Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 29, pp. 1-9.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

OSCILLATION OF SOLUTIONS TO THIRD-ORDER
HALF-LINEAR NEUTRAL DIFFERENTIAL EQUATIONS

JOZEF DZURINA, ETHIRAJU THANDAPANI, SIVARAJ TAMILVANAN

ABSTRACT. In this article, we study the oscillation of solutions to the third-
order neutral differential equations

() (12 % p()2(50))")") + a(t)a® (1)) = 0.

Sufficient conditions are established so that every solution is either oscillatory
or converges to zero. In particular, we extend the results obtain in [I] for a(t)
non-decreasing, to the non-increasing case.

1. INTRODUCTION

In recent years, there has been great interest in studying the oscillatory behav-
ior of differential equations; see for example [3] 4], 5] [0l [7] and the references cited
therein. Compared to first and second order, third-order neutral differential equa-
tions have received less attention, even though such equations arise in many physical
problems. Motivated by this observation, we study the oscillation of solutions to
the third-order half-linear neutral differential equations

!
(a® (2(t) + pO@E)")) +aa(r(#) =0, t=ty,  (L1)
and
I
(a)(la(®) ~ P2 +aWa @) =0, 21, (12)
We assume the following conditions:
(H1) alt), p(t), a(t), 7(2), 6(t) ave in C([0,00)); alt), q(t), (t), 6(t) are positive
functions; « is the quotient of two odd positive integers.
(H2) There is constant p such that 0 < p(t) < p < 1; the delay arguments satisfy
T(t) <t, 6(t) <t, limy_oo 7(t) = limy_,o0 6(t) = 0.
(H3) af(t) is positive and non-increasing; A(t) := f:o a1/ (s)ds — 0o as t — oo.
By a solution to (1.1)), we mean a function x(t) in C2[T,, 0o) for which a(t)(2" (t))*
is in C*[T}, o0) and ((1.1)) is satisfied on some interval [T}, 00), where T}, > to, and
z(t) = z(t) + p(t)x(d(t)). The same concept of a solution applies to (1.2]).
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Dzurina [I] obtained sufficient conditions for the oscillation of solutions to
and to , under the assumption that a(t) is non-decreasing. Here we establish
similar results when a(t) is non-increasing. We follow the same strategy as in [I],
but with new estimates in Lemmas

We consider only solutions z(t) for which sup{|z(¢)| : ¢ > T} > 0 for all T > T),.
We say that a solution is oscillatory if it has arbitrarily large zeros, and non-
oscillatory otherwise. All functional inequalities are assumed to hold eventually;
that is, for all ¢ large enough. Note that if z(¢) is a solution so is —z(t); so our
proofs are done only for positive solutions.

In Section 2, we present oscillation results for , while in Section 3 we present
similar results for . In both section we give examples to illustrate our results.

2. OSCILLATION RESULTS FOR (|L.1)

For a solution z(t) of (L.1)), we define the corresponding function

z(t) = z(t) + p(t)z(6(t)). (2.1)
To obtain sufficient conditions for the oscillation of solutions to (|1.1]), we need the
the following lemmas.

Lemma 2.1 ([T, Lemma 1]). Let z(t) be a positive solution of (1.1). Then there
are only two possible cases:

(M) 2(¢t) >0, 2'(t) >0, 2"(t) > 0, (a(t)(z"(t))*) < 0;

(I1) z(t) >0, 2'(t) <0, 2"(t) > 0, (a(t)(z"(¥))*) < 0.
Lemma 2.2 ([I] Lemma 2]) Let z(t) be a positive solution of (1.1), and let the
corresponding function z(t satzsfy Case (II) of Lemmam If

/ / / (s)ds} Y d = o, (2.2)

then limy_, o0 2(t) = lim;_, o0 z(t) =0.

Lemma 2.3. Assume that u(t) > 0, u’(t) > 0, (a(t)(v'(t))*)" <0 on [tg,00). Then
for each ¢ € (0,1) there exists Ty > to such that
w(r(t) o ,ult)
>0—— fort>T,.
A(T(t)) — A1)
Proof. Since a(t)(u/(t))® is non-increasing, so is a'/*(t)(u/(t)). Then by the defini-
tion of A(t), we have

) =) = [ a6 gy o

< ol (r(O) (r(1) (A(t) — A(r(2)).

