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EXISTENCE OF SOLUTIONS FOR DISCONTINUOUS
p(z)-LAPLACIAN PROBLEMS WITH CRITICAL EXPONENTS

XUDONG SHANG, ZHIGANG WANG

ABSTRACT. In this article, we study the existence of solutions to the problem
—div(|Vu/P@2vy) = Ajulf" @24 4 f(u) z€Q,
u=0 z€dN,
where € is a smooth bounded domain in RY | p(z) is a continuous function with
1 < p(z) < N and p*(z) = ]\]]Vfizgz). Applying nonsmooth critical point theory
for locally Lipschitz functionals, we show that there is at least one nontrivial
solution when A less than a certain number, and f maybe discontinuous.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In recent years, the study of problems in differential equations involving variable
exponents has been a topic of interest. This is due to their applications in im-
age restoration, mathematical biology, the study of dielectric breakdown, electrical
resistivity, polycrystal plasticity, the growth of heterogeneous sandpiles and fluid
dynamics, etc. We refer the reader to [4l [5] [6], T2} [T4], 20, 26] and references therein
for more information.

In this article, we discuss the existence of solutions to the problem

— div(|Vu/P®72Vu) = AulP" @20+ f(u) zeQ,

(1.1)
u=0 x €0,

where Q is a smooth bounded domain in RY, p(x) is a continuous function defined
on Q with 1 < p(x) < N, p*(z) = %, and A > 0. The function f(u) can have
discontinuities, so that functionals associated with may not be differentiable,
and standard variational techniques can not be applied. There are many publica-
tions for the case when p(z) is a constant function; see for example [1 2, [3] [9] 24].
For the existence of solutions for p(x)-Laplacian problems we refer the reader to
[7, [T, [13), 16, [19] 22].

The existence of solutions for p(x)-Laplacian problems with critical growth is rel-
atively new. In 2012, Bonder and Silva [8] extended the concentration-compactness
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principle of Lions to the variable exponent spaces and proved the existence of so-
lutions to the problem

_Ap(z)u — |u|Q(JJ)—2u+ )\(m>‘u|7(x)—2u = Q,
u=0 x¢€dN.

Where € is a smooth bounded domain in RY, with ¢(z) < p*(z) and the set
{q(z) = p*(z)} # 0, we can find a similar result in [I5]. Fu [I7] studied the
existence of solutions for p(z)-Laplacian equationd involving the critical exponent
and obtained a sequence of radially symmetric solutions.

In the present paper, we study the discontinuous p(z)-Laplacian problems with
critical growth for . To handle the gaps at the discontinuity points, our ap-
proach uses nonsmooth critical point theory for locally Lipschitz functionals, we
obtain some general results for the simple case when f has only one point of dis-
continuity.

Because f is discontinuous, we say that a function u € VVO1 P (I)(Q) is a solution
of the multivalued problem associated to if u satisfies

—Bpa)u — Nu[P" @2y € f(u) ae. inQ,

where f(u) is the multivalued function f(u) = [f(u), f(u)] with
f(t) =lim in f(s), f(t) =Ilimsup f(s).
- s s—t

In this article, we assume f : R — R is a measurable function satisfying:
(F1) f(t) =0if ¢ <0 and for all ¢t € R, there exist the limits:

f+0) = Jim f(t+8) f(—0) = lm f(t=5)

(F2) there exist Cy,Cy > 0 such that |f(t)] < C; + Ca|t|?™®) =1 where ¢(z) €
C(Q) such that p(z) < g(x) < p*(z).

(F3) f(t) = o(|t|P® 1) as t — 0.

(F4) f(t)t > q_F(t) > 0, for all t € R\{0}, where F(t) = [} f(s)ds.

Note that by hypothesis (F1),
F(u) = max{f(u—0), f(u+0)}, f(u) = min{f(u—0), f(u+0)}.
Theorem 1.1. Suppose f satisfies (F1)-(F4). Then there exists Ao > 0 such that
(1.1) has a nontrivial solution for every X € (0, o).

One of the main motivations is to consider the particular case associated with

) *
—Apyu = NulP @20 + bh(u — a)|u|!® 2z e,
u=0 xz €0,
where h(t) =0if t <0 and h(t) =1 if ¢ > 0, a and b are positive real parameters,
p(x) < q(x) < p*(x). As a direct consequence of Theorem we have

p(z)

(1.2)

Theorem 1.2. For every a,b > 0, there exists Ag > 0 such that for every A €
(0, X0), Equation (1.2) has a nontrivial solution satisfying meas{z € Q : u(x) >
a} > 0.

