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MULTIPLE POSITIVE SOLUTIONS FOR
INTEGRO-DIFFERENTIAL EQUATIONS WITH INTEGRAL

BOUNDARY CONDITIONS AND SIGN CHANGING
NONLINEARITIES

MEI JIA, PINGYOU WANG

Abstract. In this article, we show the existence of multiple positive solutions
for integro-differential equations with one-dimensional p-Laplacian operator,
sign changing nonlinearities, and integral boundary conditions. By using the
Schauder fixed point theorem and the Krasnosel’skii fixed point theorem, we
obtain sufficient conditions for the existence of at least two positive solutions.

1. Introduction

In this article, we study the existence of positive solutions for the following
integro-differential equation with integral boundary conditions, and sign changing
nonlinearities:

(ϕp(u′(t)))′ + w(t)f(t, u(t), Au(t), Bu(t)) = 0, 0 < t < 1,

u(0) = Au(ξ), u(1) = −Bu(η),
(1.1)

where Au(t) =
∫ t

0
g(t, s)u′(s) ds, Bu(t) =

∫ 1

t
h(t, s)u′(s) ds, 0 < ξ ≤ η < 1, ϕp(u) =

|u|p−2u is the one-dimensional p-Laplacian operator wiht p > 1, ϕq = (ϕp)−1, and
1
q + 1

p = 1. By using the Schauder fixed point theorem and the Krasnosel’skii
fixed point theorem, we obtain sufficient conditions for the existence of at least two
positive solutions under suitable conditions assumed on the nonlinear terms f and
w.

The theory of boundary-value problems for integro-differential equations arises
in different areas of applied mathematics, fluid dynamics, plasma physics, biological
sciences and chemical kinetics (for details, see [4, 3, 22] and the references therein).
Since boundary-value problems with integral boundary conditions include two,
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three, multi-point and nonlocal boundary-value problems as special cases, the exis-
tence and multiplicity of positive solutions for such problems have been put empha-
sis on continuously (see [8, 20, 23, 24, 25, 14, 17, 13, 18] and references therein). Be-
cause of the wide mathematical and physical background, the existence of positive
solutions for nonlinear boundary-value problems with p-Laplacian has also received
wide attention. For details, we can refer to see [5, 16, 7, 6, 19, 21, 15, 17, 13, 12, 9].
The main tools for such problems are various kinds of fixed-point theorem in cones
(see [5, 16, 7, 21, 15, 17, 13, 12]), the monotone iterative technique (see [19]) and
the fixed point index theory (see [6, 12]). If the nonlinear term is nonnegative,
we can apply the concavity of solutions in the proofs. Under the assumption that
the nonlinear term is nonnegative, authors obtained the existence of at least one
positive solutions or multiple positive solutions, see [5, 16, 7, 19, 21, 15, 13].

By using the upper and lower solution approach and the growth restriction ap-
proach, in [1] the author presented some general existence theorems second-order
boundary-value problems with sign changing nonlinearities:

y′′ + q(t)f(t, y) = 0, 0 < t < 1,

y(0) = 0 = y(1),
(1.2)

and

y′′ + q(t)f(t, y) = 0, 0 < t < 1,

y(0) = 0, θ(y(1)) + y(1) = 0,

where the nonlinear term f is allowed to change sign and θ may be nonlinear. More-
over, in [2], the authors discussed the singular Dirichlet boundary-value problem
(1.2) and established existence results, where nonlinearity f is allowed to change
sign and may be singular at y = 0.

Guo [11] established a new fixed point theorem in double cones and discussed
the existence of positive solutions for the second-order three-point boundary-value
problem

x′′ + f(t, x) = 0, 0 ≤ t ≤ 1,

x(0)− βx′(0) = 0, x(1) = αx(η),

where f is allowed to change sign. Sufficient conditions of the existence of at
least two positive solutions for the boundary-value problems above are obtained
by imposing growth conditions on f . By applications of fixed point index theory,
Cheung and Ren [6] proved the existence of two positive solutions for the problem

(Φp(u′))′ + h(t)f(t, u) = 0, 0 < t < 1,

with each of the following two sets of boundary conditions

u′(0) = 0, u(1) =
m−2∑
i=1

αiu(ξi);

u(0) =
m−2∑
i=1

αiu(ξi), u′(1) = 0,

where h : [0, 1] → R+ and f : [0, 1] × [0,∞) → R are continuous functions. Ji
[12] studied the existence of positive solutions for the one-dimensional p-Laplacian
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equation

