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OSCILLATION OF SOLUTIONS TO THIRD-ORDER
HALF-LINEAR NEUTRAL DIFFERENTIAL EQUATIONS

JOZEF DŽURINA, ETHIRAJU THANDAPANI, SIVARAJ TAMILVANAN

Abstract. In this article, we study the oscillation of solutions to the third-
order neutral differential equations“

a(t)
`
[x(t)± p(t)x(δ(t))]′′

´α
”′

+ q(t)xα(τ(t)) = 0.

Sufficient conditions are established so that every solution is either oscillatory
or converges to zero. In particular, we extend the results obtain in [1] for a(t)
non-decreasing, to the non-increasing case.

1. Introduction

In recent years, there has been great interest in studying the oscillatory behav-
ior of differential equations; see for example [3, 4, 5, 6, 7] and the references cited
therein. Compared to first and second order, third-order neutral differential equa-
tions have received less attention, even though such equations arise in many physical
problems. Motivated by this observation, we study the oscillation of solutions to
the third-order half-linear neutral differential equations(

a(t)
(
[x(t) + p(t)x(δ(t))]′′

)α
)′

+ q(t)xα(τ(t)) = 0, t ≥ t0, (1.1)

and (
a(t)

(
[x(t)− p(t)x(δ(t))]′′

)α
)′

+ q(t)xα(τ(t)) = 0, t ≥ t0 . (1.2)

We assume the following conditions:
(H1) a(t), p(t), q(t), τ(t), δ(t) are in C([0,∞)); a(t), q(t), τ(t), δ(t) are positive

functions; α is the quotient of two odd positive integers.
(H2) There is constant p such that 0 ≤ p(t) ≤ p < 1; the delay arguments satisfy

τ(t) ≤ t, δ(t) ≤ t, limt→∞ τ(t) = limt→∞ δ(t) = ∞.
(H3) a(t) is positive and non-increasing; A(t) :=

∫ t

t0
a−1/α(s) ds →∞ as t →∞.

By a solution to (1.1), we mean a function x(t) in C2[Tx,∞) for which a(t)(z′′(t))α

is in C1[Tx,∞) and (1.1) is satisfied on some interval [Tx,∞), where Tx ≥ t0, and
z(t) = x(t) + p(t)x(δ(t)). The same concept of a solution applies to (1.2).
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Dzurina [1] obtained sufficient conditions for the oscillation of solutions to (1.1)
and to (1.2), under the assumption that a(t) is non-decreasing. Here we establish
similar results when a(t) is non-increasing. We follow the same strategy as in [1],
but with new estimates in Lemmas 2.3, 2.4, 2.5.

We consider only solutions x(t) for which sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx.
We say that a solution is oscillatory if it has arbitrarily large zeros, and non-
oscillatory otherwise. All functional inequalities are assumed to hold eventually;
that is, for all t large enough. Note that if x(t) is a solution so is −x(t); so our
proofs are done only for positive solutions.

In Section 2, we present oscillation results for (1.1), while in Section 3 we present
similar results for (1.2). In both section we give examples to illustrate our results.

2. Oscillation results for (1.1)

For a solution x(t) of (1.1), we define the corresponding function

z(t) = x(t) + p(t)x(δ(t)). (2.1)

To obtain sufficient conditions for the oscillation of solutions to (1.1), we need the
the following lemmas.

Lemma 2.1 ([1, Lemma 1]). Let x(t) be a positive solution of (1.1). Then there
are only two possible cases:

(I) z(t) > 0, z′(t) > 0, z′′(t) > 0, (a(t)(z′′(t))α)′ < 0;
(II) z(t) > 0, z′(t) < 0, z′′(t) > 0, (a(t)(z′′(t))α)′ < 0.

Lemma 2.2 ([1, Lemma 2]). Let x(t) be a positive solution of (1.1), and let the
corresponding function z(t) satisfy Case (II) of Lemma 2.1. If∫ ∞

t0

∫ ∞

v

[ 1
a(u)

∫ ∞

u

q(s)ds
]1/α

du dv = ∞, (2.2)

then limt→∞ x(t) = limt→∞ z(t) = 0.

Lemma 2.3. Assume that u(t) > 0, u′(t) > 0, (a(t)(u′(t))α)′ ≤ 0 on [t0,∞). Then
for each ` ∈ (0, 1) there exists T` ≥ t0 such that

u(τ(t))
A(τ(t))

≥ `
u(t)
A(t)

for t ≥ T`.