The rest of this article is organized as follows: In section 2 we introduce some
necessary preliminary knowledge; in section 3 contains the proof of our main results.
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2. PRELIMINARIES

First, we recall some definitions and properties of generalized gradient of locally
Lipschitz functionals, which will be used later. Let X be a Banach space, X* be
its topological dual and (-,-) be the duality. A functional I : X — R is said to
be locally Lipschitz if for every u € X there exists a neighborhood U of v and a
constant K > 0 depending on U such that

[I(u) —I(v)] < K|lu—2|, Yu,veUl.

For a locally Lipschitz functional I, we define the generalized directional derivative
at u € X in the direction v € X by

I°(u;v) = limsup futh+ov) = I(u+t h).
h—0, 5.0 0

It is easy to show that I°(u;v) is subadditive and positively homogeneus. The
generalized gradient of I at u is the set

OI(u) = {w € X*: I°(u;v) > (w,v),Yv € X}.
Then, for each v € X, I°(u;v) = max{(w,v) : w € I(u)}. A point u € X is a
critical point of I if 0 € 9I(u). It is easy to see that if v € X is a local minimum
or maximum, then 0 € 9I(u).
Next, we recall some definitions and basic properties of the generalized Lebesgue-

Sobolev spaces LP(®)(Q) and Wol’p(z) (Q), where Q C RY is an arbitrary domain with
smooth boundary. Set

C+(Q) = {p(z) € C(Q) : p(z) > 1,Vz € Q},
p4 = maxp(z), p- =minp(z).
For any p(x) € C4(Q), we define the variable exponent Lebesgue space

LPO(Q) = {ue M(Q): /Q lu(x)[P@de < oo},

with the norm
|ulp@) = inf{p >0 / L@ de < 1},
Q M
where M () is the set of all measurable real functions defined on €.
Define the space
Wy P(Q) = {u € LP@(Q) : |Vu| € L) (Q)},
with the norm
lull = Tulpe) + [Vtlpe).-
Proposition 2.1 ([I8 21I]). There is a constant C > 0 such that for all u €
1,p(x
WO 7 )(Q)7
[ulpe) < ClVUlpe)-
So |Vulp) and ||ul| are equivalent norms in Wol’p(w)(ﬂ). Hence we will use the
norm |lul| = |Vl for all u € W(Jl’p($)(Q).
Proposition 2.2 ([I8 21]). Set p(u) = [, [u[P®dz. For u,u, € LP*(Q), we
have:
(1) Julpay <1 (=1;>1) & p(u) <1 (=1;>1).
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p() < P(U) < |“‘p(x)
If ‘u|p(w < 17 then |u\p(m) < p( ) < |u\ p(z)"
lm;, o0 Uy, = u < limy, o0 p(u, —u) = 0.
limy, oo [Un|p(e) = 00 € limy o0 p(un) = 00.

Proposition 2.3 ([I8]). If q(z) € CL(Q) and q(z) < p*(z) for any x € Q, the
imbedding W) (Q) — L1*)(Q) is compact.
Proposition 2.4 ([21]). The conjugate space of LP*)(Q) is L) (Q), where

ﬁ = 1. For any u € LP®)(Q) and v € LY@ (Q),

)+

p(z

1 1
wolde < (— + —)|u v .
| fwrlde < (= + Dtubololac

s(2)
Proposition 2.5 ([16]). If [u|¢®) € La@ (), where q(z), s(z) € L(N ) q(
s(x), then u € L*@)(Q) and there is a number G € [q_, q] such that ||u|9® |9

(|u|5(z)>§'

Let Iy(u) : Wol’p(r)(ﬁ) — R be the energy functional defined as

|| I/\

W= [ vup@dr - [ e @dr — [ Pu)de
N = [ v @ds [ sy @de— [ P e

denote ®(u) = [, F(u)dz. We say that I(u) satisfies the nonsmooth (PS). con-
dition, if any sequence {un} C X such that I (u,) — ¢ and m(u,) = min{||w|| x- :
w € OIx(uy)} — 0, as n — oo, possesses a convergent subsequence. To prove our
main results, we use the generalizations of the mountain pass theorem [I0].

Theorem 2.6. Let X be a reflexive Banach space, I : X — R is locally Lipschitz
functional which satisfies the nonsmooth (PS). condition, I(0) = 0 and there are
p,r >0 and e € X with |le|| > r, such that

Iu)>pB if|lull=r and I(e)<O0.
Then there exists u € X such that 0 € 0I(u) and I(u) = c. Where

= }/Iel{“ 0221 ),

I'={y e (0,1}, X)[7(0) = 0,7(1) = e}.

