)f(t, u)
u

, f∞ = lim min
u→+∞

(1 + tα−1)f(t, u)
u

, t ∈ [
1
k

, k]

f0 = lim sup
u→0+

(1 + tα−1)f(t, u)
u

, f∞ = lim sup
u→+∞

(1 + tα−1)f(t, u)
u

, t ∈ (0,∞)

A =
(
L

∫ +∞

0

a(s)ds
)−1

, B =
(λ2(k)

kα−1

∫ k

1/k

a(s)ds
)−1

.

The following theorem rely on Theorem 2.16 which has two possibilities that may
occur.

Theorem 3.1. Let conditions (H1)–(H3) hold. Then (1.1)-(1.2) has at least one
positive solution on P in each one of the two cases:

(C1) For every λ ∈ ( B
f0

, A
f∞ ) such that f0, f

∞ ∈ (0,∞) with λ(k)f0 > f∞, or
(C2) For every λ ∈ ( B

f∞
, A

f0 ) such that f∞, f0 ∈ (0,∞) with λ(k)f∞ > f0.

Proof. Let
Ωi = {u ∈ B : ‖u‖ < Ri}, i = 1, 2, R1 < R2.

Then Ω1,Ω2 are two open bounded subset of B such that 0 ∈ Ω1,Ω1 ⊂ Ω2.
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Case1: Let f0, f
∞ ∈ (0,∞) and λ(k)f0 > f∞, also λ ∈ ( B

f0
, A

f∞ ). Let ε > 0 be
chosen such that

B

f0 − ε
< λ <

A

f∞ + ε
(3.1)

Since f0 ∈ (0,∞), thus there exist a positive constant R1 such that for every
t ∈ [1/k, k] and u ∈ [0, R1],

f(t, u) = f(t,
(1 + tα−1)u

1 + tα−1
) ≥ (f0 − ε)

u

1 + tα−1
.

So if u ∈ P with ‖u‖ = R1, then

f(t, u) ≥ (f0 − ε)
u

1 + tα−1
≥ λ(k)(f0 − ε)‖u‖, t ∈ [1/k, k]

hence from (3.1) we have

Tu(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds

≥ λλ(k)(f0 − ε)‖u‖
∫ +∞

0

G(t, s)a(s)ds.

Thus

‖Tu‖ ≥ λλ(k)(f0 − ε)‖u‖
∫ +∞

0

G(t, s)
1 + tα−1

a(s)ds

≥ λλ(k)(f0 − ε)‖u‖
∫ k

1/k

H1(t, s)
1 + tα−1

a(s)ds

≥ λ(f0 − ε)‖u‖λ2(k)
kα−1

∫ k

1/k

a(s)ds

= λ(f0 − ε)B−1‖u‖ > ‖u‖.
Therefore,

‖Tu‖ ≥ ‖u‖ ∀u ∈ P ∩ ∂Ω1. (3.2)
On the other hand, since f∞ ∈ (0,∞), there exist a positive constant R such that
for all u ≥ R, we have

f(t, u) = f(t,
(1 + tα−1)u

1 + tα−1
) ≤ (f∞ + ε)

u

1 + tα−1
≤ (f∞ + ε)‖u‖.

Let R2 = max{1 + R1, Rλ−1(k)} and u ∈ P ∩ ∂Ω2. Using (3.1) we have

Tu(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds

≤ λ(f∞ + ε)‖u‖
∫ +∞

0

G(t, s)a(s)ds.

So

‖Tu‖ ≤ λ(f∞ + ε)‖u‖
∫ +∞

0

sup
t∈[0,+∞)

G(t, s)
1 + tα−1

a(s)ds

≤ λ(f∞ + ε)‖u‖L
∫ +∞

0

a(s)ds

≤ λ(f∞ + ε)A−1‖u‖ ≤ ‖u‖.
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Thus we find that
‖Tu‖ ≤ ‖u‖ ∀u ∈ P ∩ ∂Ω2. (3.3)

Hence, using the Theorem 2.16 and (3.2), (3.3) we conclude that the boundary
value problem (1.1)-(1.2) has at least one positive solution in P ∩ (Ω2\Ω1).

Case 2: Let f∞, f0 ∈ (0,∞), λ(k)f∞ > f0 and λ ∈ ( B
f∞

, A
f0 ). Similar to the

case1, let ε > 0 be chosen such that
B

f∞ − ε
< λ <

A

f0 + ε
. (3.4)

We can choose positive constants R2 > R1 such that

‖Tu‖ ≥ ‖u‖ ∀u ∈ P ∩ ∂Ω1, (3.5)

‖Tu‖ ≤ ‖u‖ ∀u ∈ P ∩ ∂Ω2. (3.6)

Considering Theorem 2.16 and (3.5),(3.6) we conclude that the boundary value
problem (1.1)-(1.2) has at least one positive solution in P ∩ (Ω2\Ω1). �

To prove multiplicity of positive solutions for (1.1)-(1.2), we need following con-
dition.

