Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 29, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

OSCILLATION OF SOLUTIONS TO THIRD-ORDER HALF-LINEAR NEUTRAL DIFFERENTIAL EQUATIONS

JOZEF DŽURINA, ETHIRAJU THANDAPANI, SIVARAJ TAMILVANAN

ABSTRACT. In this article, we study the oscillation of solutions to the thirdorder neutral differential equations

$$\left(a(t)\left(\left[x(t)\pm p(t)x(\delta(t))\right]''\right)^{\alpha}\right)'+q(t)x^{\alpha}(\tau(t))=0.$$

Sufficient conditions are established so that every solution is either oscillatory or converges to zero. In particular, we extend the results obtain in [1] for a(t) non-decreasing, to the non-increasing case.

1. INTRODUCTION

In recent years, there has been great interest in studying the oscillatory behavior of differential equations; see for example [3, 4, 5, 6, 7] and the references cited therein. Compared to first and second order, third-order neutral differential equations have received less attention, even though such equations arise in many physical problems. Motivated by this observation, we study the oscillation of solutions to the third-order half-linear neutral differential equations

$$\left(a(t)\left([x(t) + p(t)x(\delta(t))]''\right)^{\alpha}\right)' + q(t)x^{\alpha}(\tau(t)) = 0, \quad t \ge t_0,$$
(1.1)

and

$$\left(a(t)\left([x(t) - p(t)x(\delta(t))]''\right)^{\alpha}\right)' + q(t)x^{\alpha}(\tau(t)) = 0, \quad t \ge t_0.$$
(1.2)

We assume the following conditions:

- (H1) $a(t), p(t), q(t), \tau(t), \delta(t)$ are in $C([0, \infty))$; $a(t), q(t), \tau(t), \delta(t)$ are positive functions; α is the quotient of two odd positive integers.
- (H2) There is constant p such that $0 \le p(t) \le p < 1$; the delay arguments satisfy $\tau(t) \le t, \ \delta(t) \le t, \ \lim_{t\to\infty} \tau(t) = \lim_{t\to\infty} \delta(t) = \infty.$
- (H3) a(t) is positive and non-increasing; $A(t) := \int_{t_0}^t a^{-1/\alpha}(s) \, ds \to \infty$ as $t \to \infty$.

By a solution to (1.1), we mean a function x(t) in $\mathcal{C}^2[T_x, \infty)$ for which $a(t)(z''(t))^{\alpha}$ is in $\mathcal{C}^1[T_x, \infty)$ and (1.1) is satisfied on some interval $[T_x, \infty)$, where $T_x \geq t_0$, and $z(t) = x(t) + p(t)x(\delta(t))$. The same concept of a solution applies to (1.2).

²⁰⁰⁰ Mathematics Subject Classification. 34K11, 34C10.

Key words and phrases. Third-order neutral differential equation; Riccati transformation; oscillation of solutions.

^{©2012} Texas State University - San Marcos.

Submitted November 12, 2011. Published February 21, 2012.

Dzurina [1] obtained sufficient conditions for the oscillation of solutions to (1.1)and to (1.2), under the assumption that a(t) is non-decreasing. Here we establish similar results when a(t) is non-increasing. We follow the same strategy as in [1], but with new estimates in Lemmas 2.3, 2.4, 2.5.

We consider only solutions x(t) for which $\sup\{|x(t)|: t \ge T\} > 0$ for all $T \ge T_x$. We say that a solution is oscillatory if it has arbitrarily large zeros, and nonoscillatory otherwise. All functional inequalities are assumed to hold eventually; that is, for all t large enough. Note that if x(t) is a solution so is -x(t); so our proofs are done only for positive solutions.

In Section 2, we present oscillation results for (1.1), while in Section 3 we present similar results for (1.2). In both section we give examples to illustrate our results.

2. Oscillation results for (1.1)

For a solution x(t) of (1.1), we define the corresponding function

$$z(t) = x(t) + p(t)x(\delta(t)).$$
 (2.1)

To obtain sufficient conditions for the oscillation of solutions to (1.1), we need the the following lemmas.