Recall the concentration-compactness principle for variable exponent spaces.
This will be the keystone that enable us to verify that I satisfies the nonsmooth
(PS). condition.

Proposition 2.7 ([8]). Let {u,} converge weakly to u in Wol’p(x)(ﬂ) such that
[un [P @) and |Vu,|P®) converge weakly to nonnegative measures v and p on RN
respectively. Then, for some countable set J, we have:

(i) v =|ufP"® + >jes Vi,
(i) p=> |Vu|p(m) + ZjeJ 1450a;
1

1
p*(xj) p(x;)
. <.’
(iii) Sy, < py

)
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where x; € Q, 6, is the Dirac measure at xj, vj and pi; are constants and S is the
best constant in the Gagliardo-Nirenberg-Sobolev inequality for variable exponents,
namely

H“Hl,p(m)

S:inf{ "

fu € Wol’p(z)(Q),u #0}.

p* ()
3. PROOF OF MAIN RESULTS

In this section, we denote by u,, — u the weak convergence of a sequence u,, to
u in Wol’p(w)(Q), and o(1) denote a real vanishing sequence, C and C;,i = 1,2,...
are positive constants, |A| is the Lebesgue measure of A and p’(z) as the conjugate

function of p(z). u € Wol’p(r) () is called a solution of ([L.1)) if u is a critical point
of I\ (u) and satisfies

— div(|Vu|P®72Vu) — AulP @2y e [f(u), f(u)] ae. z€.
Lemma 3.1. The function ®(u) is locally Lipschitz on Wol’p(z)(Q),
Proof. By (F2), Proposition and for all u,v € Wol’p(x)(Q),

o) - o)< [ | [ | F(0)]dt]dz

g/ ]/ |Cy + Colt|?™) | dt|da
Q u
< (1G] _yar + Calulic) + Calolfgy)u = vlg)-

From Proposition we obtain that there is a neighborhood U C Wol’p(x)(ﬂ) of u
such that
|[@(u) — @(v)] < Kfju—wvl,

where K > 0 depends on max{|[u|, |[v]|}. So, ®(u) is locally Lipschitz in W, (€).
The proof is complete. O

From Lemma by Chang’s results we have that Iy (u) is locally Lipschitz and
w € OI(u) if and only if there is @ € W~ (#)(Q) such that for all ¢ € Wol’p(z)(Q),

w = u|P@) =27y T — ulP" D 2u0de — | weds .
o) = [ [FuP 2 uViode = A [ @ ugde = [ mpde. @)
and

o(z) € [f(u(z)), f(u(x))] ae. x €. (3.2)

Lemma 3.2. Assume (F1), (F2). Let {u,} be a bounded sequence in Wol’p(m)(Q)
such that Iy(un) — ¢ and m(u,) — 0. Then there exists a subsequence (denoted

again by u,) and some u € Wol’p(x)(Q), such that
()
|V, [P@) 2V, — |[VulP@ 2V weakly in [Lpfr)*l (V.

Proof. The proof is similar to that of [25, Theorem 1]. Because {u,} is bounded
in Wol’p(m) (€2), there exist a subsequence and u € Wol’p(x)(ﬂ) such that u, — u in
Wol’p(x)(Q) and u,, — u in LP®)(Q) as n — oo.

We claim that the set J given by Proposition [2.7] is finite. Choose a function
o(z) € C(RY) such that 0 < p(z) < 1, p(z) =1 on B(0,1) and ¢(z) = 0 on
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RN\ B(0,2). Let p;jo(z) = o(*=2), for any z € RV, ¢ > 0 and j € J. It is clear

that {p;cun}t C Wol’p(m)(fl) for any j € J, and is bounded in Wol’p(x)(Q). Take
© = Qj Uy in (wy, @), we obtain

/ |Vun\p(z)72Vun-uanajyadx—l—/ \Vun|p(“")g0j,5dx
0 @ (3.3)

- )\/ |un|p*(x)<pj,5dx - / Wnpjendr = o(1).
Q Q

Taking into account that w, € dI)(uy), by (F2) and u,, — u in I/Vol’p(gg)(Q)7 we

infer that @,, is bounded in Wwie (#)(€2), and so there exists @y € Wt @) ()
such that

