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NON-TRIVIAL SOLUTIONS FOR TWO-POINT
BOUNDARY-VALUE PROBLEMS OF FOURTH-ORDER

STURM-LIOUVILLE TYPE EQUATIONS

SHAPOUR HEIDARKHANI

Abstract. Using critical point theory due to Bonanno [3], we prove the exis-
tence of at least one non-trivial solution for a class of two-point boundary-value
problems for fourth-order Sturm-Liouville type equations.

1. Introduction

In this note, we prove the existence of at least one non-trivial solution for the
two-point boundary-value problem of fourth-order Sturm-Liouville type:

(pi(x)u′′i (x))′′ − (qi(x)u′i(x))′ + ri(x)ui(x) = λFui(x, u1, . . . , un) x ∈ (0, 1),

ui(0) = ui(1) = u′′i (0) = u′′i (1) = 0 (1.1)

for 1 ≤ i ≤ n, where n ≥ 1 is an integer, pi, qi, ri ∈ L∞([0, 1]) with p−i :=
ess infx∈[0,1] pi(x) > 0 for 1 ≤ i ≤ n, λ is a positive parameter, F : [0, 1]× Rn → R
is a function such that F (., t1, . . . , tn) is measurable in [0, 1] for all (t1, . . . , tn) ∈ Rn,
F (x, ., . . . , .) is C1 in Rn for every x ∈ [0, 1] and for every % > 0,

sup
|(t1,...,tn)|≤%

n∑
i=1

|Fti(x, t1, . . . , tn)| ∈ L1([0, 1]),

and Fui denotes the partial derivative of F with respect to ui for 1 ≤ i ≤ n.
Due to importance of fourth-order two-point boundary-value problems in de-

scribing a large class of elastic deflection, many authors have studied the exis-
tence and multiplicity of solutions for such a problem; we refer the reader to
[1, 2, 4, 5, 6, 7, 11, 14, 17] and references therein.

In [4], the authors, employing a three critical point theorem due to Bonanno and
Marano [8, Theorem 2.6], determined an exact open interval of the parameter λ for
which system (1) in the case n = 1, admits at least three distinct weak solutions.

The aim of this article is to prove the existence of at least one non-trivial weak
solution for (1) for appropriate values of the parameter λ belonging to a precise
real interval, which extend the results in [7]. Our motivation comes from the recent
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paper [5]. For basic notation and definitions, and also for a thorough account on
the subject, we refer the reader to [9, 12, 13].

2. Preliminaries and basic notation

First we recall for the reader’s convenience [16, Theorem 2.5] as given in [3,
Theorem 5.1] (see also [3, Proposition 2.1] for related results) which is our main
tool to transfer the question of existence of at least one weak solution of (1) to the
existence of a critical point of the Euler functional:

For a given non-empty set X, and two functionals Φ,Ψ : X → R, we define the
following two functions:

β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[) Ψ(u)−Ψ(v)
r2 − Φ(v)

,

ρ(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1[) Ψ(u)
Φ(v)− r1

for all r1, r2 ∈ R, r1 < r2.

Theorem 2.1 ([3, Theorem 5.1]). Let X be a reflexive real Banach space, Φ : X →
R be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable functional whose Gâteaux derivative admits a continuous inverse on
X∗ and Ψ : X → R be a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact. Put Iλ = Φ−λΨ and assume that there are r1, r2 ∈
R, r1 < r2, such that

β(r1, r2) < ρ(r1, r2).

Then, for each λ ∈] 1
ρ(r1,r2)

, 1
β(r1,r2)

[ there is u0,λ ∈ Φ−1(]r1, r2[) such that Iλ(u0,λ) ≤
Iλ(u) ∀u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) = 0.

