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POSITIVE SOLUTIONS FOR NONLINEAR ELLIPTIC SYSTEMS

ADEL BEN DEKHIL

Abstract. In this article, we study the existence of positive solutions for the
system

∆u = H(x, u, v),

∆v = K(x, u, v), in Rn (n ≥ 3),

where H, K : Rn× [0,∞)× [0,∞)→ [0,∞) are continuous functions satisfying
H(x, u, v) ≤ p1(|x|)F (u + v) and K(x, u, v) ≤ q1(|x|)G(u + v). In terms of
the growth of the variable potential functions p1, q1 and the nonlinearities F
and G, we establish some sufficient conditions for the existence of positive
continuous solutions for this system and we discuss whether these solutions
are bounded or blow up at infinity.

1. Introduction

Semilinear elliptic systems of the form
∆u = H(x, u, v), in Rn (n ≥ 3),

∆v = K(x, u, v), in Rn,
(1.1)

have been studied intensively in the previous few years and various results concern-
ing the existence and nonexistence of positive entire large or bounded solutions have
been obtained. We refer the reader to [2, 3, 4, 5, 6, 9, 11, 12, 15, 16, 18, 19, 20, 21]
and their references for recent results concerning the existence and qualitative anal-
ysis of solutions of (1.1).

The interest in systems of nonlinear stationary equations is motivated by appli-
cations to theory of Newtonian fluids and nonlinear optics. More precisely, coupled
nonlinear stationary systems arise in the description of several physical phenom-
ena such as the propagation of pulses in birefringent optical fibers and Kerr-like
photorefractive media, see [1, 13].

When H(x, u, v) = p(|x|)vα, K(x, u, v) = q(|x|)uβ , 0 < α ≤ β, Lair and Wood
in [11] considered the existence and nonexistence of entire positive radial solutions
to (1.1) under the conditions of integrability or non integrability of the functions
r → rp(r) and r → rq(r) on (0,∞). Their results were extended by Ĉırstea and
Rădulescu [3], Wang and Wood [18], Ghergu and Rădulescu [6], Peng and Song [15],
Ghanmi et al [5], Li et al [12], Zhang [20]. In [21], the authors considered the case
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where H(x, u, v) = p(x)f(v), K(x, u, v) = q(x)g(u) with p, q nontrivial nonnegative
continuous on [0,∞) and f, g continuous , nondecreasing on [0,∞) that are positive
on (0,∞). In the case where p, q are radial and under the condition∫ ∞

1

( ∫ t

0

(f(s) + g(s))ds
)−1/2

dt = ∞ , (1.2)

they proved that (1.1) has one positive solution (u, v). Moreover, if∫ ∞

0

sp(s) ds =
∫ ∞

0

sq(s) ds = ∞ ,

then every positive radial entire solution (u, v) of (1.1) is large (i.e. limx→∞ u(x) =
limx→∞ v(x) = ∞). And if∫ ∞

0

sp(s) ds <∞ and
∫ ∞

0

sq(s) ds <∞ ,

then every positive radial entire solution (u, v) of (1.1) is bounded.
By using the sub-supersolution method, they establish some conditions on p, q in

order to prove the existence of positive bounded solutions in the case where p, q are
non radial. Their results extend partially those of Zhang [20], where the existence
of entire positive radial large solutions or bounded ones for (1.1) was studied under
the condition

∫∞
1

ds
f(s)+g(s) = ∞.

Their results do not cover the cases where

H(x, u, v) = a1(x)vα1 + b1(x)uγ1 + c1(x)(u+ v)β1 + d1(x)uδ1vλ1 ,

K(x, u, v) = a2(x)vα2 + b2(x)uγ2 + c2(x)(u+ v)β2 + d2(x)uδ2vλ2 ,

where αi, βi, γi, δi, λi ∈ (0,∞).
Our aim in this paper is to extend the results in [4] for the particular case of

the Dirichlet laplacian and to extend those in [21] to a wider class of functions
H(x, u, v) and K(x, u, v). More precisely, our results apply in particular to the
previous examples of functions H, K and to the case where H(x, u, v) = p(x)f(u, v)
, K(x, u, v) = q(x)g(u, v) with f and g are nondecreasing with respect to first and
the second variables. To this aim, we assume that H and K satisfy the following
hypotheses:

(H1) H, K : Rn × [0,∞)× [0,∞) → [0,∞) are continuous.
(H2) There exist nonnegative functions pi, qi, fi, gi, 1 ≤ i ≤ 2, F andG satisfying

for each x ∈ Rn and (u, v) ∈ [0,∞)× [0,∞),

p2(|x|)g1(v)g2(u) ≤ H(x, u, v) ≤ p1(|x|)F (u+ v),

q2(|x|)f1(u)f2(v) ≤ K(x, u, v) ≤ q1(|x|)G(u+ v),

with fi, gi, 1 ≤ i ≤ 2, F , G : [0,∞) → [0,∞) are nondecreasing continuous,
positive on (0,∞) and pi, qi : [0,∞) → [0,∞) are continuous.

(H3) There exist c > 0 such that∫ t

0

√
Λ(s)ds < Lc(∞) := lim

r→∞
Lc(r),



EJDE-2012/239 POSITIVE SOLUTIONS 3

for all t > 0, where for α > 0,

Lα(t) =
∫ t

α

ds√
2(F(s) + G(s))

, t ≥ α,

Λ(r) = max
s∈[0,r]

(p1(s) + q1(s)), r ≥ 0 ,

F(r) =
∫ r

0

F (s)ds , G(r) =
∫ r

0

G(s)ds , r ≥ 0.

(1.3)

We note that Lα has an inverse function L−1
α from [α,∞) to [0, Lα(∞)), where

Lα(∞) = limr→∞ Lα(r) ∈ (0,∞].

Remark 1.1. If Lα(∞) = ∞, then∫ ∞

α

ds√
F(s)

=
∫ ∞

α

ds√
G(s)

= ∞.

Remark 1.2. By [9], we see that if
∫∞
1

ds√
F(s)

<∞, then
∫∞
1

ds
F (s) <∞. In other

words, if
∫∞
1

ds
F (s) = ∞, then

∫∞
1

ds√
F(s)

= ∞. Conversely, if
∫∞
1

ds√
F(s)

= ∞, then∫∞
1

ds
F (s) = ∞ does not hold. For example, for β > 0 and F (t) = 2(1 + t)(ln(t +

1))2β−1(ln(t + 1) + β), we have F(t) = (t + 1)2(ln(t + 1))2β . So we can see that∫∞
1

ds
F (s) = ∞ if and only if 0 < β ≤ 1

2 and
∫∞
1

ds√
F(s)

= ∞ if and only if 0 < β ≤ 1.

To discuss the existence of positive radial solutions to these nonlinear systems,
we study the system of nonlinear differential equations

1
A

(Ay′)′ = g(t, y, z), in (0,∞),

1
B

(Bz′)′ = f(t, y, z), in (0,∞),

lim
t→0+

A(t)y′(t) = lim
t→0+

B(t)z′(t) = 0,

y(0) = a > 0, z(0) = b > 0,

(1.4)

where the continuous functions A,B : [0,∞) → [0,∞) are nondecreasing, differ-
entiable and positive on (0,∞). We assume that f and g satisfy the following
hypotheses.

(A1) f , g : (0,∞)× [0,∞)× [0,∞) → [0,∞) are continuous, nondecreasing with
respect to the second and the third variables.

(A2) There exist nonnegative functions hi, ki, ξi, ωi, 1 ≤ i ≤ 2, φ and ψ satisfying
for each (t, u, v) ∈ (0,∞)× [0,∞)× [0,∞),

h2(t)ω1(v)ω2(u) ≤ g(t, u, v) ≤ h1(t)φ(u+ v),

k2(t)ξ1(u)ξ2(v) ≤ f(t, u, v) ≤ k1(t)ψ(u+ v),

with ξi, ωi, 1 ≤ i ≤ 2, φ, ψ : [0,∞) → [0,∞) are nondecreasing continuous,
positive on (0,∞) and hi, ki : (0,∞) → [0,∞) continuous and satisfying∫ 1

0

1
A(t)

( ∫ t

0

A(s)hi(s) ds
)
dt <∞,

∫ 1

0

1
B(t)

( ∫ t

0

B(s) ki(s) ds
)
dt <∞.
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(A3) For all r > 0, we suppose that
√

2
∫ r

0

√
Λ̃(s)ds < Ma+b(∞) ,

where, for α > 0,

Mα(t) =
∫ t

α

ds√
2(Φ(s) + Ψ(s))

, t ≥ α

Φ(r) =
∫ r

0

φ(s)ds, Ψ(r) =
∫ r

0

ψ(s)ds , r ≥ 0

Λ̃(r) = max
s∈[0,r]

(h1(s) + k1(s)), r ≥ 0.