Proof. Since a(t)(u′(t))α is non-increasing, so is a1/α(t)(u′(t)). Then by the defini-
tion of A(t), we have

u(t)− u(τ(t)) =
∫ t

τ(t)

a1/α(s)(u′(s))
1

a1/α(s)
ds

≤ a1/α(τ(t))u′(τ(t))
(
A(t)−A(τ(t))

)
.

(2.3)

Also
u(τ(t)) ≥ u(τ(t))− u(t0) ≥ a1/α(τ(t))u′(τ(t))

(
A(τ(t))−A(t0)

)
.

Since limt→∞
A(τ)−A(t0)

A(τ) = 1, for each ` ∈ (0, 1) there exists T` ≥ t0 such that(
A(τ(t))−A(t0)

)
> `A(τ(t)) for t ≥ T`. From the above inequality,

u(τ(t))
u′(τ(t))

≥ `a1/α(τ(t))A(τ(t)), t ≥ T`. (2.4)
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Combining (2.3) and (2.4), we obtain

u(t)
u(τ(t))

≤ 1 +
A(t)−A(τ(t))

`A(τ(t))
≤ A(t)

`A(τ(t))
,

which completes the proof. �

Lemma 2.4. Assume that z(t) > 0, z′(t) > 0, z′′(t) > 0,
(
a(t)(z′′(t))α

)′ ≤ 0 on
(T`,∞). Then

z(t)
z′(t)

≥ a1/α(t)A(t)
2

for t ≥ T`.

Proof. Since a(t)(z′′(t))α is positive and non-increasing, so is a1/α(t)z′′(t). From
z′(t) > 0, a(t) > 0, we have

z′(t) ≥ z′(t)− z′(τ(t)) ≥
∫ t

T`

a1/α(s)z′′(s)
a1/α(s)

ds ≥ a1/α(t)A(t)z′′(t). (2.5)

Since A′(t) = a−1/α(t),

A′(t)z′(t) ≥ A(t)z′′(t), t ≥ T`. (2.6)

Integrating both sides of the above inequality, and using that A(T`)z′(T`) > 0, we
obtain ∫ t

T`

A′(s)z′(s)ds ≥ A(t)z′(t)−
∫ t

T`

A′(s)z′(s)ds.

Therefore, ∫ t

T`

A′(s)z′(s)ds ≥ 1
2
A(t)z′(t). (2.7)

Since a(t) is non-increasing, we have A(t) > 0, A′(t) > 0, A′′(t) ≥ 0. and

(A′(t)z(t))′ = A′(t)z′(t) + A′′(t)z(t) ≥ A′(t)z′(t). (2.8)

Integrating on both sides of the above equality, then using that A′(T`)z(T`) > 0
and (2.7), we obtain

A′(t)z(t) ≥ 1
2
A(t)z′(t), t ≥ T`,

which implies the desired result. �

The next lemma follows from (2.6).

Lemma 2.5. Assume that z′(t) > 0, z′′(t) > 0,
(
a(t)(z′′(t))α

)′ ≤ 0 on (T`,∞).
Then

A(t)z′′(t)
A′(t)z′(t)

≤ 1, for t ≥ T`.

For simplicity of notation, we introduce

P`(t) = `α(1− p)αq(t)a(τ(t))
(A(τ(t))

A(t)

)α(A(τ(t))
2

)α

with ` ∈ (0, 1) and t ≥ T`;

P = lim inf
t→∞

Aα(t)
∫ ∞

t

P`(s)ds, Q = lim sup
t→∞

1
A(t)

∫ t

t0

Aα+1(s)P`(s)ds. (2.9)
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Further, for z(t) satisfying Case (I) of Lemma 2.1, we define

w(t) = a(t)
(z′′(t)

z′(t)

)α

, (2.10)

r = lim inf
t→∞

Aα(t)w(t), R = lim sup
t→∞

Aα(t)w(t). (2.11)

Lemma 2.6. Let x(t) be a positive solution of (1.1).
(a) Let P < ∞, Q < ∞ and z(t) satisfy Case (I) of Lemma 2.1. Then P ≤

r − r1+ 1
α and P + Q ≤ 1.

(b) If P = ∞ or Q = ∞, then z(t) does not satisfy Case (I) of Lemma 2.1.

Proof. Part (a). Assume that x(t) is a positive solution of (1.1) and the corre-
sponding function z(t) satisfies Case(I) of Lemma 2.1. From the definition of z(t),
we have

x(t) = z(t)− p(t)x(δ(t)) > z(t)− p(t)z(δ(t)) ≥ (1− p)z(t).