Let us introduce notation that will be used later. Assume that

min
{q−i

π2
,
r−i
π4

,
q−i
π2

+
r−i
π4

}
> −p−i , (2.1)

where

p−i := ess infx∈[0,1] pi(x) > 0, q−i := ess infx∈[0,1] qi(x), r−i := ess infx∈[0,1] ri(x),

for 1 ≤ i ≤ n. Moreover, set

σi := min
{q−i

π2
,
r−i
π4

,
q−i
π2

+
r−i
π4

, 0
}
, δi :=

√
p−i + σi,

for 1 ≤ i ≤ n. Let Y := H2([0, 1]) ∩ H1
0 ([0, 1]) be the Sobolev space endowed

with the usual norm. We recall the following Poincaré type inequalities (see, for
instance, [15, Lemma 2.3]):

‖u′i‖2L2([0,1]) ≤
1
π2
‖u′′i ‖2L2([0,1]), (2.2)

‖ui‖2L2([0,1]) ≤
1
π4
‖u′′i ‖2L2([0,1]) (2.3)

for all ui ∈ Y for 1 ≤ i ≤ n. Therefore, taking into account (2.1)-(2.3), the norm

‖ui‖ =
( ∫ 1

0

(pi(x)|u′′i (x)|2 + qi(x)|u′i(x)|2 + ri(x)|ui(x)|2)dx
)1/2
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for 1 ≤ i ≤ n is equivalent to the usual norm and, in particular, one has

‖u′′i ‖L2([0,1]) ≤
1
δi
‖ui‖ (2.4)

for 1 ≤ i ≤ n. We need the following proposition in the proof of Theorem 3.1.

Proposition 2.2 ([4, Proposition 2.1]). Let ui ∈ Y for 1 ≤ i ≤ n. Then

‖ui‖∞ ≤ 1
2πδi

‖ui‖

for 1 ≤ i ≤ n.

Put

ki :=
(
‖pi‖∞ +

1
π2
‖qi‖∞ +

1
π4
‖ri‖∞

)1/2

for 1 ≤ i ≤ n. It is easy to see that ki > 0 and δi < ki for 1 ≤ i ≤ n. Set
δ := min{δi; 1 ≤ i ≤ n} and k := max{ki; 1 ≤ i ≤ n}. Here and in the sequel,
X := Y × · · · × Y .

We say that u = (u1, . . . , un) is a weak solution to the (1) if u = (u1, . . . , un) ∈ X
and

n∑
i=1

∫ 1

0

(pi(x)u′′i (x)v′′i (x) + qi(x)u′i(x)v′i(x) + ri(x)ui(x)vi(x)) dx

− λ

n∑
i=1

∫ 1

0

Fui
(x, u1, . . . , un)vi(x)dx = 0

for every v = (v1, . . . , vn) ∈ X. For γ > 0 we denote the set

K(γ) =
{
(t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti| ≤ γ
}
. (2.5)

3. Results

For a given non-negative constant ν and a positive constant τ with 2( δπν
n )2 6=

4096
54 n(kτ)2, put

aτ (ν) :=

∫ 1

0
sup(t1,...,tn)∈K(ν) F (x, t1, . . . , tn)dx−

∫ 5
8
3
8

F (x, τ, . . . , τ)dx

2( δπν
n )2 − 4096

54 n(kτ)2

where K(ν) =
{
(t1, . . . , tn) ∈ Rn :

∑n
i=1 |ti| ≤ ν

}
(see (2.5)).

We formulate our main result as follows:

Theorem 3.1. Assume that there exist a non-negative constant ν1 and two positive

constants ν2 and τ with πν1 < n
√

4096
108 nτ and n

√
4096
108 nkτ < δπν2 such that

(A1) F (x, t1, . . . , tn) ≥ 0 for each (x, t1, . . . , tn) ∈ ([0, 3/8] ∪ [5/8, 1])× [0, τ ]n;
(A2) aτ (ν2) < aτ (ν1).