For any nonnegative measurable functions ϕ in (0,∞), we define

SAϕ(t) =
∫ t

0

1
A(r)

( ∫ r

0

A(s)ϕ(s)ds
)
dr , SBϕ(t) =

∫ t

0

1
B(r)

( ∫ r

0

B(s)ϕ(s)ds
)
dr.

Now, we are ready to give our existence result for (1.4).

Theorem 1.3. Under the hypotheses (A1)–(A3), system (1.4) has a positive solu-
tion (y, z) ∈

(
C([0,∞)) ∩ C1((0,∞))

)2 satisfying for each t ∈ [0,∞)

a+ ω1(b)ω2(a)SA(h2)(t) ≤ y(t) ≤M−1
a+b

(√
2

∫ t

0

√
Λ̃(s)ds

)
,

b+ ξ1(a)ξ2(b)SB(k2)(t) ≤ z(t) ≤M−1
a+b

(√
2

∫ t

0

√
Λ̃(s)ds

)
,

where M−1
a+b is the inverse function of Ma+b which is defined from [0,Ma+b(∞)) to

[α,∞).

Remark 1.4. In the case A(t) = B(t), the solution (y, z) of system (1.4) satisfies

a+ ω1(b)ω2(a)SA(h2)(t) ≤ y(t) ≤M−1
a+b

( ∫ t

0

√
Λ̃(s)ds

)
,

b+ ξ1(a)ξ2(b)SA(k2)(t) ≤ z(t) ≤M−1
a+b

( ∫ t

0

√
Λ̃(s)ds

)
, for t ≥ 0.

Now we give the existence result for system (1.1) under the following hypotheses.

(H4) The function r → r2(n−1) (p1(r) + q1(r)) is nondecreasing for large r.
(H5) There exists a positive constant ε such that∫ ∞

0

r1+ε(p1(r) + q1(r))dr <∞,

Theorem 1.5. Under assumptions (H1)–(H5), system (1.1) has a positive entire
bounded continuous solution.

Example 1.6. Let αi, βi, γi, δi, λi ∈ (0,∞) satisfying max(αi, βi, γi, δi + λi) < 1
for 1 ≤ i ≤ 2 and 2 < σ < 2(n− 1). Put

H(x, u, v) = a1(x)vα1 + b1(x)uγ1 + c1(x)(u+ v)β1 + d1(x)uδ1vλ1 ,

K(x, u, v) = a2(x)vα2 + b2(x)uγ2 + c2(x)(u+ v)β2 + d2(x)uδ2vλ2 ,
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where and ai, bi, ci, di are nontrivial nonnegative continuous function in Rn satis-
fying

2∑
i=1

(
max
|y|≤s

ai(y) + max
|y|≤s

bi(y) + max
|y|≤s

ci(y) + max
|y|≤s

di(y)
)
≤ 1

1 + sσ
.

Then problem (1.1) has a positive continuous bounded solution (u, v). Indeed, the
hypotheses (H1), (H2), (H4) and (H5) are clearly satisfied. Since max(αi, βi, γi, δi+
λi) < 1 for 1 ≤ i ≤ 2 and

H(x, u, v) ≤ 1
1 + |x|σ

[(u+ v)α1 + (u+ v)β1 + (u+ v)γ1 + (u+ v)δ1+λ1 ],

K(x, u, v) ≤ 1
1 + |x|σ

[(u+ v)α2 + (u+ v)β2 + (u+ v)γ2 + (u+ v)δ2+λ2 ]

we deduce that L1(∞) = ∞ and so hypothesis (H3) is satisfied.

Example 1.7. Let 2 < σ < 2(n − 1), and let β1, β2 > 0 be such that β0 =
max(β1, β2) > 1 and

1 +
2

σ − 2
<

1
2(β0 − 1)(Log(3))β0

. (1.5)

Let p, q be two nontrivial nonnegative continuous functions in Rn such that

max
|y|≤s

p(y) + max
|y|≤s

q(y) ≤ 1
1 + sσ

.