(2.3)

Also
u(r(t) = u(r(t) — ulto) > a*(r(t))u’(7(£)) (A(7(t)) — Alto))-
Since lim;_, oo % = 1, for each ¢ € (0,1) there exists Ty > to such that
(A(7(t)) — A(to)) > LA(7(t)) for t > T;. From the above inequality,
u(r(t))

u(7(t)) 1/a
u’(T(t)) > ta"/ (T(t)A(r(t)), t=To. (2.4)
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Combining ([2.3) and ([2.4)), we obtain

u(t) At) — A(T(1)) A(t)
a(r) =T T Ar®) A
which completes the proof. (I

Lemma 2.4. Assume that z(t) > 0, 2'(t) > 0, 2"(t) > 0, (a(t)(z”(t))o‘), <0 on
(Ty,00). Then

_ a/ (@A)

t>1Ty.
(1) 2 fort =T

Proof. Since a(t)(z"(t))® is positive and non-increasing, so is a'/*(t)z”(t). From
Z'(t) > 0, a(t) > 0, we have

tallo(s)z" (s
2t) = () — (1)) > /T al(/a)(s)()ds > AP WAGLE).  (25)
Since A'(t) = a~/(t),
A'()2(t) > At)2"(t), t>1T,. (2.6)

Integrating both sides of the above inequality, and using that A(T})z'(Ty) > 0, we
obtain

Al(8)2' (s)ds > A(t)2'(t) — [ A'(s)2'(s)ds.

Therefore, Z L]
A(s)2' (s)ds > %A(t)z’(t). (2.7)
T
Since a(t) is non-increasing, we have A(t) > 0, A’(t) > 0, A”(¢t) > 0. and
(A'()=(1)) = A'(1)2(t) + A"(t)z(t) = A'(£)2'(¢). (2.8)

Integrating on both sides of the above equality, then using that A'(T;)z(T;) > 0

and (2.7)), we obtain

A'()z(t) > A2 (t), t>Ty,

DN =

which implies the desired result. O
The next lemma follows from ([2.6)).

Lemma 2.5. Assume that z'(t) > 0, 2"(t) > 0, (a(t)(z”(t))a)l < 0 on (Ty,0).
Then

A(t)z"(t)
WSL for t>1Ty.
For simplicity of notation, we introduce
Py(t) = £2(1 — p)*q(t)a(r(t)) (Aif(it)))f (A(;(t)) )a

with ¢ € (0,1) and ¢t > Ty;

oS} 1 t
P =liminf A%(t) / Pi(s)ds, @ =limsup ¥I0] / AT () Py(s)ds.  (2.9)
t to

t—o0 t—o0
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Further, for z(t) satisfying Case (I) of Lemma[2.1] we define

w(t) = a(t) (ZZ/,/(%) )a, (2.10)
r= litrgiogf A%(t)w(t), R =limsup A*(t)w(t). (2.11)

Lemma 2.6. Let x(t) be a positive solution of (1.1)).
(a) Let P < 00, Q < oo and z(t) satisfy Case (I) of Lemma [2.1, Then P <
r—rita and P+Q <1.
(b) If P =00 or Q = oo, then z(t) does not satisfy Case (I) of Lemmal[2.1]
Proof. Part (a). Assume that x(¢) is a positive solution of (1.1) and the corre-

sponding function z(t) satisfies Case(I) of Lemma From the definition of z(t),
we have

z(t) = 2(t) = p(t)z(6(t)) > 2(t) — p(t)z(6(t)) = (1 —p)z(t).
Using this inequality in , we obtain
(a®) (")) < —(1 —p)*q(t)="(7(t)) < 0. (2.12)

Then from its definition, w(t) is positive and satisfies

W) = e () (1)") — aa(t)( )

<Z/(t))a Za(T(t)) o Zlfj—)l (2~13)
From Lemma [2.3| with u(t) = 2/(t), we have
1 A(r(®) 1

70 2 TAn ey (2T

where £ is the same as in P,. Now becomes
/ o o (AN _2(1(t) a 1
W < a0 -2 (Sie) Gre O

From Lemma , we have z(t) > wz’(t)7 so that

w'(t) + Po(t) + al%(t)uﬂ*i(t) <. (2.14)

Since Py(t) > 0 and w(t) > 0 for t > Ty. It follows that w'(t) < 0 and —w'(t) >
wlt( 1/a)( )/al/a( ) thus

(wl/la(t)), ~ al/i(t)'

Integrating the above inequality from 7y to ¢, and using that w=1/® (Ty) > 0, we

obtain
1

t a
(fTz a=1/e(s)ds )
which in view of (H3) implies that lim;_. w(t) =
On the other hand, from the definition of w(t) nd Lemma [2.5]

A“(t)w(t):a(t)( ) ( ) <1,

w(t) <
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Then
0<r<R<I1. (2.15)

Next we prove the first inequality in (a). Let € > 0. Then from the definition of P
and r, we can choose ty > Ty, sufficiently large such that