Lemma 2.1 ([1, Lemma 1]). Let x(t) be a positive solution of (1.1). Then there are only two possible cases:

(I) $z(t) > 0, z'(t) > 0, z''(t) > 0, (a(t)(z''(t))^{\alpha})' < 0;$ (II) $z(t) > 0, z'(t) < 0, z''(t) > 0, (a(t)(z''(t))^{\alpha})' < 0.$

Lemma 2.2 ([1, Lemma 2]). Let x(t) be a positive solution of (1.1), and let the corresponding function z(t) satisfy Case (II) of Lemma 2.1. If

$$\int_{t_0}^{\infty} \int_{v}^{\infty} \left[\frac{1}{a(u)} \int_{u}^{\infty} q(s) ds \right]^{1/\alpha} du \, dv = \infty, \tag{2.2}$$

then $\lim_{t\to\infty} x(t) = \lim_{t\to\infty} z(t) = 0.$

Lemma 2.3. Assume that u(t) > 0, u'(t) > 0, $(a(t)(u'(t))^{\alpha})' \leq 0$ on $[t_0, \infty)$. Then for each $\ell \in (0, 1)$ there exists $T_{\ell} \geq t_0$ such that

$$\frac{u(\tau(t))}{A(\tau(t))} \ge \ell \frac{u(t)}{A(t)} \quad \text{for } t \ge T_{\ell}.$$

Proof. Since $a(t)(u'(t))^{\alpha}$ is non-increasing, so is $a^{1/\alpha}(t)(u'(t))$. Then by the definition of A(t), we have

$$u(t) - u(\tau(t)) = \int_{\tau(t)}^{t} a^{1/\alpha}(s)(u'(s)) \frac{1}{a^{1/\alpha}(s)} ds$$

$$\leq a^{1/\alpha}(\tau(t))u'(\tau(t)) (A(t) - A(\tau(t))).$$
(2.3)

Also

$$u(\tau(t)) \ge u(\tau(t)) - u(t_0) \ge a^{1/\alpha}(\tau(t))u'(\tau(t)) \big(A(\tau(t)) - A(t_0)\big).$$

Since $\lim_{t\to\infty} \frac{A(\tau)-A(t_0)}{A(\tau)} = 1$, for each $\ell \in (0,1)$ there exists $T_{\ell} \geq t_0$ such that $(A(\tau(t)) - A(t_0)) > \ell A(\tau(t))$ for $t \geq T_{\ell}$. From the above inequality,

$$\frac{u(\tau(t))}{u'(\tau(t))} \ge \ell a^{1/\alpha}(\tau(t))A(\tau(t)), \quad t \ge T_{\ell}.$$
(2.4)

EJDE-2012/29

Combining (2.3) and (2.4), we obtain

$$\frac{u(t)}{u(\tau(t))} \le 1 + \frac{A(t) - A(\tau(t))}{\ell A(\tau(t))} \le \frac{A(t)}{\ell A(\tau(t))},$$

which completes the proof.

Lemma 2.4. Assume that z(t) > 0, z'(t) > 0, z''(t) > 0, $(a(t)(z''(t))^{\alpha})' \leq 0$ on (T_{ℓ}, ∞) . Then

$$\frac{z(t)}{z'(t)} \ge \frac{a^{1/\alpha}(t)A(t)}{2} \quad \text{for } t \ge T_{\ell}.$$

Proof. Since $a(t)(z''(t))^{\alpha}$ is positive and non-increasing, so is $a^{1/\alpha}(t)z''(t)$. From z'(t) > 0, a(t) > 0, we have

$$z'(t) \ge z'(t) - z'(\tau(t)) \ge \int_{T_{\ell}}^{t} \frac{a^{1/\alpha}(s)z''(s)}{a^{1/\alpha}(s)} ds \ge a^{1/\alpha}(t)A(t)z''(t).$$
(2.5)

Since $A'(t) = a^{-1/\alpha}(t)$,

$$A'(t)z'(t) \ge A(t)z''(t), \quad t \ge T_{\ell}.$$
 (2.6)

Integrating both sides of the above inequality, and using that $A(T_{\ell})z'(T_{\ell}) > 0$, we obtain

$$\int_{T_{\ell}}^{t} A'(s)z'(s)ds \ge A(t)z'(t) - \int_{T_{\ell}}^{t} A'(s)z'(s)ds.$$

Therefore,

$$\int_{T_{\ell}}^{t} A'(s) z'(s) ds \ge \frac{1}{2} A(t) z'(t).$$
(2.7)

Since a(t) is non-increasing, we have A(t) > 0, A'(t) > 0, $A''(t) \ge 0$. and

$$(A'(t)z(t))' = A'(t)z'(t) + A''(t)z(t) \ge A'(t)z'(t).$$
(2.8)

Integrating on both sides of the above equality, then using that $A'(T_{\ell})z(T_{\ell}) > 0$ and (2.7), we obtain

$$A'(t)z(t) \ge \frac{1}{2}A(t)z'(t), \quad t \ge T_{\ell},$$

which implies the desired result.