Then, for each λ ∈] 1
aτ (ν1)

, 1
aτ (ν2)

[, system (1) admits at least one non-trivial weak
solution u0 = (u01, . . . , u0n) ∈ X such that

4(
δπν1

n
)2 <

n∑
i=1

‖u0i‖2 < 4(
δπν2

n
)2.
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Proof. To apply Theorem 2.1 to our problem, arguing as in [7, 10], we introduce
the functionals Φ,Ψ : X → R for each u = (u1, . . . , un) ∈ X, as follows

Φ(u) =
n∑

i=1

‖ui‖2

2
,

Ψ(u) =
∫ 1

0

F (x, u1(x), . . . , un(x))dx.

It is well known that Φ and Ψ are well defined and continuously differentiable
functionals whose derivatives at the point u = (u1, . . . , un) ∈ X are the functionals
Φ′(u),Ψ′(u) ∈ X∗, given by

Φ′(u)(v) =
n∑

i=1

∫ 1

0

(pi(x)u′′i (x)v′′i (x) + qi(x)u′i(x)v′i(x) + ri(x)ui(x)vi(x)) dx,

Ψ′(u)(v) =
∫ 1

0

n∑
i=1

Fui
(x, u1(x), . . . , un(x))vi(x)dx

for every v = (v1, . . . , vn) ∈ X, respectively. Moreover, Φ is sequentially weakly
lower semicontinuous, Φ′ admits a continuous inverse on X∗ as well as Ψ is se-
quentially weakly upper semicontinuous. Furthermore, Ψ′ : X → X∗ is a compact
operator. Indeed, it is enough to show that Ψ′ is strongly continuous on X. For
this, for fixed (u1, . . . , un) ∈ X let (u1m, . . . , unm) → (u1, . . . , un) weakly in X as
m → +∞, then we have (u1m, . . . , unm) converges uniformly to (u1, . . . , un) on
[0, 1] as m → +∞(see [18]). Since F (x, ., . . . , .) is C1 in Rn for every x ∈ [0, 1], the
derivatives of F are continuous in Rn for every x ∈ [0, 1], so for 1 ≤ i ≤ n,
Fui(x, u1m, . . . , unm) → Fui(x, u1, . . . , un) strongly as m → +∞ which follows
Ψ′(u1m, . . . , unm) → Ψ′(u1, . . . , un) strongly as m → +∞. Thus we proved that
Ψ′ is strongly continuous on X, which implies that Ψ′ is a compact operator by
Proposition 26.2 of [18]. Set w(x) = (w1(x), . . . , wn(x)) such that for 1 ≤ i ≤ n,

wi(x) =


− 64τ

9 (x2 − 3
4x) x ∈ [0, 3

8 [,
τ x ∈ [ 38 , 5

8 ],
− 64τ

9 (x2 − 5
4x + 1

4 ) x ∈] 58 , 1],

r1 = 2( δπν1
n )2 and r2 = 2( δπν2

n )2. It is easy to verify that w = (w1, . . . , wn) ∈ X,
and in particular, one has

4096
27

δ2
i τ2 ≤ ‖wi‖2 ≤

4096
27

k2
i τ2

for 1 ≤ i ≤ n. So, from the definition of Φ, we have

4096
54

n(δτ)2 ≤
n∑

i=1

4096
27

δ2
i τ2 ≤ Φ(w) ≤

n∑
i=1

4096
27

k2
i τ2 ≤ 4096

54
n(kτ)2.

From the conditions πν1 < n
√

4096
108 nτ and n

√
4096
108 nkτ < δπν2, we obtain

r1 < Φ(w) < r2.