Using this inequality in (1.1), we obtain

(a(t)(z′′(t))α)′ ≤ −(1− p)αq(t)zα(τ(t)) ≤ 0. (2.12)

Then from its definition, w(t) is positive and satisfies

w′(t) =
1

(z′(t))α

(
a(t)(z′′(t))α

)′ − αa(t)
(z′′(t)

z′(t)

)α+1

≤ −q(t)(1− p)α zα(τ(t))
(z′(t))α

− α

a1/α(t)
w1+ 1

α (t).
(2.13)

From Lemma 2.3 with u(t) = z′(t), we have

1
z′(t)

≥ `
A(τ(t))
A(t)

1
z′(τ(t))

, t ≥ T`,

where ` is the same as in P`. Now (2.13) becomes

w′(t) ≤ −`αq(t)(1− p)α
(A(τ(t))

A(t)

)α zα(τ(t))
(z′(τ(t)))α

− α

a1/α(t)
w1+ 1

α (t).

From Lemma 2.4, we have z(t) ≥ a1/α(t)A(t)
2 z′(t), so that

w′(t) + P`(t) +
α

a1/α(t)
w1+ 1

α (t) ≤ 0. (2.14)

Since P`(t) > 0 and w(t) > 0 for t ≥ T`. It follows that w′(t) ≤ 0 and −w′(t) ≥
αw1+(1/α)(t)/a1/α(t); thus ( 1

w1/α(t)

)′
>

1
a1/α(t)

.

Integrating the above inequality from T` to t, and using that w−1/α(T`) > 0, we
obtain

w(t) <
1( ∫ t

T`
a−1/α(s) ds

)α ,

which in view of (H3) implies that limt→∞ w(t) = 0.
On the other hand, from the definition of w(t) and Lemma 2.5,

Aα(t)w(t) = a(t)
(A(t)z′′(t)

z′(t)

)α

=
(A(t)z′′(t)

A′(t)z′(t)

)α

≤ 1α.
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Then
0 ≤ r ≤ R ≤ 1. (2.15)

Next we prove the first inequality in (a). Let ε > 0. Then from the definition of P
and r, we can choose t2 ≥ T`, sufficiently large such that

Aα(t)
∫ ∞

t

P`(s)ds ≥ P − ε and Aα(t)w(t) ≥ r − ε for t ≥ t2.

Integrating (2.14) from t to ∞ and using that limt→∞ w(t) = 0, we have

w(t) ≥
∫ ∞

t

P`(s)ds + α

∫ ∞

t

w1+ 1
α (s)

a1/α(s)
ds for t ≥ t2. (2.16)

Multiplying the above inequality by Aα(t) and simplifying, we obtain

Aα(t)w(t) ≥ Aα(t)
∫ ∞

t

P`(s)ds + αAα(t)
∫ ∞

t

Aα+1(s)w1+ 1
α (s)

Aα+1(s)a1/α(s)
ds

≥ (P − ε) + (r − ε)1+
1
α Aα(t)

∫ ∞

t

αA′(s)
Aα+1(s)

ds,

and so
Aα(t)w(t) ≥ (P − ε) + (r − ε)1+

1
α .

Taking the limit inferior on both sides as t →∞, we obtain

r ≥ (P − ε) + (r − ε)1+
1
α .

Since ε > 0 is arbitrary, we obtain the desired result

P ≤ r − r1+ 1
α .

Next, we prove the second inequality in (a). Multiplying (2.14) by Aα+1(t) and
integrating it from t2 to t, we obtain∫ t

t2

Aα+1(s)w′(s)ds ≤ −
∫ t

t2

Aα+1(s)P`(s)ds− α

∫ t

t2

(Aα(s)w(s))(α+1)/α

a1/α(s)
ds.

Integrating by parts,

Aα+1(t)w(t) ≤ Aα+1(t2)w(t2)−
∫ t

t2

Aα+1(s)P`(s)ds

− α

∫ t

t2

(Aα(s)w(s))(α+1)/α

a1/α(s)
ds +

∫ t

t2

w(s)
(
Aα+1(s)

)′
ds.

Hence,

Aα+1(t)w(t) ≤ Aα+1(t2)w(t2)−
∫ t

t2

Aα+1(s)P`(s)ds

+
∫ t

t2

[ (α + 1)Aα(s)w(s)
a1/α(s)

− α(Aα(s)w(s))(α+1)/α

a1/α(s)
]
ds.

