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EXISTENCE OF SOLUTIONS FOR SECOND-ORDER
IMPULSIVE BOUNDARY-VALUE PROBLEMS

ABDELKADER BOUCHERIF, ALI S. AL-QAHTANI, BILAL CHANANE

Abstract. In this article we discuss the existence of solutions of second-order
boundary-value problems subjected to impulsive effects. Our approach is based
on fixed point theorems.

1. Introduction

Differential equations involving impulse effects arise naturally in the description
of phenomena that are subjected to sudden changes in their states, such as popula-
tion dynamics, biological systems, optimal control, chemotherapeutic treatment in
medicine, mechanical systems with impact, financial systems. For typical examples
see [9, 11]. For a general theory on impulsive differential equations the interested
reader can consult the monographs [2, 7, 14], and the papers [1, 5, 6, 8, 10, 12, 13, 15]
and the references therein. Our objective is to provide sufficient conditions on the
data in order to ensure the existence of at least one solution of the problem

(p(t)x′(t))′ + q(t)x(t) = F (t, x(t), x′(t)), t 6= tk, t ∈ [0, 1],

∆x(tk) = Uk(x(tk), x′(tk)),

∆x′(tk) = Vk(x(tk), x′(tk)), k = 1, 2, . . . ,m,

x(0) = x(1) = 0,

(1.1)

where x ∈ R is the state variable; F : R+ × R2 → R is a piecewise continuous
function; Uk and Vk represent the jump discontinuities of x and x′, respectively, at
t = tk ∈ (0, 1), called impulse moments, with 0 < t1 < t2 < · · · < tm < 1.

2. Preliminaries

In this section we introduce some definitions and notations that will be used in
the remainder of the paper.

Let J denote the real interval [0, 1]. Let J ′ = J\{t1, t2, . . . , tm}. PC(J) denotes
the space of all functions x : J → R continuous on J ′, and for i = 1, 2, . . . ,m,
x(t+i ) = limε→0+ x(ti + ε) and x(t−i ) = limε→0 x(ti − ε) exist. We shall write
x(t−i ) = x(ti). This is a Banach space when equipped with the sup-norm; i.e.,
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‖x‖0 = supt∈J |x(t)|. Similarly, PC1(J) is the space of all functions x ∈ PC(J),
xis continuously differentiable on J ′, and for i = 1, 2, . . . ,m, x′(t+i ) and x′(t−i ) exist
and x′(ti) = x′(t−i ). For x ∈ PC1(J) we define its norm by ‖x‖1 = ‖x‖0 + ‖x′‖0.
Then (PC1(I), ‖ · ‖1) is a Banach space.

The following linear problem plays an important role in our study.

(p(t)x′(t))′ + q(t)x(t) = f(t), t 6= tk, t ∈ [0, 1],

∆x(tk) = Uk(x(tk), x′(tk)),

∆x′(tk) = Vk(x(tk), x′(tk)), k = 1, 2, . . . ,m,

x(0) = x(1) = 0,

(2.1)

To study (2.1) we first consider the problem without impulses

(p(t)x′(t))′ + q(t)x(t) = f(t), t ∈ [0, 1]

x(0) = x(1) = 0.
(2.2)

We shall assume, throughout the paper, that the following condition holds.

(H0) (i) p ∈ C1(J : R), p(t) ≥ p0 > 0, for all t ∈ J .
(ii) q ∈ C(J : R), q(t) ≤ p0π

2, for all t ∈ J , and q(t) < p0π
2 on a subset of

J of positive measure.

Lemma 2.1. If (H0) is satisfied, then for any nonzero x ∈ C2(J : R) with x(0) =
x(1) = 0, ∫ 1

0

{p(t)(x′(t))2 − q(t)x2(t)}dt > 0.

Proof. The proof of this lemma is presented in [3]. We shall reproduce it here for
the sake of completeness. Since q(t) ≤ p0π

2 on a subset of J of positive measure,
we have

p(t)(x′(t))2 − q(t)x2(t) > p0((x′(t))2 − π2x2(t)).

This inequality yields∫ 1

0

{p(t)(x′(t))2 − q(t)x2(t)}dt > p0

∫ 1

0

{(x′(t))2 − π2x2(t)}dt.