(H4) Assume that function f(t, u) is nondecreasing with respect to the second
variable; i.e., for all u1, u2 ∈ B, if u1 ≤ u2 then f(t, u1) ≤ f(t, u2).

Theorem 3.2. Let conditions (H1)–(H4) hold. Assume that there exist positive
constants R2 > R1, such that

BR1

mint∈[1/k,k] f(t, λ(k)R1)
≤ λ ≤ AR2

supt∈[0,+∞) f(t, R2)
. (3.7)

Then (1.1)-(1.2) has at least two positive solutions v1, v2 such that

R1 ≤ ‖v1‖ ≤ R2, lim
n→∞

Tnu0 = v1, u0 = R2, t ∈ [0,+∞),

R1 ≤ ‖v2‖ ≤ R2, lim
n→∞

Tnw0 = v2, w0 = R1, t ∈ [0,+∞).

Proof. We define
P[R1,R2] = {u ∈ P : R1 ≤ ‖u‖ ≤ R2}.

First we prove that TP[R1,R2] ⊂ P[R1,R2]. Let u ∈ P[R1,R2], thus obviously we have

λ(k)R1 ≤ λ(k)‖u‖ ≤ u(t)
1 + tα−1

≤ u(t) ≤ ‖u‖ ≤ R2, t ∈ [1/k, k]. (3.8)

Using (H4), (3.7) and (3.8), we have

Tu(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds ≤ λ

∫ +∞

0

G(t, s)a(s)f(s,R2)ds.

Hence

‖Tu‖ ≤ λ

∫ +∞

0

sup
t∈[0,+∞)

G(t, s)
1 + tα−1

a(s)f(s,R2)ds

≤ λ sup
t∈[0,+∞)

f(t, R2)A−1 ≤ R2.

Also considering (3.7) and (3.8), we have

Tu(t) ≥ λ

∫ +∞

0

G(t, s)a(s)f(s, λ(k)R1)ds.



12 K. GHANBARI, Y. GHOLAMI EJDE-2012/238

Thus

‖Tu‖ ≥ λ
λ2(k)
kα−1

∫ k

1/k

a(s)ds min
t∈[1/k,k]

f(t, λ(k)R1)

= λ min
t∈[1/k,k]

f(t, λ(k)R1)B−1 ≥ R1.

This implies TP[R1,R2] ⊂ P[R1,R2]. For every t ∈ (0,+∞) and u0 = R2, clearly
u0 ∈ P[R1,R2]. Now we consider the sequence {un}n∈N in P[R1,R2] and define

un = Tun−1 = Tnu0, i = 1, 2, 3, . . . . (3.9)

Since, T is completely continuous, there exist a subsequence {unk} of the sequence
{un}n∈N such that it converges uniformly to v1 ∈ B. On the other hand consid-
ering the condition (H4), we can see that the operator T : P[R1,R2] → P[R1,R2], is
nondecreasing. Since for every t ∈ (0,+∞)

0 ≤ u1(t) ≤ ‖u1‖ ≤ R2 = u0(t).

Thus Tu1 ≤ Tu0. Considering (3.9) we conclude that u2 ≤ u1. Similarly by
induction we deduce that un+1 ≤ un. Hence {un}n∈N is a decreasing sequence, such
that has a subsequence {unk} converges to v1. Thus {un}n∈N converges uniformly
to v1. Letting n → +∞ in (3.9) yields

Tv1 = v1. (3.10)

Let w0 = R1 for every t ∈ (0,+∞). So w0 ∈ P[R1,R2]. Now consider the sequence
{wn}n∈N given by

wn = Twn−1, n = 1, 2, 3, . . . (3.11)

From (3.11) we have {wn}n∈N ⊂ P[R1,R2]. Moreover, using definition (2.8), we
conclude that

w1(t) = Tw0(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, w0(s))ds

≥ λ

∫ +∞

0

G(t, s)a(s)f(s, λ(k)R1)ds

≥ R1 = w0(t) t ∈ (0,+∞).

Thus using the same argument as above, we deduce that {wn}n∈N is a increasing
sequence with subsequence {wnk} such that {wnk} converges uniformly to v2 ∈
P[R1,R2]. Thus {wn}n∈N converges uniformly to v2 ∈ P[R1,R2]. Letting n → +∞,
from (3.11) we find that

Tv2 = v2. (3.12)

Finally from (3.10) and (3.12) we conclude that the boundary-value problem (1.1)-
(1.2) has at least two positive solutions v1, v2 in P which completes the proof. �

We conclude this article with two nonexistence results stated in the following
theorems. Moreover, we show the compactness of the solutions set.