Moreover, from Proposition 2.2 one has

sup
x∈[0,1]

n∑
i=1

|ui(x)|2 ≤ 1
(2πδ)2

n∑
i=1

‖ui‖2
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for each u = (u1, . . . , un) ∈ X, so from the definition of Φ, we observe that

Φ−1(]−∞, r2[) = {(u1, . . . , un) ∈ X; Φ(u1, . . . , un) < r2}

=
{
(u1, . . . , un) ∈ X;

n∑
i=1

‖ui‖2 < 2r2

}
⊆

{
(u1, . . . , un) ∈ X;

n∑
i=1

|ui(x)|2 <
ν2
2

n2
for all x ∈ [0, 1]

}
⊆

{
(u1, . . . , un) ∈ X;

n∑
i=1

|ui(x)| < ν2 for all x ∈ [0, 1]
}
,

from which it follows

sup
(u1,...,un)∈Φ−1(]−∞,r2[)

Ψ(u) = sup
(u1,...,un)∈Φ−1(]−∞,r2[)

∫ 1

0

F (x, u1(x), . . . , un(x))dx

≤
∫ 1

0

sup
(t1,...,tn)∈K(ν2)

F (x, t1, . . . , tn)dx.

Since for 1 ≤ i ≤ n, 0 ≤ wi(x) ≤ τ for each x ∈ [0, 1], the condition (A1) ensures
that ∫ 3

8

0

F (x,w1(x), . . . , wn(x))dx +
∫ 1

5
8

F (x,w1(x), . . . , wn(x))dx ≥ 0.

So, one has

β(r1, r2) ≤
supu∈Φ−1(]−∞,r2[) Ψ(u)−Ψ(w)

r2 − Φ(w)

≤
∫ 1

0
sup(t1,...,tn)∈K(ν2) F (x, t1, . . . , tn)dx−Ψ(w)

r2 − Φ(w)
≤ aτ (ν2).

On the other hand, by similar reasoning as before, one has

ρ(r1, r2) ≥
Ψ(w)− supu∈Φ−1(]−∞,r1[) Ψ(u)

Φ(w)− r1

≥
Ψ(w)−

∫ 1

0
sup(t1,...,tn)∈K(ν1) F (x, t1, . . . , tn)dx

Φ(w)− r1

≥ aτ (ν1).

Hence, from Assumption (A2), one has β(r1, r2) < ρ(r1, r2). Therefore, from The-
orem 2.1, taking into account that the weak solutions of the system (1) are exactly
the solutions of the equation Φ′(u)− λΨ′(u) = 0, we have the conclusion. �

Now we point out the following consequence of Theorem 3.1.

Theorem 3.2. Assume that Assumption (A1) in Theorem 3.1 holds. Suppose that

there exist two positive constants ν and τ with n
√

4096
108 nkτ < δπν such that
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(A3)∫ 1

0
sup(t1,...,tn)∈K(ν) F (x, t1, . . . , tn)dx

ν2
<

108
4096n3

(
δπ

k
)2

∫ 5
8
3
8

F (x, τ, . . . , τ)dx

τ2
;

(A4) F (x, 0, . . . , 0) = 0 for every x ∈ [0, 1]
Then, for each

λ ∈
] 4096

54 n(kτ)2∫ 5
8
3
8

F (x, τ, . . . , τ)dx
,

2( δπν
n )2∫ 1

0
sup(t1,...,tn)∈K(ν) F (x, t1, . . . , tn)dx

[
,

system (1) admits at least one non-trivial weak solution u0 = (u01, . . . , u0n) ∈ X
such that

∑n
i=1 ‖ui‖∞ < ν.

Proof. The conclusion follows from Theorem 3.1, by taking ν1 = 0 and ν2 = ν.
Indeed, owing to our assumptions, one has

aτ (ν2) <

(
1−

4096n3
108 ( τk

δπ )2

ν2

) ∫ 1

0
sup(t1,...,tn)∈K(ν) F (x, t1, . . . , tn)dx

2( δπν
n )2 − 4096

54 n(kτ)2

=

(
1−

4096
54 n(τk)2

2( δπν
n )2

) ∫ 1

0
sup(t1,...,tn)∈K(ν) F (x, t1, . . . , tn)dx

2( δπν
n )2 − 4096

54 n(kτ)2

=

∫ 1

0
sup(t1,...,tn)∈K(ν) F (x, t1, . . . , tn)dx

2( δπν
n )2

.