Wnp —wo in WP Q) and @y € [f(u), F(u)). (3.4)
Let n — oo in (3.3)), by Proposition we have

lim \Vun|p(x)_2Vun “up Vi dx
Q

n—oo

:/\/ @j,adV—/@j,ed/l‘f‘/wo@j,gudaj.
Q Q Q

By Holder inequality it is easy to check that

(3.5)

0<|lim [ |Vun|P®2Vu,Ve;. - u, dzl
Q

n—oo

P4 —1

< (/Q|Vun|p+dx> o (/Q|un|p+|V<,0j,€I’erac);F

+(/Q|Vun|p*dx> "1(/Q|un|1’|vgoj,€|pdx)‘“l

py—1 « 7{)1 3
< 04(/ |Vun|p+da:)7p+ (/ |un|(”+) dx>( )
Q B(z;,2¢)

p_—1 1
+ C5</ \Vun|p*dx> P (/ |un‘(p*)*dm) =) — 0, ase—0.
Q B(acj,2s)

From (3.5, as € — 0, we obtain Av; = p;. From Proposition we conclude that

N N N
v;=0 or v;>S8"max{\ 7+ A "=} (3.6)

It implies that J is a finite set.

Without loss of generality, let J = {1,2,...,m}. For any é > 0, we denote
Qs = {z € Q|dist(z,2;) > 6}. Choose R large enough such that Q C {z €
RY||z| < R}, ¥(x) € C®RN), 0 < ¢(x) <1, ¢(z) =0 on B(0,2R) and ¥(z) =1
on RY \ B(0,3R). Take ¢ > 0 small enough such that B(z;,€) N B(zj,¢) = 0,
Vi,j € J,i# jand UT, B(z;,€) C B(0,2R). We take

Ye(r) =1-Y @i —1(x), zeRN.
j=1

Then t¢(x) € C>(RN), supp ¢e C B(0,3R) with ¢c(z) = 0 on U, B(x;,€/2) and
Ye(z) =1 on (RV \ B(z;,€)) N B(0,2R).
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. . 1 . .
As {¢eu, } is bounded in W ’p(x)(Q), let ¢ = euy in (wy, @), we obtain

/ \Vun|p(‘r)72Vun~unV1/)ed:r+/ \Vun|p(m)w5dx
Q Q

— )\/ |un|p*(m)7j}edx - / Wpteundr = o(1).
Q Q
By (3.4) and u,, — u in Wol’p(x)(Q), we can easily obtain

lim wnweundm:/woweudx.

Since ¥(z) = 0 on UL, B(x;, 5) and v = JufP" @) 4 > je Vjda,, we obtain

lim |un|p*<f>¢6d:c=/¢edy=/ [u|P” @ da.
Q Q Q

n—oo

Hence

lim |Vun|p(x)wedz = lim (7/ |Vun|p(m)72Vun Uy Viheda)

(3.7)
Jr/\/ |u|p*(z)¢edx+/woweudz.
Q Q
In the same way, taking ¢ = . in (w,, @), we obtain
/ Ve, [P =2V, - uVipedr + / |V, PP =2V, Vu - heda
Q Q
— )\/ |un|p*(z)_2unuw€dm — / Wpteudr = o(1).
Q Q
Thus
lim | |Vu,|P™ 2V, Vu - pde
@ (3.8)
= lim (— / |V, |P@ =2V, - uVipeds) + A / [ulP” @ da + / Toteudz.

So, from ([3.7) and (3.8)), as n — oo, we have
0< / (IVun [P@ 20, — [VulP® =2V 0) (Vu, — Vu)dzs
Qs

< /Q Pe(|Vtin PO =2V, — |Vu[P@=2V0) (Va, — Vu)de
= /Q |V, [P =2V, Vipe - (u — up)da
+ /Q 1/)6|Vu|p(w)_2Vu - (Vu — Vuy,)dz + o(1)
< Velloo - [1Ven PO 0 - |t = iy
+ /Q V| VulP® =2V - (Vu, — Vu)dz + o(1).
Thus we have

lim [ (|Vun|P® "2V, — |[VulP® V) (Vu, — Vu)dz = 0. (3.9)

n—oo Qs
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Denote
In(x) = (|Vu, PP =2V, — |VulPD2Vu) (Vu,, — Vu),

then g,(z) > 0, and by (3.9)), gn(z) — 0 a.e. on Qs. Let E be a compact subset of
Qs, suppose gp(z) — 0 a.e. on E. If Vu,, were not convergence to Vu everywhere
on F, there would at least exist zg € F such that

nl;r{:o Vun(xo) # Vu(zo).
Then
[V (0)[P0) = |V, (20) P70 2V, (20) V(o)
+ V(o) [PV (20) Va(wo) — V(o) P + go (o).
By the interpolation inequality,
[Vt (0) [P0~V () V()| < [Vt (0) [P - [ V(o)
< €1Vt (x0)[P@0) + O, [Vu(zo) [P0,
and
V(o) [P0~V (20) V(o) | < [Vuu(o) PO~ - [V (a0)]
< e V() P + Cey [Vttg () [P