The next lemma follows from (2.6).

Lemma 2.5. Assume that z'(t) > 0, z''(t) > 0, $(a(t)(z''(t))^{\alpha})' \leq 0$ on (T_{ℓ}, ∞) . Then

$$\frac{A(t)z''(t)}{A'(t)z'(t)} \le 1, \quad for \quad t \ge T_{\ell}.$$

For simplicity of notation, we introduce

$$P_{\ell}(t) = \ell^{\alpha} (1-p)^{\alpha} q(t) a(\tau(t)) \left(\frac{A(\tau(t))}{A(t)}\right)^{\alpha} \left(\frac{A(\tau(t))}{2}\right)^{\alpha}$$

with $\ell \in (0, 1)$ and $t \geq T_{\ell}$;

$$P = \liminf_{t \to \infty} A^{\alpha}(t) \int_{t}^{\infty} P_{\ell}(s) ds, \quad Q = \limsup_{t \to \infty} \frac{1}{A(t)} \int_{t_{0}}^{t} A^{\alpha+1}(s) P_{\ell}(s) ds.$$
(2.9)

Further, for z(t) satisfying Case (I) of Lemma 2.1, we define

$$w(t) = a(t) \left(\frac{z''(t)}{z'(t)}\right)^{\alpha},$$
(2.10)

$$r = \liminf_{t \to \infty} A^{\alpha}(t)w(t), \quad R = \limsup_{t \to \infty} A^{\alpha}(t)w(t).$$
(2.11)

Lemma 2.6. Let x(t) be a positive solution of (1.1).

- (a) Let $P < \infty$, $Q < \infty$ and z(t) satisfy Case (I) of Lemma 2.1. Then $P \le r r^{1+\frac{1}{\alpha}}$ and $P + Q \le 1$.
- (b) If $P = \infty$ or $Q = \infty$, then z(t) does not satisfy Case (I) of Lemma 2.1.

Proof. Part (a). Assume that x(t) is a positive solution of (1.1) and the corresponding function z(t) satisfies Case(I) of Lemma 2.1. From the definition of z(t), we have

$$x(t) = z(t) - p(t)x(\delta(t)) > z(t) - p(t)z(\delta(t)) \ge (1 - p)z(t).$$

Using this inequality in (1.1), we obtain

$$(a(t)(z''(t))^{\alpha})' \le -(1-p)^{\alpha}q(t)z^{\alpha}(\tau(t)) \le 0.$$
(2.12)

Then from its definition, w(t) is positive and satisfies

$$w'(t) = \frac{1}{(z'(t))^{\alpha}} \left(a(t)(z''(t))^{\alpha} \right)' - \alpha a(t) \left(\frac{z''(t)}{z'(t)} \right)^{\alpha+1}$$

$$\leq -q(t)(1-p)^{\alpha} \frac{z^{\alpha}(\tau(t))}{(z'(t))^{\alpha}} - \frac{\alpha}{a^{1/\alpha}(t)} w^{1+\frac{1}{\alpha}}(t).$$
(2.13)

From Lemma 2.3 with u(t) = z'(t), we have

$$\frac{1}{z'(t)} \ge \ell \frac{A(\tau(t))}{A(t)} \frac{1}{z'(\tau(t))}, \quad t \ge T_{\ell}.$$

where ℓ is the same as in P_{ℓ} . Now (2.13) becomes

$$w'(t) \le -\ell^{\alpha} q(t)(1-p)^{\alpha} \Big(\frac{A(\tau(t))}{A(t)}\Big)^{\alpha} \frac{z^{\alpha}(\tau(t))}{(z'(\tau(t)))^{\alpha}} - \frac{\alpha}{a^{1/\alpha}(t)} w^{1+\frac{1}{\alpha}}(t).$$

From Lemma 2.4, we have $z(t) \ge \frac{a^{1/\alpha}(t)A(t)}{2}z'(t)$, so that

$$w'(t) + P_{\ell}(t) + \frac{\alpha}{a^{1/\alpha}(t)} w^{1+\frac{1}{\alpha}}(t) \le 0.$$
(2.14)