We show that

J (x) =
∫ 1

0

{(x′(t))2 − π2x2(t)}dt ≥ 0

for all functions x ∈ C2(J : R) with x(0) = x(1) = 0. The function u that minimizes
J (x) satisfies the Euler-Lagrange equation (see [4])

u′′ + π2u = 0,

and the boundary conditions u(0) = u(1) = 0. Then u(t) = sinπt or u(t) = 0, and
J (u) = 0. Since J (x) ≥ J (u) it follows that J (x) ≥ 0, and so∫ 1

0

{p(t)(x′(t))2 − q(t)x2(t)}dt > 0.

This completes the proof of the lemma. �
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Lemma 2.2. If (H0) is satisfied, then the linear problem

(p(t)x′(t))′ + q(t)x(t) = 0

x(0) = x(1) = 0.
(2.3)

has only the trivial solution.

Proof. Assume on the contrary that (2.3) has a nontrivial solution x0. Then (2.3)
implies [(p(t)x′0(t))

′ + q(t)x0(t)]x0(t) = 0 which yields

0 =
∫ 1

0

[(p(t)x′0(t))
′ + q(t)x0(t)]x0(t) dt

=
∫ 1

0

[(p(t)x′0(t))
′]x0(t) dt +

∫ 1

0

q(t)x2
0(t) dt

= −
∫ 1

0

[p(t)x′20 (t)− q(t)x2
0(t)] dt < 0.

This is a contradiction. See Lemma 2.1. Therefore x0 ≡ 0 is the only solution of
(2.3). �

It is well known that the unique solution of (2.2) is given by

x(t) =
∫ 1

0

G(t, s)f(s)ds,

where G(·, ·) : J × J → R is the Green’s function corresponding to (2.3).

Lemma 2.3. The solution to (2.1) is

x(t) =
∫ 1

0

G(t, s)f(s)ds−
m∑

k=1

∂G(t, tk)
∂s

p(tk)Uk(x(tk), x′(tk))

+
m∑

k=1

G(t, tk)p(tk)Vk(x(tk), x′(tk)).

(2.4)

Proof. We shall use of superposition principle and write x(t) = y(t) + z(t) + w(t),
where y(t) solves the problem

(p(t)y′(t))′ + q(t)y(t) = f(t), t ∈ J,

∆y(tk) = 0,

∆y′(tk) = 0, k = 1, 2, . . . ,m,

y(0) = y(1) = 0,

(2.5)

while z(t) solves the problem

(p(t)z′(t))′ + q(t)z(t) = 0, t 6= tk, t ∈ J,

∆z(tk) = Uk(x(tk), x′(tk)),

∆z′(tk) = 0, k = 1, 2, . . . ,m,

z(0) = z(1) = 0,

(2.6)
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and w(t) solves the problem

(p(t)w′(t))′ + q(t)w(t) = 0, t 6= tk, t ∈ J,

∆w(tk) = 0,

∆w′(tk) = Vk(x(tk), x′(tk)), k = 1, 2, . . . ,m,

w(0) = w(1) = 0.

(2.7)

It is clear that

y(t) =
∫ 1

0

G(t, s)f(s)ds, t ∈ I.

For k = 1, 2, . . . ,m, set

zk(t) = −∂G(t, tk)
∂s

p(tk)Uk(x(tk), x′(tk)), t ∈ J,

wk(t) = G(t, tk)p(tk)Vk(x(tk), x′(tk)), t ∈ J.

Using the properties of Green’s function and its derivatives we can prove that the
functions zk and wk, k = 1, 2, . . . ,m, are the solutions of problems (2.6) and (2.7),
respectively. Consequently, x = y +

∑m
k=1 zk +

∑m
k=1 wk is a solution of problem

(2.1). �

3. Nonlinear Problem

In this section we present our main results on the existence of solutions for
nonlinear boundary-value problems for the second-order impulsive control system.
Consider the problem

(p(t)x′(t))′ + q(t)x(t) = F (t, x(t), x′(t)), t 6= tk, t ∈ J,

∆x(tk) = Uk(x(tk), x′(tk)),

∆x′(tk) = Vk(x(tk), x′(tk)), k = 1, 2, . . . ,m,

x(0) = x(1) = 0,

(3.1)

where x ∈ R is the state variable; F : R+ × R2 → R is a piecewise continuous
function; Uk and Vk are impulsive functions representing the jump discontinuities
of x and x′ at t ∈ {t1, t2, . . . , tm}.