Aa(t)/ Py(s)ds > P —e€¢ and A“(t)w(t) >r—e fort>ts.
¢
Integrating ([2.14) from ¢ to co and using that lim; . w(t) = 0, we have

0> [ Pis)d TS L > 2.16
’LU()_ ’ 6(5) S+« ; alT(S)S ortv -~ ta. ( )

Multiplying the above inequality by A%(¢) and simplifying, we obtain
X AC (s)w! T (s)
Aot1(s)al/o(s)

> (P—e)+(r—e) = A%(1) /too ﬁ(())d

A% (t)w(t) > AY(t) /toc Py(s)ds + aA“(t) t ds

and so
A(Dw(t) > (P =€) + (r—e)'ta.
Taking the limit inferior on both sides as t — oo, we obtain
r>(P—e¢€)+ (Tfe)lJré.
Since € > 0 is arbitrary, we obtain the desired result
P<r—rits,

Next, we prove the second inequality in (a). Multiplying (2.14) by A®*1(¢) and
integrating it from ¢ to t, we obtain

t
ds.

t tAY(s)w(s)) @D/
Aa+1(8)’w/(8)d8§ _/ AaJrl(S)Pg(s)dS—a/ (A ( ) ( ))

to to to al/a(s)

Integrating by parts,

A () < A )~ [ AT Ps)ds

ta

LAY (s)w(s)) @D/ t /
—a/t (A%(s)w(s)) ds+/ w(s) (A*T1(s)) ds.

al/a(s) .
Hence,
AT (tw(t) < A (t)w(t) t A (5)Py(s)ds
/t [(a +1)A%(s)w(s) a(AO‘(s)w(s))(aH)/a]d
ts al/o(s) al/o(s) s

Using the inequality

@ Ba—i—l
Bu — DuletD/a < @
v ={a+ 1o+ Do

(2.17)
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with u = A*(t)w(t), D = a7eqy and B = af‘/fg(lt), we obtain

AT w(t) < AT () w(ts) — /t AT () Py(s)ds + A(t) — A(ts).

ta
It follows that

1 I Alts)
A*(Hw(t) < ——= AT (t)w(ts) — / A5 Py(s)ds + 1 — :
( )’LU( ) = A(t) ( Q)w( 2) A(t) " (S) @(S) s+ A(t)
Taking the limit superior on both sides as t — 0o, we obtain
R<-Q+1 (2.18)

Combining this inequality with (2.15)), we have
P<r—r*a <r<R<-Q+1,

which completes the proof of Part (a).

Part (b). Assume that z(t) is a positive solution of (1.1). We shall show that
z(t) can not satisfy Case (I) of Lemma[2.1] On the contrary, first, we assume that

P = oco. Then ,
AS(Bw(t) > A° (1) / ~ Pu(s)ds.

Note that by (2.15)), the left-hand side is bounded above by 1. Also note that limit
inferior of the right-hand side is P = co. This leads to a contradiction.

Now, we assume that Q = oco. Then by , R = —oo, which contradicts
0<R<l1lin . The proof is complete. O

Now we present oscillation results whose proofs follow the steps in [I, Theorems
1 and 2].

Theorem 2.7. Assume that (2.2)) holds, and let x(t) be a solution of (L.1). If

(e

P::litmian”‘(t)/ Pa(s)ds > ¢ a (2.19)
— 00 +

a+ 1)+’
then x(t) is either oscillatory or lim,_,. x(t) = 0.

Proof. Suppose x is a non-oscillatory solution of . Since —z is also a solution,
we can assume without loss of generality that = is positive. If P = +o0o, then
by Lemma z(t) does not have property (I). That is, z(t) satisfies Case (II) of
Lemma herefore, n from Lemma we have lim;_, o z(t) = 0.

Now assume that z(t) satisfies Case (I) of Lemma Let w(t) and r be defined
by (2.10) and (2.11), respectively. Then from Lemma we have P < r—rlath/e
Using (2.17) with B = D = 1, we have

(e}

e
P= avper
which contradicts (2.19). The proof is complete. O
Theorem 2.8. Assume that holds, and let x(t) be a solution of . If
P+Q>1, (2.20)

then x(t) is either oscillatory or lim,_,. x(t) = 0.
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Proof. Suppose z is a non-oscillatory solution of (L.1)). Since —z is also a solution,
we can assume without loss of generality that x is positive. If P or @ equal in fty,
then by Lemma z(t) does not satistfy Case (I), and z(t) must satisfy Case (II).
Then from Lem lim; o z(t) = 0.