Since $P_{\ell}(t) > 0$ and w(t) > 0 for $t \ge T_{\ell}$. It follows that $w'(t) \le 0$ and $-w'(t) \ge \alpha w^{1+(1/\alpha)}(t)/a^{1/\alpha}(t)$; thus

$$\left(\frac{1}{w^{1/\alpha}(t)}\right)' > \frac{1}{a^{1/\alpha}(t)}.$$

Integrating the above inequality from T_{ℓ} to t, and using that $w^{-1/\alpha}(T_{\ell}) > 0$, we obtain

$$w(t) < \frac{1}{\left(\int_{T_{\ell}}^{t} a^{-1/\alpha}(s) \, ds\right)^{\alpha}},$$

which in view of (H3) implies that $\lim_{t\to\infty} w(t) = 0$.

On the other hand, from the definition of w(t) and Lemma 2.5,

$$A^{\alpha}(t)w(t) = a(t) \Big(\frac{A(t)z''(t)}{z'(t)}\Big)^{\alpha} = \Big(\frac{A(t)z''(t)}{A'(t)z'(t)}\Big)^{\alpha} \le 1^{\alpha}.$$

EJDE-2012/29

Then

$$0 \le r \le R \le 1. \tag{2.15}$$

Next we prove the first inequality in (a). Let $\epsilon > 0$. Then from the definition of P and r, we can choose $t_2 \ge T_{\ell}$, sufficiently large such that

$$A^{\alpha}(t) \int_{t}^{\infty} P_{\ell}(s) ds \ge P - \epsilon$$
 and $A^{\alpha}(t) w(t) \ge r - \epsilon$ for $t \ge t_{2}$.

Integrating (2.14) from t to ∞ and using that $\lim_{t\to\infty} w(t) = 0$, we have

$$w(t) \ge \int_t^\infty P_\ell(s)ds + \alpha \int_t^\infty \frac{w^{1+\frac{1}{\alpha}}(s)}{a^{1/\alpha}(s)}ds \quad \text{for } t \ge t_2.$$
(2.16)

Multiplying the above inequality by $A^{\alpha}(t)$ and simplifying, we obtain

$$\begin{aligned} A^{\alpha}(t)w(t) &\geq A^{\alpha}(t) \int_{t}^{\infty} P_{\ell}(s)ds + \alpha A^{\alpha}(t) \int_{t}^{\infty} \frac{A^{\alpha+1}(s)w^{1+\frac{1}{\alpha}}(s)}{A^{\alpha+1}(s)a^{1/\alpha}(s)}ds \\ &\geq (P-\epsilon) + (r-\epsilon)^{1+\frac{1}{\alpha}}A^{\alpha}(t) \int_{t}^{\infty} \frac{\alpha A'(s)}{A^{\alpha+1}(s)}ds, \end{aligned}$$

and so

$$A^{\alpha}(t)w(t) \ge (P-\epsilon) + (r-\epsilon)^{1+\frac{1}{\alpha}}.$$

Taking the limit inferior on both sides as $t \to \infty$, we obtain

$$r \ge (P - \epsilon) + (r - \epsilon)^{1 + \frac{1}{\alpha}}.$$

Since $\epsilon > 0$ is arbitrary, we obtain the desired result

$$P < r - r^{1 + \frac{1}{\alpha}}.$$

Next, we prove the second inequality in (a). Multiplying (2.14) by $A^{\alpha+1}(t)$ and integrating it from t_2 to t, we obtain

$$\int_{t_2}^t A^{\alpha+1}(s)w'(s)ds \le -\int_{t_2}^t A^{\alpha+1}(s)P_{\ell}(s)ds - \alpha \int_{t_2}^t \frac{(A^{\alpha}(s)w(s))^{(\alpha+1)/\alpha}}{a^{1/\alpha}(s)}ds.$$

Integrating by parts,

$$A^{\alpha+1}(t)w(t) \le A^{\alpha+1}(t_2)w(t_2) - \int_{t_2}^t A^{\alpha+1}(s)P_{\ell}(s)ds - \alpha \int_{t_2}^t \frac{(A^{\alpha}(s)w(s))^{(\alpha+1)/\alpha}}{a^{1/\alpha}(s)}ds + \int_{t_2}^t w(s) (A^{\alpha+1}(s))' ds.$$