The nonlinear system

(p(t)x́(t))́ + q(t)x(t) = F (t, x(t), x′(t))

x(0) = x(1) = 0,
(3.2)

is equivalent to the nonlinear integral equation

x(t) =
∫ 1

0

G(t, s)F (s, x(s), x′(s))ds, for all t ∈ J

It follows from Lemma 2.3 that any solution of (3.1) satisfies

x(t) =
∫ 1

0

G(t, s)F (s, x(s), x′(s))ds−
m∑

k=1

W (t, tk)p(tk)Uk(x(tk), x′(tk))

+
m∑

k=1

G(t, tk)p(tk)Vk(x(tk), x′(tk)).

(3.3)
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where W (t, tk) = ∂G(t,tk)
∂s . Let

K = max{|G(t, s)| : (t, s) ∈ J × J}, L = max{|W (t, s)| : (t, s) ∈ J × J},

M = sup{|∂G(t, s)
∂t

| : (t, s) ∈ J × J}, N = sup{|∂W (t, s)
∂t

| : (t, s) ∈ J × J},

P = max{K, L, M, N}.

For the next theorem we use the following assumptions:
(H1) F (·, ·, ·) is continuous on J ′ and satisfies the Lipschitz condition

|F (t, x1, y1)− F (t, x2, y2)| ≤ β(|x1 − y1|+ |x2 − y2|).

(H2) Uk and Vk are continuous and satisfy the Lipschitz conditions

|Uk(x1, y1)− Uk(x2, y2)| ≤ ck(|x1 − y1|+ |x2 − y2|),
|Vk(x1, y1)− Vk(x2, y2)| ≤ dk(|x1 − y1|+ |x2 − y2|),

(H3) 2P (β + R
∑m

k=1 ck + R
∑m

k=1 dk) < 1 .

Theorem 3.1. Under assumptions (H0)–(H3), problem (3.1) has a unique solution.

Proof. Define an operator ω : PC1(J) → PC1(J) by

ω(x)(t) =
∫ 1

0

G(t, s)F (s, x(s), x′(s))ds−
m∑

k=1

W (t, tk)p(tk)Uk(x(tk), x′(tk))

+
m∑

k=1

G(t, tk)p(tk)Vk(x(tk), x′(tk)).

It is clear that any solution of (3.1) is a fixed point of ω and conversely any fixed
point of ω is a solution of (3.1).

We shall show that ω is a contraction. Let x, y ∈ PC(J), then

‖ω(x)− ω(y)‖0 ≤ sup
t∈J

{ ∫ 1

0

|G(t, s)||F (s, x(s), x′(s))− F (s, y(s), y′(s))|ds

+
m∑

k=1

|W (t, tk)|p(tk)|Uk(x(tk), x′(tk))− Uk(y(tk), y′(tk))|

+
m∑

k=1

|G(t, tk)|p(tk)|Vk(x(tk), x′(tk))− Vk(y(tk), y′(tk))|
}

≤ sup
t∈J

{∫ 1

0

|G(t, s)|(β(‖x− y‖0 + ‖x′ − y′‖0))ds

+ R

m∑
k=1

|W (t, tk)|ck(‖x− y‖0 + ‖x′ − y′‖0)

+ R

m∑
k=1

|G(t, tk)|dk(‖x− y‖0 + ‖x′ − y′‖0)
}

.

Now, by using (H1) and (H2), we have

‖ω(x)− ω(y)‖0 ≤ βK‖x− y‖1 + RL

m∑
k=1

ck‖x− y‖1 + RK

m∑
k=1

dk‖x− y‖1. (3.4)
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We have

d

dt
ω(x)(t) =

∫ 1

0

∂G(t, s)
∂t

F (s, x(s), x′(s))ds−
m∑

k=1

∂W (t, tk)
∂t

Uk(x(tk), x′(tk))

+
m∑

k=1

∂G(t, tk)
∂t

Vk(x(tk), x′(tk)).