Now assume that Case (I) holds. Let w(t) and r be defined as above. Then from
Lemma 2.6 P + @ < 1. which contradicts (2.20). The proof is complete. O

As a consequence of Theorem we have the following results.
Corollary 2.9. Assume that (2.2) holds. If

00 7(s)))2* a)® a®
lim inf Aa(t)/t q(s)a(r(s)) A 151(3)) ds > gag _)p)a (o + 1)at1”

t—o0
then every solution z(t) of (1.1)) is either oscillatory or lim; o (t) = 0.
Corollary 2.10. Assume that (2.2) holds. If
1
Q= hm sup —— / AT (5)Py(s)ds > 1,
A(t)

then (t) is either oscillatory or lim;_,o z(t) = 0.

We conclude this section with an example. Consider the third-order neutral
differential equation

[tlg([x(t) + %m(%)]”)‘?’] + t% (%) =0, A>0, t>1. (2.21)

Here a(t) = 1/t3, p=1/3, a = 3, 7(t) = §(t) = t/2, q(t) = N\/t10. Tt is easy to see
that (2.2) holds. Hence by Corollary every non-oscillatory solution of (2.21))
converges to zero provided that A > 3% x 4°.
3. OSCILLATION RESULTS FOR (|1.2))
For each solution z(t) of (1.2, we define the associated function
2(t) = z(t) — p(t)z(7(t)). (3.1)

Lemma 3.1 ([I, Lemma 7]). Let x(t) be a positive solution of equation(1.2)). Then
there are the followmg four cases for z(t):

)
(I) 2(t) >0, 2'(t) >0, 2"(t) >0, (a(t)(z"(t))*) <0
(1) 2(t) > 0, 2'(t) < 0, 2"(t) > 0, (a(t)(z"(£))*) < 0
(L) 2(t) < 0, 2/(t) < 0, 2"(t) > 0, (a(t)(z"(t))*)

(IV) z(t) <0, 2/(t) <0, 2"(t) <0, (a(t)(z"()") < Oi

Lemma 3.2 ([Il Lemma 8]). Let x(t) be a positive solution of (1.2)) and z(t) satisfy
Case (II) of Lemma (3.1). If (2.2) holds, then lim;_. x(t) = lim;_, o 2(t) = 0.

For simplicity of notation, we introduce

with ¢ € (0,1);

¢
P—hmlano‘ / Py(s)ds, Q =limsup Ai)/ AT () Py(s)ds.

t—oo

Also w(t),r, R are defined as in and (2-11).
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Lemma 3.3. Let 2(t) be a positive solution of (1.2).

(a) Let P < oo and Q < co. Assume that z(t) satisfies Case (I) of Lemma .
Then P <r —77"1"’% and P+Q < 1.

(b) If P =00 or Q = oo, then z(t) can not satisfy Case (I) of Lemma .
Proof. Assume that x(t) is a positive solution of ([1.2)) and the associated function
z(t) satisfies Case (I) of Lemma [3.1} Since 0 < z(t) < z(t), equation (1.2)) can be
written as

(a®)(=" (1)) < —g(®)z°((t)) < 0.

The rest of the proof is similar to that of Lemma [2.6] and hence it is omitted. O

The following theorem presents an oscillation criterion for equation (1.2)).
Theorem 3.4. Assume that (2.2)) holds. If

aa

(o + 1)1’
then every solution x(t) of (1.2)) is either oscillatory or lim;_ . x(t) = 0.

lim inf A%(t) / h Py(s)ds > (3.2)

t—oo

The proof of the above theorem is similar to that of [I, Theorem 3]; hence it is
omitted. From the above theorem we have a simplified criterion as follows.

Corollary 3.5. Assume that (2.2) holds. If

° T(S 20 o)
it 2°0) [ o) AEED g G

t—o0

then every solution x(t) of is either oscillatory or lims_,. x(t) = 0.

Theorem 3.6. Assume that holds. Let x(t) be a solution of (L.2)). If
P+Q>1, (3.4)

then every solution of is either oscillatory or lim;_, o x(t) = 0.

(3.3)

The proof of the above theorem is similar to that of Theorem hence it is
omitted.

Corollary 3.7. Assume that (2.2) holds. If
Y L
limsup — [ A%TY(s)P,(s)ds > 1, 3.5
msw g [ AT 6P (3.5)
then every solution z(t) of (1.2)) is either oscillatory or lim; o x(t) = 0.

As an example, consider the third-order neutral differential equation
1 1 tos) A gt
(e = 32(I)) + Ha*(5) =0, A>0, t>1. (3.6)
Corollary implies that every solution of (3.6) is either oscillatory or approaches
zero as t — oo, provided A > 6% x 27.

We conclude this article with by remarking that when a(¢) is constant, our results
coincide with the results in [I].
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