Hence,

$$\begin{aligned} A^{\alpha+1}(t)w(t) &\leq A^{\alpha+1}(t_2)w(t_2) - \int_{t_2}^t A^{\alpha+1}(s)P_{\ell}(s)ds \\ &+ \int_{t_2}^t \Big[\frac{(\alpha+1)A^{\alpha}(s)w(s)}{a^{1/\alpha}(s)} - \frac{\alpha(A^{\alpha}(s)w(s))^{(\alpha+1)/\alpha}}{a^{1/\alpha}(s)}\Big]ds. \end{aligned}$$

Using the inequality

$$Bu - Du^{(\alpha+1)/\alpha} \le \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{B^{\alpha+1}}{D^{\alpha}}$$
(2.17)

with $u = A^{\alpha}(t)w(t)$, $D = \frac{\alpha}{a^{1/\alpha}(t)}$, and $B = \frac{\alpha+1}{a^{1/\alpha}(t)}$, we obtain

$$A^{\alpha+1}(t)w(t) \le A^{\alpha+1}(t_2)w(t_2) - \int_{t_2}^t A^{\alpha+1}(s)P_{\ell}(s)ds + A(t) - A(t_2).$$

It follows that

$$A^{\alpha}(t)w(t) \leq \frac{1}{A(t)}A^{\alpha+1}(t_2)w(t_2) - \frac{1}{A(t)}\int_{t_2}^t A^{\alpha+1}(s)P_{\ell}(s)ds + 1 - \frac{A(t_2)}{A(t)}.$$

Taking the limit superior on both sides as $t \to \infty$, we obtain

$$R \le -Q + 1. \tag{2.18}$$

Combining this inequality with (2.15), we have

$$P \le r - r^{1 + \frac{1}{\alpha}} \le r \le R \le -Q + 1,$$

which completes the proof of Part (a).

Part (b). Assume that x(t) is a positive solution of (1.1). We shall show that z(t) can not satisfy Case (I) of Lemma 2.1. On the contrary, first, we assume that $P = \infty$. Then (2.16),

$$A^{\alpha}(t)w(t) \ge A^{\alpha}(t)\int_{t}^{\infty} P_{\ell}(s)ds$$

Note that by (2.15), the left-hand side is bounded above by 1. Also note that limit inferior of the right-hand side is $P = \infty$. This leads to a contradiction.

Now, we assume that $Q = \infty$. Then by (2.18), $R = -\infty$, which contradicts $0 \le R \le 1$ in (2.15). The proof is complete.

Now we present oscillation results whose proofs follow the steps in [1, Theorems 1 and 2].

Theorem 2.7. Assume that (2.2) holds, and let x(t) be a solution of (1.1). If

$$P := \liminf_{t \to \infty} A^{\alpha}(t) \int_{t}^{\infty} P_{\ell}(s) ds > \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}},$$
(2.19)

then x(t) is either oscillatory or $\lim_{t\to\infty} x(t) = 0$.

Proof. Suppose x is a non-oscillatory solution of (1.1). Since -x is also a solution, we can assume without loss of generality that x is positive. If $P = +\infty$, then by Lemma 2.6, z(t) does not have property (I). That is, z(t) satisfies Case (II) of Lemma 2.1. Therefore, n from Lemma 2.2, we have $\lim_{t\to\infty} x(t) = 0$.

Now assume that z(t) satisfies Case (I) of Lemma 2.1. Let w(t) and r be defined by (2.10) and (2.11), respectively. Then from Lemma 2.6, we have $P \leq r - r^{(\alpha+1)/\alpha}$. Using (2.17) with B = D = 1, we have

$$P \le \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}},$$

which contradicts (2.19). The proof is complete.

Theorem 2.8. Assume that (2.2) holds, and let x(t) be a solution of (1.1). If

$$P+Q>1, (2.20)$$

then x(t) is either oscillatory or $\lim_{t\to\infty} x(t) = 0$.

EJDE-2012/29

Proof. Suppose x is a non-oscillatory solution of (1.1). Since -x is also a solution, we can assume without loss of generality that x is positive. If P or Q equal *infty*, then by Lemma 2.6, z(t) does not satisfy Case (I), and z(t) must satisfy Case (II). Then from Lemma 2.2, $\lim_{t\to\infty} x(t) = 0$.

Now assume that Case (I) holds. Let w(t) and r be defined as above. Then from Lemma 2.6, $P + Q \leq 1$. which contradicts (2.20). The proof is complete.