(Φp(u′))′ + f(t, u, u′) = 0, 0 < t < 1,

u′(0) =
m−2∑
i=1

αiu
′(ξi), u(1) =

m−2∑
i=1

βiu(ξi),

where f may change sign. They show that it has at least one or two positive solu-
tions under some assumptions by applying the fixed point theorem and fixed point
index theory. Liu, Jia and Tian [17] studied the existence of positive solutions for
the boundary-value problem, with integral boundary conditions and sign changing
nonlinearities of one-dimensional p-Laplacian

(Φp(u′))′ + f(t, u) = 0, 0 < t < 1,

au(0)− bu′(0) =
m−2∑
i=1

aiu(ξi), u(1) =
∫ 1

0

g(s)u(s) ds,

where a, b ∈ [0,+∞), ai ∈ (0,+∞), i = 1, 2, . . . ,m, 0 < ξ1 < ξ2 · · · < ξm−2 < 1,
m ≥ 3. The sufficient conditions for the existence of at least two positive solutions
were obtained by using a fixed point theorem in double cones given in [11].

Recently, by using the expansion and compression fixed point theorem of norm
in cone under suitable conditions imposed on the nonlinear term f and w, Jia and
Wang [13] established sufficient conditions for the existence of at least one positive
solutions for (1.1), where the nonlinear term f and w are nonnegative. However,
there are a few works devoted to the integro-differential boundary-value problems
with integral boundary conditions, one-dimensional p-Laplacian operator and sign
changing nonlinearities.

Motivated by the above, we obtain some meaningful conclusions by consider-
ing the existence of multiply positive solutions for (1.1), with integral boundary
conditions and sign changing nonlinearities of one-dimensional p-Laplacian.

The following hypotheses will be assumed throughout this paper:
(H1) f : [0, 1]× [0,+∞)× R2 → R is continuous;
(H2) f(t, 0, ·, ·) ≥ 0, w ∈ L1[0, 1], f(t, 0, ·, ·) 6= 0, w(t) ≥ 0 and w 6= 0 a.e. on

[0,1];
(H3) g, h ∈ C([0, 1]× [0, 1], [0,+∞)), g(ξ, s) is monotone decreasing with respect

to s ∈ [0, 1] and h(η, s) is monotone increasing with respect to s ∈ [0, 1].

2. Preliminaries

For any y ∈ L1[0, 1], y(t) ≥ 0 and y(t) 6≡ 0 for t ∈ [0, 1], we denote

H(C) =
∫ ξ

0

g(ξ, s)ϕq

(
C −

∫ s

0

y(τ) dτ
)

ds

+
∫ 1

η

h(η, s)ϕq

(
C −

∫ s

0

y(τ) dτ
)

ds +
∫ 1

0

ϕq

(
C −

∫ s

0

y(τ) dτ
)

ds.

Lemma 2.1. Suppose that (H3) holds. Then for each y ∈ L1[0, 1], y(t) ≥ 0 and
y(t) 6≡ 0 for t ∈ [0, 1], the equation H(C) = 0 has a unique solution in (−∞,+∞)
and the solution Cy ∈ (0,

∫ 1

0
y(τ) dτ). Moreover, there exists σ ∈ (0, 1) such that

Cy =
∫ σ

0
y(τ) dτ .
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The proof of Lemma 2.1 is similar to that of [13, Lemma 2.2]. In this article, we
take

σy = inf
{
σ ∈ (0, 1) : Cy =

∫ σ

0

y(τ) dτ
}
. (2.1)

For the convenience, we recall the following results (see [13]).

Lemma 2.2 ([13, Lemma 2.3]). Assume (H3) holds. Then for each y ∈ L1[0, 1],
y(t) ≥ 0 and y(t) 6≡ 0 for t ∈ [0, 1], the boundary-value problem

(ϕp(u′(t)))′ + y(t) = 0, 0 < t < 1,

u(0) = Au(ξ), u(1) = −Bu(η),
(2.2)

has a unique solution of the form

u(t) =
∫ ξ

0

g(ξ, s)ϕq

(
Cy −

∫ s

0

y(τ) dτ
)

ds +
∫ t

0

ϕq

(
Cy −

∫ s

0

y(τ) dτ
)

ds, (2.3)

or

u(t) = −
∫ 1

η

h(η, s)ϕq

(
Cy −

∫ s

0

y(τ) dτ
)

ds−
∫ 1

t

ϕq

(
Cy −

∫ s

0

y(τ) dτ
)

ds, (2.4)

where Cy satisfies H(Cy) = 0.