Let x, y ∈ PC(J), then

‖ d

dt
ω(x)− d

dt
ω(y)‖0 ≤ sup

t∈J

{∫ 1

0

|∂G(t, s)
∂t

||F (s, x(s), x′(s))− F (s, y(s), y′(s))|ds

+
m∑

k=1

|∂W (t, tk)
∂t

||Uk(x(tk), x′(tk))− Uk(y(tk), y′(tk))|

+
m∑

k=1

|∂G(t, tk)
∂t

||Vk(x(tk), x′(tk))− Vk(y(tk), y′(tk))|
}

.

Conditions (H1) and (H2) imply

‖ d

dt
ω(x)− d

dt
ω(y)‖0 ≤ βM‖x−y‖1+RN

m∑
k=1

ck‖x−y‖1+RM

m∑
k=1

dk‖x−y‖1. (3.5)

From (3.4) and (3.5) we obtain

‖ω(x)− ω(y)‖1 = ‖ω(x)− ω(y)‖0 + ‖ d

dt
ω(x)− d

dt
ω(y)‖0

≤
(
βK + RL

m∑
k=1

ck + RK

m∑
k=1

dk

)
‖x− y‖1

+ (βM + RN

m∑
k=1

ck + RM

m∑
k=1

dk)‖x− y‖1

≤ 2P
(
β + R

m∑
k=1

ck + R

m∑
k=1

dk

)
‖x− y‖1

Condition (H3) implies that ω is a contraction. By the Banach fixed point theorem
ω has a unique fixed point x, which is the unique solution of (3.1). �

For the next Theorem, we use the following assumptions:
(H4) F : [0, 1]×R2 → R is continuous on J ′ and there exists h : J ×R+ → R+ a

Caratheodory function, nondecreasing with respect to its second argument
such that

|F (t, x, y)| ≤ h(t, |x|+ |y|), a.e. t ∈ [0, 1].

(H5) Uk and Vk are continuous and there exist ak > 0 and bk > 0 such that

|Uk(x(tk), y(tk))| ≤ ak, |Vk(x(tk), y(tk))| ≤ bk, k = 1, 2, . . . ,m.

(H6) lim%→+∞ sup 1
%

( ∫ 1

0
h(t, %)dt +

∑m
k=1 R(ak + bk)

)
< 1/(2P ).

Theorem 3.2. Under assumptions (H0), (H4)–(H6), problem (3.1) has at least
one solution.
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Proof. The proof is given in two steps.
Step 1. A priori bound on solutions. Let x ∈ PC1(J) be a solution of (3.1).

x(t) =
∫ 1

0

G(t, s)F (s, x(s), x′(s))ds−
m∑

k=1

W (t, tk)p(tk)Uk(x(tk), x′(tk))

+
m∑

k=1

G(t, tk)p(tk)Vk(x(tk), x′(tk)),

and

x′(t) =
∫ 1

0

∂G(t, s)
∂t

F (s, x(s), x′(s))ds−
m∑

k=1

∂W (t, tk)
∂t

p(tk)Uk(x(tk), x′(tk))

+
m∑

k=1

∂G(t, tk)
∂t

p(tk)Vk(x(tk), x′(tk)).

It is easy to see that

|x(t)| ≤ K

∫ 1

0

|F (s, x(s), x′(s))|ds + RL

m∑
k=1

|Uk(x(tk), x′(tk))|

+ RK

m∑
k=1

|Vk(x(tk), x′(tk))|,

and

|x′(t)| ≤ M

∫ 1

0

|F (s, x(s), x′(s))|ds + RN

m∑
k=1

|Uk(x(tk), x′(tk))|

+ RM

m∑
k=1

|Vk(x(tk), x′(tk))|.

Conditions (H4), (H5) and (H6) lead to

‖x‖0 + ‖x′‖0 ≤ (K + M)
∫ 1

0

h(s, ‖x‖0 + ‖x′‖0)ds +
m∑

k=1

R((L + N)lk + (K + M)pk).

Since ‖x‖1 = ‖x‖0 + ‖x′‖0 and h is nondecreasing, then

‖x‖1 ≤ 2P

∫ 1

0

h(s, ‖x‖1)ds +
m∑

k=1

R(2Pak + 2Pbk),

or

‖x‖1 ≤ 2P (
∫ 1

0

h(s, ‖x‖1)ds +
m∑

k=1

R(ak + bk)).