We choose €1, €2 properly, because g, (zg) is bounded, then |[Vu(zg)| < C. Let
Vu(zg) =1, so we can assume Vu,(xg) — 7 # n. Thus

gn(z0) — ([P =27 — |n[Po)=2n) (7 — ) > 0.

This contradicts g,(xo) — 0. Hence, Vu,(xg) — Vu(zg) everywhere on E. So
Vun(x0) = Vu(zo) a.e. on Qs. Since J is arbitrary, we obtain Vu, (xo) — Vu(z)
a.e. on . Since {|Vu,|P®~2Vu,} is integrable in L'(Q), we obtain that as
n — 0o,

|V, [P =2V, — |[VuP® "2V weakly in [Lpfz(;cll (V.
The proof is complete O

Lemma 3.3. Suppose f satisfies (F2), (F4). Then I satisfies the nonsmooth
_~ N

(PS). condition provided ¢ < (er - q%)SN max{)\1 Py AT }.

Proof. Let {un} C Wol’p(x) (Q) be such that I(u,) — ¢ and m(u,) — 0 as n — co.

We must show the existence of a subsequence of {u,} which converges strongly in

Wol’p(x)(Q). First, we show that {u,} is bounded. We know that

Up) = un[P@ dr — ! up [P @ dy — Uy, )dT
i) /<>'v S A/me' o [ Fun)d

/\Vu P(®) dg /|u P r)d.’L‘—/F(’un)dl‘.
Q

Let w,, € 8[,\(un) such that ||w,| = m(un) = o(1). From (3.1) we have

(Wny Un,) :/ |Vun|p($)dac—)\/ |un\p*(””)dx—/wnundac, (3.11)
Q Q Q

(3.10)
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where W, (z) € [f(uy), f(u,)] for a.e. € Q. By (F4) we obtain

1 1
— Wty > — f(Un)tn > F(uy). (3.12)
q- q-
From (3.10)), (3.11) and (3.12)), we obtain
1
ColL+ tnl) = Ta(tn) — (s tn) > (— — = / Vunf@dz.  (3.13)
q- P+
If ||u,|| > 1, by Proposition [2.2] we obtain
1 1
— — —Nun|P~ < Cs(1 + ||un]]).
(p+ q_)|| | (14 [[unll)

Thus {u,} is bounded in W, (f)(Q). Then there exist a subsequence and u €
Wy (Q) such that u, — u in W™ (Q), so we know that {|u,[P" @ ~2u, 0} is
uniformly integrable in L*(£2). By this fact, Lemma and m(u,) — 0, taking
n — 00 in (wy, ), we have

0= / |VulP@ =27 uV pdz — )\/ lulP” @) 2 updz — / Gpdr, Y ¢ c CF(RN).
Q Q Q
So we derive that
- Ap(m)u - >\|u|p* (1)72u € [i(u)vf(u)] (314)
Now we applying Proposition to prove that v; = 0 in (3.6). Assume v; # 0
for some j € J. From (3.13), we have

1
I(up) — —(wn, up) > (— — — / YV, [P dz.
1) = () 2 (o Vet

Since Iy (u,) — ¢ and m(u,) — 0, using Proposnlonm taking n — oo, we obtain

c> ———/|Vu|p dac—i————z,u]

- jeJ

1 1 _N N
>(— — —)sN max{)\l 7 % = }.
P+ q-

N N
Since ¢ < (pi - q%)SN max{)\1 A TR }, then v; = 0 for all j € J. Hence we

n
have

/|un|p*($)dx—>/ JulP”®) da. (3.15)

So we can use [I5, Lemma 2.1]. Set v, = u,, — v and we have
/ | ) = / o [P @ dg +/ P @da + o(1), (3.16)
/ IV [P = / IV [P dz +/ VulP@dz + (1), (3.17)
Q Q Q

Thus, by (3.15) and (3.16)), u,, — u strongly in L?"*)(Q). From (3.11), using (3.14)
and (3.17)), we obtain

<wn,un):/ |an|p(””)dx+/ |Vu|p(l)dx—>\/ \un\p*(w)dx—/wnundﬂc-i-o(l).
Q Q ) Q
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By (3.4) and (3.15)), letting n — oo, we conclude that
/ |V, |P® da — 0.
Q

This fact and Proposition imply that u,, — u strongly in WO1 »(@) (Q). The proof
is complete. ([

Lemma 3.4. Suppose f satisfies (F2), (F3). Then, for every A > 0, there are
a, p >0, such that I(u) > «, ||u|| = p.