Then the problem

∆u = 2p(x)(u+ v + 2)(Log(u+ v + 2))2β1−1(Log(u+ v + 2) + β1)

∆v = 2q(x)(u+ v + 2)(Log(u+ v + 2))2β2−1(Log(u+ v + 2) + β2) ,

in Rn with n ≥ 3, has a positive bounded continuous solution (u, v). Indeed, the
hypotheses (H1), (H2), (H4) and (H5) are clearly satisfied. Now, (H3) follows from
(1.5) and the fact that for each t ≥ 1,∫ t

0

ds√
1 + sσ

≤
∫ 1

0

ds√
1 + sσ

+
∫ t

1

ds√
1 + sσ

≤ 1 +
∫ t

1

ds

s
σ
2
≤ 1 +

2
σ − 2

and∫ ∞

1

ds√
2(s+ 2)2((log(s+ 2))2β1 + (log(s+ 2))2β2)

≥
∫ ∞

1

ds

2(s+ 2)(Log(s+ 2))β0

=
1

2(β0 − 1)(Log(3))β0−1
.

From Theorem 1.5, we have the following corollaries in the case where H(x, u, v) =
H(|x|, u, v) and K(x, u, v) = K(|x|, u, v).

Corollary 1.8. Under hypotheses (H1)–(H3), problem (1.1) has one positive solu-
tion. Under the additional hypothesis

(H6)
∫∞
0
sp2(s) ds =

∫∞
0
sq2(s) ds = ∞,

every positive radial entire solution (u, v) of (1.1) is large and satisfies

u(0) + g1(v(0))g2(u(0))P2(r) ≤ u(r), v(0) + f1(u(0))f2(v(0))Q2(r) ≤ v(r) ,



6 A. BEN DEKHIL EJDE-2012/239

for all r ≥ 0, where

P2(r) =
∫ r

0

t1−n
( ∫ t

0

sn−1p2(s) ds
)
dt, Q2(r) =

∫ r

0

t1−n
( ∫ t

0

sn−1q2(s) ds
)
dt.

For the next corollary, we use the assumption
(H7) Lα(∞) = ∞.

Corollary 1.9. Assume that (H1), (H2), (H4), (H7) are satisfied. If (1.1) has a
nonnegative radial entire large solution, then∫ ∞

0

r1+ε(p1(r) + q1(r))dr = ∞, ∀ ε > 0.

An other result for the radial case is given under the assumption
(H8)

√
p1 + q1 ∈ L1(0,∞).

Theorem 1.10. Assume that (H1), (H2), (H4), (H8) are satisfied. If (u, v) is
a positive entire large radial solution of (1.1), then F and G satisfy the Keller-
Osserman condition

L1(∞) =
∫ ∞

1

ds√
2(F(s) + G(s))

<∞.

2. Proof of main results

Proof of Theorem 1.3. Let (ym)m≥0 and (zm)m≥0 be the sequences of positive con-
tinuous functions defined on [0,∞) by

y0(t) = a, z0(t) = b,

ym+1(t) = a+
∫ t

0

1
A(r)

( ∫ r

0

A(s)g(s, ym(s), zm(s))ds
)
dr,

zm+1(t) = b+
∫ t

0

1
B(r)

( ∫ r

0

B(s)f(s, ym(s), zm(s))ds
)
dr.

Clearly ym, zm ∈ C([0,∞)) ∩ C1((0,∞)) and are positive, so we deduce by (A1)
that (ym)m≥0 and (zm)m≥0 are nondecreasing sequences and for each m ∈ N, the
functions t→ ym(t) and t→ zm(t) are nondecreasing. Hence, for each t ∈ (0,∞),

y′m(t) =
1

A(t)

∫ t

0

A(s)g(s, ym−1(s), zm−1(s))ds,

z′m(t) =
1

B(t)

∫ t

0

B(s)f(s, ym−1(s), zm−1(s))ds

Which implies

(A(t)y′m(t))′ = A(t)g(t, ym−1(t), zm−1(t)), ≤ A(t)g(t, ym(t), zm(t)).

Multiplying this expression by 2A(t)y′m(t) and integrate on [0, t], we obtain

(A(t)y′m(t))2 ≤ 2
∫ t

0

A2(s)h1(s) (φ(ym(s) + zm(s))) y′m(s) ds

≤ 2Λ̃(t)A2(t)
∫ t

0

(φ(ym(s) + zm(s))) (y′m(s) + z′m(s)) ds

= 2Λ̃(t)A2(t)
∫ ym(t)+zm(t)

a+b

φ(s) ds.
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Which implies

y′m(t) ≤
√

Λ̃(t)
√

2Φ(ym(t) + zm(t)).