As a consequence of Theorem 2.8, we have the following results.

Corollary 2.9. Assume that (2.2) holds. If

$$\lim_{t \to \infty} \inf A^{\alpha}(t) \int_{t}^{\infty} q(s) a(\tau(s)) \frac{(A(\tau(s)))^{2\alpha}}{A^{\alpha}} ds > \frac{(2\alpha)^{\alpha}}{\ell^{\alpha}(1-p)^{\alpha}} \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}},$$

then every solution x(t) of (1.1) is either oscillatory or $\lim_{t\to\infty} x(t) = 0$.

Corollary 2.10. Assume that (2.2) holds. If

$$Q = \lim_{t \to \infty} \sup \frac{1}{A(t)} \int_{t_0}^t A^{\alpha+1}(s) P_{\ell}(s) ds > 1,$$

then x(t) is either oscillatory or $\lim_{t\to\infty} x(t) = 0$.

We conclude this section with an example. Consider the third-order neutral differential equation

$$\left[\frac{1}{t^3}\left([x(t) + \frac{1}{3}x(\frac{t}{2})]''\right)^3\right]' + \frac{\lambda}{t^{10}}x^3(\frac{t}{2}) = 0, \quad \lambda > 0, \quad t \ge 1.$$
(2.21)

Here $a(t) = 1/t^3$, p = 1/3, $\alpha = 3$, $\tau(t) = \delta(t) = t/2$, $q(t) = \lambda/t^{10}$. It is easy to see that (2.2) holds. Hence by Corollary 2.9, every non-oscillatory solution of (2.21) converges to zero provided that $\lambda > 3^6 \times 4^5$.

3. Oscillation results for (1.2)

For each solution x(t) of (1.2), we define the associated function

$$z(t) = x(t) - p(t)x(\tau(t)).$$
(3.1)

Lemma 3.1 ([1, Lemma 7]). Let x(t) be a positive solution of equation(1.2). Then there are the following four cases for z(t):

(I) $z(t) > 0, z'(t) > 0, z''(t) > 0, (a(t)(z''(t))^{\alpha})' < 0;$ (II) $z(t) > 0, z'(t) < 0, z''(t) > 0, (a(t)(z''(t))^{\alpha})' < 0;$ (III) $z(t) < 0, z'(t) < 0, z''(t) > 0, (a(t)(z''(t))^{\alpha})' < 0;$ (IV) $z(t) < 0, z'(t) < 0, z''(t) < 0, (a(t)(z''(t))^{\alpha})' < 0.$

Lemma 3.2 ([1, Lemma 8]). Let x(t) be a positive solution of (1.2) and z(t) satisfy Case (II) of Lemma (3.1). If (2.2) holds, then $\lim_{t\to\infty} x(t) = \lim_{t\to\infty} z(t) = 0$.

For simplicity of notation, we introduce

$$\overline{P_{\ell}}(t) = \ell^{\alpha} q(t) a(\tau(t)) \left(\frac{A(\tau(t))}{A(t)}\right)^{\alpha} \left(\frac{A(\tau(t))}{2}\right)^{\alpha}$$

with $\ell \in (0, 1)$;

$$\overline{P} = \liminf_{t \to \infty} A^{\alpha}(t) \int_{t}^{\infty} \overline{P_{\ell}}(s) ds, \quad \overline{Q} = \limsup_{t \to \infty} \frac{1}{A(t)} \int_{t_{0}}^{t} A^{\alpha+1}(s) \overline{P_{\ell}}(s) ds.$$

Also w(t), r, R are defined as in (2.10) and (2.11).

Lemma 3.3. Let x(t) be a positive solution of (1.2).

- (a) Let $\overline{P} < \infty$ and $\overline{Q} < \infty$. Assume that z(t) satisfies Case (I) of Lemma 3.1. Then $\overline{P} \leq r - r^{1+\frac{1}{\alpha}}$ and $\overline{P} + \overline{Q} \leq 1$.
- (b) If $\overline{P} = \infty$ or $\overline{Q} = \infty$, then z(t) can not satisfy Case (I) of Lemma 3.1.