Proof. By (F2) and (F3), we have
[FO] < et~ 4 Cle|e) < P~ 4 (et @
Therefore,

In(u) = /Q p—)\vuv’(f)dx _ )\/

/|Vu|p dm—7/| |p(m >‘+C(6)
pr Q

we can take Hu|| < 1 sufficiently small such that |ul,,) < 1 and |u,-(,) < 1. From
(3.18), Propositions and and the definition of S, using the usual arguments,
we obtain

|u|p @ dy — [ F(u)dx
¢ (3.18)

1 A+C .
) 2 i — Sty - 2
P+ p- pr @
1 A+ C(e
> |julP+ — L()
2p+ —
1 A+ C(e) x_
= (5 = LSl )l
P+ b
Considering
1 A+C(e) . _
gt :7_7*5 P—||¢||P- P+7
(0) = 3~ s o
since py < p*, we have g(t) — W as t — 0. Hence, there exists p > 0 such that
g(p) > 0. So, we obtain a and p > 0, such that
In(u) Z o, |lu] = p.
The proof is complete. O

Next, we choose p(z) € WOLP(‘T)(Q), such that ||| = 1.

Lemma 3.5. Suppose f satisfies (F4). Then, there exists A\g > 0, to > 0 such that
I(tow) < 0, and for all X € (0, \g),
1 1 N N
sup I (tp) < (— — —)SN max{)\l pli,)\l = }.
t>0 P+ q—

Proof. By (F4), we have
Fluyu > fuwyu> g Fu), Yu#0.
This implies F(tu) > t9- F(u), for all ¢ > 1. Then, for any ¢ > 1,

P+ P} th
Itg) < 8 M / o @z — [ Plag)ds < 75—t [ Fle)ds = Do),
pb— Q Q = Q
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Since q— > py and F(p) > 0, there exists tg > 0 sufficiently large such that
In(toy) < 0 and [|toe|| > p with p given by Lemma[3.4] If 0 < ¢ < 1, then

P

Ito) < = = [ Plto)da = Tty

Let J(ty) = max{.Ji(tp), J2(ty)}, so we have

sup I (te) < sup J(tp).
>0 >0

Hence, we can find A\g > 0 such that

1 1 _N j_N
sup Jy(tp) < (— — —)SN max{/\1 P+ ,/\1 P}
t>0 b+ g
So, for all A € (0, ), we have
1 1 _ N _N
sup I\ (tp) < (— — —)SV max{)\l pli,)\l = 1.
t>0 P+ q—
The proof is complete. O

Proof of Theorem[I. It is obvious that I,(0) = 0. By Lemmas 3.5 ac-
cording to Theorem there exist A\g > 0, and for all A € (0, \g), we can find

an u € Wol‘p(z)(Q) such that Iy(u) > 0 and 0 € 9I,(u). Hence, u is a nontrivial
solution of (|1.1)). The proof is complete. O

Proof of Theorem[1.4 In (1.2), f(u) = bh(u ﬂu|q<m)2u has only one discontinu-

ity point a, so by the consequence of Theorem [1.1] we obtain that an u € I/VO1 »(@) ()
is a nontrivial nonnegative solution of (1.2]). That is,

— Ayt — Aulf” @2y € f(u) ae. in Q (3.19)

~

where f(u) is the multivalued function given by

f(s) = {Fo{iigx)uq<w>—l] j i Z (3.20)

ItV ={z € Q:u(x) = a} exists, by (3.19) and (3.20), we have
—Ap@yu — AMulP" @ =2y € [0, bh(z)u!™ 1] ae. in V.

Using the Morrey-Stampacchia’s theorem [23], we have —A,yu = 0 a.e. x € V.
So
“Aa? @1 >0 ae inV.

This is a contradiction. Thus |V| = 0. The proof is complete. O

Acknowledgments. The author wants to thank the anonymous referees for their
carefully reading this paper and their useful comments.
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