Using the inequality

Bu−Du(α+1)/α ≤ αα

(α + 1)α+1

Bα+1

Dα
(2.17)
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with u = Aα(t)w(t), D = α
a1/α(t)

, and B = α+1
a1/α(t)

, we obtain

Aα+1(t)w(t) ≤ Aα+1(t2)w(t2)−
∫ t

t2

Aα+1(s)P`(s)ds + A(t)−A(t2).

It follows that

Aα(t)w(t) ≤ 1
A(t)

Aα+1(t2)w(t2)−
1

A(t)

∫ t

t2

Aα+1(s)P`(s)ds + 1− A(t2)
A(t)

.

Taking the limit superior on both sides as t →∞, we obtain

R ≤ −Q + 1. (2.18)

Combining this inequality with (2.15), we have

P ≤ r − r1+ 1
α ≤ r ≤ R ≤ −Q + 1,

which completes the proof of Part (a).
Part (b). Assume that x(t) is a positive solution of (1.1). We shall show that

z(t) can not satisfy Case (I) of Lemma 2.1. On the contrary, first, we assume that
P = ∞. Then (2.16),

Aα(t)w(t) ≥ Aα(t)
∫ ∞

t

P`(s)ds.

Note that by (2.15), the left-hand side is bounded above by 1. Also note that limit
inferior of the right-hand side is P = ∞. This leads to a contradiction.

Now, we assume that Q = ∞. Then by (2.18), R = −∞, which contradicts
0 ≤ R ≤ 1 in (2.15). The proof is complete. �

Now we present oscillation results whose proofs follow the steps in [1, Theorems
1 and 2].

Theorem 2.7. Assume that (2.2) holds, and let x(t) be a solution of (1.1). If

P := lim inf
t→∞

Aα(t)
∫ ∞

t

P`(s)ds >
αα

(α + 1)α+1
, (2.19)

then x(t) is either oscillatory or limt→∞ x(t) = 0.

Proof. Suppose x is a non-oscillatory solution of (1.1). Since −x is also a solution,
we can assume without loss of generality that x is positive. If P = +∞, then
by Lemma 2.6, z(t) does not have property (I). That is, z(t) satisfies Case (II) of
Lemma 2.1. Therefore, n from Lemma 2.2, we have limt→∞ x(t) = 0.

Now assume that z(t) satisfies Case (I) of Lemma 2.1. Let w(t) and r be defined
by (2.10) and (2.11), respectively. Then from Lemma 2.6, we have P ≤ r−r(α+1)/α.
Using (2.17) with B = D = 1, we have

P ≤ αα

(α + 1)α+1
,

which contradicts (2.19). The proof is complete. �

Theorem 2.8. Assume that (2.2) holds, and let x(t) be a solution of (1.1). If

P + Q > 1, (2.20)

then x(t) is either oscillatory or limt→∞ x(t) = 0.
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Proof. Suppose x is a non-oscillatory solution of (1.1). Since −x is also a solution,
we can assume without loss of generality that x is positive. If P or Q equal infty,
then by Lemma 2.6, z(t) does not satisfy Case (I), and z(t) must satisfy Case (II).
Then from Lemma 2.2, limt→∞ x(t) = 0.

Now assume that Case (I) holds. Let w(t) and r be defined as above. Then from
Lemma 2.6, P + Q ≤ 1. which contradicts (2.20). The proof is complete. �

As a consequence of Theorem 2.8, we have the following results.

Corollary 2.9. Assume that (2.2) holds. If

lim
t→∞

inf Aα(t)
∫ ∞

t

q(s)a(τ(s))
(A(τ(s)))2α

Aα
ds >

(2α)α

`α(1− p)α

αα

(α + 1)α+1
,

then every solution x(t) of (1.1) is either oscillatory or limt→∞ x(t) = 0.

Corollary 2.10. Assume that (2.2) holds. If

Q = lim
t→∞

sup
1

A(t)

∫ t

t0

Aα+1(s)P`(s)ds > 1,

then x(t) is either oscillatory or limt→∞ x(t) = 0.

We conclude this section with an example. Consider the third-order neutral
differential equation[ 1

t3
([x(t) +

1
3
x(

t

2
)]′′)3

]′ + λ

t10
x3(

t

2
) = 0, λ > 0, t ≥ 1. (2.21)

Here a(t) = 1/t3, p = 1/3, α = 3, τ(t) = δ(t) = t/2, q(t) = λ/t10. It is easy to see
that (2.2) holds. Hence by Corollary 2.9, every non-oscillatory solution of (2.21)
converges to zero provided that λ > 36 × 45.