On the other hand, taking Assumption (A4) into account, one has∫ 5
8
3
8

F (x, τ, . . . , τ)dx

4096
54 n(kτ)2

= aτ (ν1).

Moreover, since

sup
x∈[0,1]

n∑
i=1

|ui(x)|2 ≤ 1
(2πδ)2

n∑
i=1

‖ui‖2

for each u = (u1, . . . , un) ∈ X, an easy computation ensures that
∑n

i=1 ‖ui‖∞ < ν
whenever Φ(u) < r2. Now, owing to Assumption (A3), it is sufficient to invoke
Theorem 3.1 for concluding the proof. �

Now, we point out a simple version of Theorem 3.1 in the case n = 1. Let
p1 = p, q1 = q, r1 = r, δ1 = δ and k1 = k. Let f : [0, 1] × R → R be an L2-
Carathéodory function. Let F be the function defined by F (x, t) =

∫ t

0
f(x, s)ds for

each (x, t) ∈ [0, 1]×R. For a given non-negative constant ν and a positive constant
τ with 2(δπν)2 6= 4096

54 (kτ)2, put

bτ (ν) :=

∫ 1

0
sup|t|≤ν F (x, t)dx−

∫ 5
8
3
8

F (x, τ)dx

2(δπν)2 − 4096
54 (kτ)2

.

Then, we have the following result.

Theorem 3.3. Assume that there exist a non-negative constant ν1 and two positive

constants ν2 and τ with πν1 <
√

4096
108 τ and

√
4096
108 kτ < δπν2 such that
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(B1) F (x, t) ≥ 0 for each (x, t) ∈ ([0, 3/8] ∪ [5/8, 1])× [0, τ ];;
(B2) bτ (ν2) < bτ (ν1).

Then, for each λ ∈] 1
bτ (ν1)

, 1
bτ (ν2)

[, the problem

(p(x)u′′(x))′′ − (q(x)u′(x))′ + r(x)u(x) = λf(x, u) x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(3.1)

admits at least one non-trivial weak solution u0 ∈ Y such that 2δπν1 < ‖u0‖ <
2δπν2.

We remark that if p(x) = 1, q(x) = −A and r(x) = B for every x ∈ [0, 1], then
Theorem 3.3 gives [7, Theorem 3.1].

The following result gives the existence of at least one non-trivial weak solution
in Y to the problem (3.1) in the autonomous case. Let f : R → R be a continuous
function. Put F (t) =

∫ t

0
f(ξ)dξ for all t ∈ R. We have the following result as a

direct consequence of Theorem 3.3.

Theorem 3.4. Assume that there exist a non-negative constant ν1 and two positive

constants ν2 and τ with πν1 <
√

4096
108 τ and

√
4096
108 kτ < δπν2 such that

(C1) f(t) ≥ 0 for each t ∈ [−ν2, max{ν2, τ}];
(C2) F (ν2)− 1

4 F (τ)

2(δπν2)2− 4096
54 (kτ)2

<
F (ν1)− 1

4 F (τ)

2(δπν1)2− 4096
54 (kτ)2

.

Then, for each λ ∈] 2(δπν1)
2− 4096

54 (kτ)2

F (ν1)− 1
4 F (τ)

,
2(δπν2)

2− 4096
54 (kτ)2

F (ν2)− 1
4 F (τ)

[, the problem

(p(x)u′′(x))′′ − (q(x)u′(x))′ + r(x)u(x) = λf(u) x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0
(3.2)

admits at least one non-trivial weak solution u0 ∈ Y such that ν1 < ‖u0‖
2δπ < ν2.