Let β0 = ‖x‖1. Then the above inequality gives

1
2P

≤ 1
β0

( ∫ 1

0

h(s, β0)ds +
m∑

k=1

R(ak + bk)
)
. (3.6)

Condition (H6) implies that there exists r > 0 such that for all β > r, we have

1
β

( ∫ 1

0

h(s, β)ds +
m∑

k=1

R(ak + bk)
)

<
1

2P
. (3.7)
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Comparing (3.6) and (3.7) we see that β0 ≤ r . Hence we have ‖x‖1 ≤ r.
Step 2. Existence of solutions. Let Ω = {x ∈ PC1(J) : ‖x‖1 < r + 1}. Then Ω

is an open convex subset of PC1(J). Define an operator H by

H(λ, x)(t) = λ

∫ 1

0

G(t, s)F (s, x(s), x′(s))ds + λ

m∑
k=1

W (t, tk)Uk(x(tk), x′(tk))

+ λ

m∑
k=1

G(t, tk)Vk(x(tk), x′(tk)), 0 ≤ λ ≤ 1.

Then H(λ, ·) : Ω̄ → PC1(J) is compact and has no fixed point on ∂Ω (see [6]). It
is an admissible homotopy between the constant map H(0, ·) ≡ 0 and H(1, ·) ≡ ω.
Since H(0, ·) is essential then H(1, ·) is essential which implies that ω ≡ H(1, ·) has
a fixed point in Ω. This fixed point is a solution of our problem. �

The following assumptions are used in the next theorem.
(H7) there exists g ∈ L1(J) such that

|F (t, x, y)| ≤ g(t) for almost t ∈ J, x, y ∈ R.

(H8) Uk : R2 → R is continuous and there exists αk > 0 such that

|Uk(x(tk), y(tk))| ≤ αk(‖x‖0 + ‖y‖0), k = 1, 2, . . . ,m.

(H9) Vk : R2 → R is continuous and there exists βk > 0 such that

|Vk(x(tk), y(tk))| ≤ βk(‖x‖0 + ‖y‖0), k = 1, 2, . . . ,m.

(H10) 2PR
∑m

k=1(αk + βk) < 1.

Theorem 3.3. Under assumptions (H0), (H7)–(H10), equation (2.4) has at least
one solution.

Proof. The proof is given in two steps.
Step1. A priori bound on solutions. We have

x(t) =
∫ 1

0

G(t, s)F (s, x(s), x′(s))ds−
m∑

k=1

W (t, tk)p(tk)Uk(x(tk), x′(tk))

+
m∑

k=1

G(t, tk)p(tk)Vk(x(tk), x′(tk)).

and

x′(t) =
∫ 1

0

∂G(t, s)
∂t

F (s, x(s), x′(s), (Sx)(s))ds +
m∑

k=1

∂W (t, tk)
∂t

p(tk)Uk(x(tk), x′(tk))

+
m∑

k=1

∂G(t, tk)
∂t

p(tk)Vk(x(tk), x′(tk)).

It is easy to see that

|x(t)| ≤ K

∫ 1

0

|F (s, x(s), x′(s))|ds + RL

m∑
k=1

|Uk(x(tk), x′(tk))|

+ RK

m∑
k=1

|Vk(x(tk), x′(tk))|,
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and

|x′(t)| ≤ M

∫ 1

0

|F (s, x(s), x′(s))|ds + RN

m∑
k=1

|Uk(x(tk), x′(tk))|

+ RM

m∑
k=1

|Vk(x(tk), x′(tk))|.

From (H7), (H8) and (H9), we obtain

‖x‖0 + ‖x′‖0 ≤ (K + M)‖g‖L1 +
m∑

k=1

R(L + N)αk(‖x‖0 + ‖x′‖0)

+
m∑

k=1

R(K + M)βk(‖x‖0 + ‖x′‖0).

Setting µ = 2PR
∑m

k=1(αk + βk), we obtain

‖x‖1 ≤ 2P‖g‖L1 + µ‖x‖1.

Then (1− µ)‖x‖1 ≤ 2P‖g‖L1 . Using condition (H10) we obtain

‖x‖1 ≤ (
2P

1− µ
)‖g‖L1 := r1.

Step 2. Existence of solutions. Let Ω1 = {x ∈ PC1(J) : ‖x‖1 < r1 + 1}. The
rest of the proof is similar to that of Theorem 3.2, and it is omitted. �
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