3. Oscillation results for (1.2)

For each solution x(t) of (1.2), we define the associated function

z(t) = x(t)− p(t)x(τ(t)). (3.1)

Lemma 3.1 ([1, Lemma 7]). Let x(t) be a positive solution of equation(1.2). Then
there are the following four cases for z(t):

(I) z(t) > 0, z′(t) > 0, z′′(t) > 0, (a(t)(z′′(t))α)′ < 0;
(II) z(t) > 0, z′(t) < 0, z′′(t) > 0, (a(t)(z′′(t))α)′ < 0;

(III) z(t) < 0, z′(t) < 0, z′′(t) > 0, (a(t)(z′′(t))α)′ < 0;
(IV) z(t) < 0, z′(t) < 0, z′′(t) < 0, (a(t)(z′′(t))α)′ < 0.

Lemma 3.2 ([1, Lemma 8]). Let x(t) be a positive solution of (1.2) and z(t) satisfy
Case (II) of Lemma (3.1). If (2.2) holds, then limt→∞ x(t) = limt→∞ z(t) = 0.

For simplicity of notation, we introduce

P`(t) = `αq(t)a(τ(t))
(A(τ(t))

A(t)

)α(A(τ(t))
2

)α

with ` ∈ (0, 1);

P = lim inf
t→∞

Aα(t)
∫ ∞

t

P`(s)ds, Q = lim sup
t→∞

1
A(t)

∫ t

t0

Aα+1(s)P`(s)ds.

Also w(t), r, R are defined as in (2.10) and (2.11).
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Lemma 3.3. Let x(t) be a positive solution of (1.2).

(a) Let P < ∞ and Q < ∞. Assume that z(t) satisfies Case (I) of Lemma 3.1.
Then P ≤ r − r1+ 1

α and P + Q ≤ 1.
(b) If P = ∞ or Q = ∞, then z(t) can not satisfy Case (I) of Lemma 3.1.

Proof. Assume that x(t) is a positive solution of (1.2) and the associated function
z(t) satisfies Case (I) of Lemma 3.1. Since 0 < z(t) < x(t), equation (1.2) can be
written as (

a(t)(z′′(t))α
)′

< −q(t)zα(τ(t)) < 0.

The rest of the proof is similar to that of Lemma 2.6 and hence it is omitted. �

The following theorem presents an oscillation criterion for equation (1.2).

Theorem 3.4. Assume that (2.2) holds. If

lim inf
t→∞

Aα(t)
∫ ∞

t

P`(s)ds >
αα

(α + 1)α+1
, (3.2)

then every solution x(t) of (1.2) is either oscillatory or limt→∞ x(t) = 0.

The proof of the above theorem is similar to that of [1, Theorem 3]; hence it is
omitted. From the above theorem we have a simplified criterion as follows.

Corollary 3.5. Assume that (2.2) holds. If

lim inf
t→∞

Aα(t)
∫ ∞

t

q(s)a(τ(s))
(A(τ(s)))2α

Aα(s)
ds >

(2α)α

(α + 1)α+1
, (3.3)

then every solution x(t) of (1.2) is either oscillatory or limt→∞ x(t) = 0.

Theorem 3.6. Assume that (2.2) holds. Let x(t) be a solution of (1.2). If

P + Q > 1, (3.4)

then every solution of (1.2) is either oscillatory or limt→∞ x(t) = 0.

The proof of the above theorem is similar to that of Theorem 2.8; hence it is
omitted.

Corollary 3.7. Assume that (2.2) holds. If

lim sup
t→∞

1
A(t)

∫ t

t0

Aα+1(s)P`(s)ds > 1, (3.5)

then every solution x(t) of (1.2) is either oscillatory or limt→∞ x(t) = 0.

As an example, consider the third-order neutral differential equation( 1
t3

([x(t)− 1
3
x(

t

2
)]′′)3

)′
+

λ

t10
x3(

t

2
) = 0, λ > 0, t ≥ 1. (3.6)

Corollary 3.5 implies that every solution of (3.6) is either oscillatory or approaches
zero as t →∞, provided λ > 64 × 27.

We conclude this article with by remarking that when a(t) is constant, our results
coincide with the results in [1].
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