Similarly, we have

z′m(t) ≤
√

Λ̃(t)
√

2Ψ(ym(t) + zm(t)).

Then

y′m(t) + z′m(t) ≤
√

2
√

Λ̃(t)
√

2(Φ(ym(t) + zm(t)) + Ψ(ym(t) + zm(t))).

Therefore,

Ma+b(ym(t) + zm(t)) =
∫ ym(t)+zm(t)

a+b

ds√
2 (Φ(s) + Ψ(s))

ds

=
∫ t

0

y′m(s) + z′m(s)√
2 (Φ(ym(s) + zm(s)) + Ψ(ym(s) + zm(s)))

ds

≤
√

2
∫ r

0

√
Λ̃(s)ds.

Since M−1
a+b is increasing on [0,Ma+b(∞)), we obtain

ym(t) + zm(t) ≤M−1
a+b

(√
2

∫ t

0

√
Λ̃(s)ds

)
, ∀ r ≥ 0.

Therefore, the sequences (ym)m≥0 and (zm)m≥0 converge to two functions y and z
that, for each t ∈ [0,∞), satisfy

y(t) = a+
∫ t

0

1
A(r)

( ∫ r

0

A(s)g(s, y(s), z(s))ds
)
dr,

z(t) = b+
∫ t

0

1
B(r)

(∫ r

0

B(s)f(s, y(s), z(s))ds
)
dr.

Hence, y, z ∈ C([0,∞)) ∩ C1((0,∞)) and (y, z) is a solution of (1.4) satisfying

a+ g1(b)g2(a)SA(h2)(t) ≤ y(t) ≤M−1
a+b

(√
2

∫ t

0

√
Λ̃(s)ds

)
,

b+ f1(a)f2(b)SB(k2)(t) ≤ z(t) ≤M−1
a+b

(√
2

∫ t

0

√
Λ̃(s)ds

)
.

In the case where A(t) = B(t), we multiply the inequality

(A(t)(y′m(t) + z′m(t)))′ ≤ A(t)[g(t, ym(t), zm(t)) + f(t, ym(t), zm(t))]

by 2A(t)(y′m(t) + z′m(t)), we integrate on [0, t] and we proceed as below to obtain

(A(t)(y′m(t) + z′m(t)))2 ≤ (A(t))2 2Λ̃(t)
∫ ym(t)+zm(t)

0

(φ(s) + ψ(s)) ds.

Which implies

y′m(t) + z′m(t) ≤
√

Λ̃(t)
√

2Φ(ym(t) + zm(t)).

So in this case (y, z) satisfies

a+ ω1(b)ω2(a)SA(h2)(t) ≤ y(t) ≤M−1
a+b

( ∫ t

0

√
Λ̃(s)ds

)
,
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b+ ξ1(a)ξ2(b)SA(k2)(t) ≤ z(t) ≤M−1
a+b

(∫ t

0

√
Λ̃(s)ds

)
, for t ≥ 0.

This completes the proof. �

Proof of Theorem 1.5. We will show that (1.1) has a solution by finding a subso-
lution (u, v) and a supersolution (u, v), such that u ≤ u and v ≤ v. To do this, we
first prove the existence of a radial subsolution (u, v) to (1.1) by considering the
problem

4u = p1(|x|)F (u+ v), in Rn

4v = q1(|x|)G(u+ v), in Rn,

with n ≥ 3. That is, (u, v) satisfies

1
rn−1

(rn−1u′)′ = p1(r)F (u+ v), r ∈ (0,∞)

1
rn−1

(rn−1v′)′ = q1(r)G(u+ v) r ∈ (0,∞).
(2.1)

By Theorem 1.3, we conclude that system (2.1) has a positive entire solution (u, v).
Now, since

4u = p1(|x|)F (u+ v) ≥ H(x, u, v), in Rn,

4v = q1(|x|)G(u+ v) ≥ K(x, u, v), in Rn,

we deduce that (u, v) is a subsolution of system (1.1).
Next we prove that (u, v) is bounded. Since (u, v) satisfies

(rn−1u′(r))′ = rn−1p1(r)F (u(r) + v(r)),

(rn−1v′(r))′ = rn−1q1(r)G(u(r) + v(r)),

it follows that

(rn−1(u′(r) + v′(r)))′ = rn−1[p1(r)F (u(r) + v(r)) + q1(r)G(u(r) + v(r))]. (2.2)