Theorem 3.3. Let conditions (H1)–(H3) hold. If f0, f∞ < ∞, then there exist a
positive constant λ0, such that for every 0 < λ < λ0, the boundary value problem
(1.1)-(1.2) has no positive solution.
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Proof. Since f0, f∞ < ∞, for every t ∈ (0,+∞), there exist positive constants
c1, c2, r1, r2 with r1 < r2 such that

f(t, u) ≤ c1
u

1 + tα−1
, u ∈ [0, r1]

f(t, u) ≤ c2
u

1 + tα−1
, u ∈ [r2,+∞).

Let

C = max
{
c1, c2, sup

r1≤u≤r2

(1 + tα−1)f(t, u)
u

}
.

Thus we have

f(t, u) ≤ C
u

1 + tα−1
, u ∈ [0,+∞), t ∈ (0,+∞).

Assume w(t) is a positive solution of the boundary value problem (1.1)-(1.2). We
will show that this leads to a contradiction for every 0 < λ < λ0 with λ0 = A

C .

w(t) = Tw(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, w(s))ds ≤ λC‖w‖
∫ +∞

0

G(t, s)a(s)ds.

Hence

‖w‖ ≤ λC‖w‖
∫ +∞

0

sup
t∈[0,+∞)

G(t, s)
1 + tα−1

a(s)ds =
λC

A
‖w‖ < ‖w‖,

which is a contradiction. Therefore, (1.1)-(1.2) has no positive solution. �

Theorem 3.4. Assume that conditions(H1)–(H3) hold. If f0, f∞ > 0, then there
exist a positive constant λ0, such that for every λ > λ0, the boundary value problem
(1.1)-(1.2) has no positive solution.

Proof. Since f0, f∞ > 0, we conclude that for all t ∈ [1/k, k], there exist positive
constants m1,m2, r1, r2 with r1 < r2 such that

f(t, u) ≥ m1
u

1 + tα−1
, u ∈ [0, r1]

f(t, u) ≥ m2
u

1 + tα−1
, u ∈ [r2,+∞).

Assume that

m = min
{
m1,m2, min

r1≤u≤r2

(1 + tα−1)f(t, u)
u

}
.

Hence we have

f(t, u) ≥ m
u

1 + tα−1
≥ mλ(k)‖u‖, u ∈ [0,+∞), t ∈ [1/k, k].

Let w(t) be a positive solution of (1.1)-(1.2). We will show that this leads to a
contradiction for every λ > λ0, with λ0 = B/m.

w(t) = Tw(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, w(s))ds ≥ mλλ(k)‖w‖
∫ +∞

0

G(t, s)a(s)ds.

So

‖w‖ ≥ mλ
λ2(k)
kα−1

‖w‖
∫ k

1/k

a(s)ds =
λm

B
‖w‖ > ‖w‖,

which is a contradiction. Therefore (1.1)-(1.2) has no positive solution. This com-
pletes the proof. �
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Theorem 3.5. Assume conditions (H1)–(H3) hold and that

f0, f
∞ ∈ (0,+∞), f0λ(k) > f∞, λ ∈ (

B

f0
,

A

f∞
). (3.13)

Then the set of positive solutions of (1.1)-(1.2) is nonempty and compact.

Proof. Let S = {u ∈ P : u = Tu}. Theorem 3.1 implies that S is nonempty. It is
sufficient to show that S is compact in B. First of all we claim that S is closed in
B. Let {un}n∈N be sequence in S, such that limn→∞ ‖un − u‖ = 0. Thus for every
t ∈ (0,+∞), we have∣∣u(t)− λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds
∣∣

≤ |un − u|+
∣∣un(t)− λ

∫ +∞

0

G(t, s)a(s)f(s, un(s))ds
∣∣

+ λ

∫ +∞

0

G(t, s)a(s)|f(s, u(s))− f(s, un(s))|ds.

Let n →∞, using the continuity of f and by dominated convergence theorem, we
deduce that for all t ∈ (0,+∞)

u(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds.

Thus u ∈ S and S is closed in B.
It remains to check that S is relatively compact in B. Let (3.13) hold. Choosing

ε > 0 such that

λ ∈ (
B

f0 − ε
,

A

f∞ + ε
),

we find that there exists a positive constant R such that for every u ∈ [R,+∞),

f(t, u) ≤ (f∞ + ε)
u

1 + tα−1
≤ (f∞ + ε)‖u‖.

Hence for t ∈ (0,+∞), we have

f(t, u) ≤ (f∞ + ε)‖u‖+ γ,

γ = max{f(t, u) : t ∈ [1/k, k], u ∈ [0, R]}.

Thus for every u ∈ S and t ∈ (0,+∞), we have

u(t) = λ

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds

≤ λ [(f∞ + ε)‖u‖+ γ]
∫ +∞

0

G(t, s)a(s)ds.

Then

‖u‖ ≤ λ(
(f∞ + ε)‖u‖+ γ

A
).

Therefore, S is bounded in B. Now by compactness of the operator T : P → P we
deduce that S = TS is relatively compact, which completes the proof. �
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