Proof. Assume that x(t) is a positive solution of (1.2) and the associated function z(t) satisfies Case (I) of Lemma 3.1. Since 0 < z(t) < x(t), equation (1.2) can be written as

$$\left(a(t)(z''(t))^{\alpha}\right)' < -q(t)z^{\alpha}(\tau(t)) < 0.$$

The rest of the proof is similar to that of Lemma 2.6 and hence it is omitted. \Box

The following theorem presents an oscillation criterion for equation (1.2).

Theorem 3.4. Assume that (2.2) holds. If

$$\liminf_{t \to \infty} A^{\alpha}(t) \int_{t}^{\infty} \overline{P_{\ell}}(s) ds > \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}},$$
(3.2)

then every solution x(t) of (1.2) is either oscillatory or $\lim_{t\to\infty} x(t) = 0$.

The proof of the above theorem is similar to that of [1, Theorem 3]; hence it is omitted. From the above theorem we have a simplified criterion as follows.

Corollary 3.5. Assume that (2.2) holds. If

$$\liminf_{t \to \infty} A^{\alpha}(t) \int_{t}^{\infty} q(s) a(\tau(s)) \frac{(A(\tau(s)))^{2\alpha}}{A^{\alpha}(s)} ds > \frac{(2\alpha)^{\alpha}}{(\alpha+1)^{\alpha+1}},$$
(3.3)

then every solution x(t) of (1.2) is either oscillatory or $\lim_{t\to\infty} x(t) = 0$.

Theorem 3.6. Assume that (2.2) holds. Let x(t) be a solution of (1.2). If

$$\overline{P} + \overline{Q} > 1, \tag{3.4}$$

then every solution of (1.2) is either oscillatory or $\lim_{t\to\infty} x(t) = 0$.

The proof of the above theorem is similar to that of Theorem 2.8; hence it is omitted.

Corollary 3.7. Assume that (2.2) holds. If

$$\limsup_{t \to \infty} \frac{1}{A(t)} \int_{t_0}^t A^{\alpha+1}(s) \overline{P_\ell}(s) ds > 1,$$
(3.5)

then every solution x(t) of (1.2) is either oscillatory or $\lim_{t\to\infty} x(t) = 0$.

As an example, consider the third-order neutral differential equation

$$\left(\frac{1}{t^3}\left([x(t) - \frac{1}{3}x(\frac{t}{2})]''\right)^3\right)' + \frac{\lambda}{t^{10}}x^3(\frac{t}{2}) = 0, \quad \lambda > 0, \quad t \ge 1.$$
(3.6)

Corollary 3.5 implies that every solution of (3.6) is either oscillatory or approaches zero as $t \to \infty$, provided $\lambda > 6^4 \times 2^7$.

We conclude this article with by remarking that when a(t) is constant, our results coincide with the results in [1].

References

- B. Baculikova, J. Dzurina; Oscillation of third order neutral differential equations, Math. Comp. Modelling, 52 (2010), 215-226.
- [2] B. Baculíková; Properties of third order nonlinear functional differential equations with mixed arguments, Abstr. Appl. Anal. 2011, 1–15.
- [3] L. H. Erbe, Q. Kong, B. G. Zhang; Oscillation Theory For Functional Differential Equations, Marcel Dekker, New york, 1995.
- [4] M. Gregus; Third order linear differential equations, Reidel, Dordrecht, 1982.
- [5] I. Gyori, G. Ladas; Oscillation Theory of Delay Differential Equations with Applications, *Clarendan Press, Oxford*, 1991.
- [6] I. T. Kiguradze, T. A. Chaturia; Asymptotic properties of solutions of nonautonomous ordinary differential equations, *Kluwer Acad. Publ., Dordrecht*, 1993.
- [7] G. S. Ladde, V. Lakshmikanthan, B. G. Zhang; Oscillation Theory of Differential Equations with Deviating Arguments, *Marcel Dekker, New York*, 1987.

Jozef Džurina

DEPARTMENT OF MATHEMATICS, FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS, TECHNICAL UNIVERSITY OF KOŠICE, LETNÁ 9, 042 00 KOŠICE, SLOVAKIA

 $E\text{-}mail\ address: \verb"jozef.dzurina@tuke.sk"$

Ethiraju Thandapani

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, $600\ 005,\ {\rm India}$

E-mail address: ethandapani@yahoo.co.in

Sivaraj Tamilvanan

RAMANUJAN INSTITUTE FOR ADVANCED STUDY IN MATHEMATICS, UNIVERSITY OF MADRAS, CHENNAI, 600 005, INDIA

E-mail address: saitamilvanan@yahoo.in