Proof. Since δ < k, from the conditions πν1 <
√

4096
108 τ and

√
4096
108 kτ < δπν2,

we obtain 2(δπν1)2 < 4096
54 (δτ)2 and 4096

54 (kτ)2 < 2(δπν2)2, and so 2(δπν1)2 <

2(δπν2)2, and so ν1 < ν2. Therefore, Assumptions (C1) means f(t) ≥ 0 for each t ∈
[−ν1, ν1] and f(t) ≥ 0 for each t ∈ [−ν2, ν2], which follow maxt ∈ [−ν1, ν1]F (t) =
F (ν1) and maxt ∈ [−ν2, ν2]F (t) = F (ν2). So, from Assumptions (C1) and (C2)
we arrive at assumptions (B1) and (B2), respectively. Hence, we achieve the stated
assertion by applying Theorem 3.3 observing that the problem (1) reduces to the
problem (3.2). �

As an example, we point out the following special case of our main result.

Theorem 3.5. Let g : R → R be a nonnegative continuous function such that
limt→0+

g(t)
t = +∞. Then, for each λ ∈]0, 2(δπ)2 supν>0

ν2R ν
0 g(ξ)dξ

[, the problem

(p(x)u′′(x))′′ − (q(x)u′(x))′ + r(x)u(x) = λg(u) x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0

admits at least one non-trivial weak solution in Y .

Proof. For fixed λ as in the conclusion, there exists positive constant ν such that

λ < 2(δπ)2
ν2∫ ν

0
g(ξ)dξ

.
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Moreover, limt→0+
g(t)

t = +∞ implies limt→0+

R t
0 g(ξ)dξ

t2 = +∞. Therefore, a posi-

tive constant τ satisfying
√

4096
108 kτ < δπν can be chosen such that

1
λ

(
4× 4096

54
k2) <

∫ τ

0
g(ξ)dξ

τ2
.

Hence, arguing as in the proof of Theorem 3.2, the conclusion follows from Theorem
3.4 with ν1 = 0, ν2 = ν and f(t) = g(t) for every t ∈ R. �

Remark 3.6. For fixed ρ put λρ := 2(δπ)2 supν∈]0,ρ[
ν2R ν

0 g(ξ)dξ
. The result of Theo-

rem 3.5 for every λ ∈]0, λρ[ holds with |u0(x)| < ρ for all x ∈ [0, 1] where u0 is the
ensured non-trivial weak solution in Y (see [7, Remark 4.3]).

We close this article by presenting the following examples to illustrate our results.

example 3.7. Consider the problem

(3exu′′)′′ − ((x2 − π2)u′)′ + (x2 − π4)u = λ(1 + e−u+
(u+)2(3− u+)) x ∈ (0, 1),

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0
(3.3)

where u+ = max{u, 0}. Let

g(t) = 1 + e−t+(t+)2(3− t+)

for all t ∈ R where t+ = max{t, 0}. It is clear that limt→0+
g(t)

t = +∞. Note that
p− = 3, q− = −π2 and r− = −π4, we have σ = −2, and so δ = 1. Hence, taking
Remark 3.6 into account, since supν∈]0,1[

ν2R ν
0 g(ξ)dξ

= supν∈]0,1[
ν2

ν+e−νν3 = e
1+e , by

applying Theorem 3.5, for every λ ∈]0, 2π2e
1+e [ the problem (3.3) has at least one

non-trivial classical solution u0 ∈ Y such that ‖u0‖∞ < 1.

example 3.8. Put p(x) = 1, q(x) = π2, r(x) = x − π for all x ∈ [0, 1] and
g(t) = (1 + t)et for every t ∈ R. Clearly, one has σ = (1− 1

π3 )
1
2 . Hence, since

sup
ν∈]0,1[

ν2∫ ν

0
g(ξ)dξ

= sup
ν∈]0,1[

ν2

νeν
=

1
e
,

from Theorem 3.5, taking Remark 3.6 into account, for every λ ∈]0,
2π2(1− 1

π3 )

e [ the
problem

uiv − π2u′′ + (x− π)u = λ(1 + u)eu x ∈ (0, 1),

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0
(3.4)

has at least one non-trivial classical solution u0 ∈ Y such that ‖u0‖∞ < 1.
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