Choose R > 0 so that r2(n−1) (p1(r) + q1(r)) is nondecreasing on [R,∞). Then,
after multiplying (2.2) by rn−1(u′(r)+v′(r)) and integrating from R to r, we obtain(

rn−1(u′(r) + v′(r))
)2

= C + 2
( ∫ r

R

t2(n−1)[p1(t)F (u(t) + v(t)) + q1(r)G(u(r) + v(r))]dt
)

≤ C + 2r2(n−1)
(
p1(r) + q1(r)

)
×

( ∫ r

R

[F ′(u(t) + v(t)) + G′(u(t) + v(t))](u′(t) + v′(t)) dt
)

≤ C + 2r2(n−1)(p1(r) + q1(r))
[
F(u(r) + v(r)) + G(u(r) + v(r))

]
,

where C =
(
Rn−1(u′(R) + v′(R))

)2. This yields

u′(r) + v′(r)√
2(F(u(r) + v(r)) + G(u(r) + v(r)))

1
2

≤
√
Cr1−n√

(F(u(r) + v(r)) + G(u(r) + v(r)))
+
√

2
√
p1(r) + q1(r).
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Integrating the above inequality and using the fact that

F(u(r) + v(r)) + G(u(r) + v(r)) ≥ F(u(R) + v(R)) + G(u(R) + v(R)) = C1,

for all r ≥ R, and√
p1(r) + q1(r) ≤ 2

√
r1+ε(p1(r) + q1(r))r−1−ε ≤ r1+ε(p1(r) + q1(r)) + r−1−ε ,

we obtain

Lα(u(r) + v(r))

≤
√

2
∫ r

R

s1+ε(p1(s) + q1(s))ds+
√

2 (εRε)−1 +
√

C

C1
(2− n)(R2−n)−1 ,

where α = u(R) + v(R). Letting r → ∞, we deduce from hypothesis (H5) that
(u, v) is bounded. Thus, since (u, v) is nondecreasing, we have

lim
r→∞

u(r) = M1 > 0, lim
r→∞

v(r) = M2 > 0.

Now, it is clear that (u, v) = (M1,M2) is a supersolution for (1.1) and we have for
r ≥ 0,

u(r) ≥M1 ≥ u(r), v(r) ≥M2 ≥ v(r).

Hence the standard sub-supersolution method (see [7, 17]) implies that (1.1) has a
bounded solution (u, v) such that u ≤ u ≤ u and v ≤ v ≤ v. This completes the
proof. �

Proof of Theorem 1.10. Let (u, v) be a positive entire large radial solution of (1.1).
Then (u, v) satisfies

(rn−1u′(r))′ ≤ rn−1p1(r)F (u(r) + v(r)),

(rn−1v′(r))′ ≤ rn−1q1(r)G(u(r) + v(r)).

Adding these inequalities, we obtain

(rn−1(u′(r) + v′(r)))′ ≤ rn−1p1(r)F (u(r) + v(r)) + rn−1q1(r)G(u(r) + v(r))

≤ rn−1(p1(r) + q1(r)) (F (u(r) + v(r)) +G(u(r) + v(r))) .

Multiplying the above inequality by 2rn−1(u′(r) + v′(r)) and integrating from 0 to
r, and using (H4), we obtain(
rn−1(u′(r) + v′(r))

)2 ≤ 2
( ∫ r

0

s2(n−1)(p1(s) + q1(s))
(
F (u(s) + v(s))

+G(u(s) + v(s))
)
(u′(s) + v′(s)) ds

)
≤ 2r2(n−1)(p1(r) + q1(r))

∫ r

0

(
F (u(s) + v(s))

+G(u(s) + v(s))
)
(u′(s) + v′(s)) ds

≤ 2r2(n−1)(p1(r) + q1(r)) (F(u(r) + v(r)) + G(u(r) + v(r)))

which implies

u′(r) + v′(r)√
2(F(u(r) + v(r)) + G(u(r) + v(r)))

≤
√
p1(r) + q1(r).
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By integrating over [0, r], we obtain

Lu(0)+v(0)(u(r) + (v(r)) ≤
∫ r

0

√
p1(s) + q1(s)ds.

Letting r →∞, we obtain that F andG satisfies the Keller-Osserman condition. �
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