Remark 2.3. By Lemma 2.1 and Lemma 2.2, (2.3) and (2.4) can be changed into
(2.5) and (2.6), respectively.

u(t) =
∫ ξ

0

g(ξ, s)ϕq

( ∫ σy

s

y(τ) dτ
)

ds +
∫ t

0

ϕq

( ∫ σy

s

y(τ) dτ
)

ds, (2.5)

and

u(t) =
∫ 1

η

h(η, s)ϕq

( ∫ s

σy

y(τ) dτ
)

ds +
∫ 1

t

ϕq

( ∫ s

σy

y(τ) dτ
)

ds. (2.6)

Lemma 2.4 ([13, Lemma 2.4]). Suppose (H3) holds. If y ∈ L1[0, 1], y(t) ≥ 0 and
y(t) 6≡ 0 for t ∈ [0, 1]. Then the solution of boundary-value problem (2.2) has the
following properties:

(1) u(t) is a concave function;
(2) u(t) ≥ 0, t ∈ [0, 1];
(3) u(σy) = max0≤t≤1 u(t) and u′(σy) = 0, where σy is defined in (2.1).

Lemma 2.5 ([9]). If u ∈ C[0, 1] and u(t) ≥ 0 is a concave function. Then for each
γ ∈ (0, 1

2 ), we have
min

γ≤t≤1−γ
u(t) ≥ γ‖u‖.

Let X = C[0, 1] and ‖u‖ = max0≤t≤1 |u(t)|, take 0 < δ < min{ 1
2 , ξ, η} and

denote
P = {u ∈ X : u(t) ≥ 0, t ∈ [0, 1]}

and

K = {u ∈ P : u(t) is a concave function on [0, 1] and min
δ≤t≤1−δ

u(t) ≥ δ‖u‖}.

Obviously, P, K ⊂ X are two cones of X with K ⊂ P .
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Denote B+ = max{B, 0}. For u ∈ K, we define T ∗ : K → K by

T ∗u(t) =



∫ ξ

0
g(ξ, s)ϕq

( ∫ σu

s
w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds

+
∫ t

0
ϕq

( ∫ σu

s
w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds, 0 ≤ t ≤ σu,∫ 1

η
h(η, s)ϕq

( ∫ s

σu
w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds

+
∫ 1

t
ϕq

( ∫ s

σu
w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds, σu ≤ t ≤ 1,

where σu is defined in (2.1). It follows T ∗ is well definition from (H1)–(H3), Lemma
2.4 and Lemma 2.5. Define T : P → P by

Tu(t) =



[ ∫ ξ

0
g(ξ, s)ϕq

( ∫ σu

s
w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds

+
∫ t

0
ϕq

( ∫ σu

s
w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds

]+

, 0 ≤ t ≤ σu,[ ∫ 1

η
h(η, s)ϕq

( ∫ s

σu
w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds

+
∫ 1

t
ϕq

( ∫ s

σu
w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds

]+

, σu ≤ t ≤ 1 .

Define S : P → X by

Su(t) =



∫ ξ

0
g(ξ, s)ϕq

( ∫ σu

s
w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds

+
∫ t

0
ϕq

( ∫ σu

s
w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds, 0 ≤ t ≤ σu,∫ 1

η
h(η, s)ϕq

( ∫ s

σu
w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds

+
∫ 1

t
ϕq

( ∫ s

σu
w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ

)
ds, σu ≤ t ≤ 1 .

From Lemma 2.2, we have the following result.

Lemma 2.6. Suppose that (H1)–(H3) hold. Then a function u(t) is a solution of
boundary-value problem (1.1) if and only if u(t) is a fixed point of the operator S.

We can easily prove that the following lemma holds.

Lemma 2.7. Suppose that (H1)–(H3) hold. Then T ∗ : K → K is completely
continuous.

For u ∈ X, denote θ : X → P by (θu)(t) = max{u(t), 0}, then T = θ ◦ S.

Lemma 2.8 ([6, Lemma 2.2]). If S : K → X is completely continuous, then
T = θ ◦ S : K → K is also completely continuous.

Lemma 2.9. Suppose (H1)–(H3) hold. If u is a fixed point of operator T , then u
is also a fixed point of operator S.

Proof. Let u be a fixed point of the operator T , if we prove Su(t) ≥ 0 for t ∈ [0, 1],
then u(t) is a fixed point of operator S.

Suppose Su(t) ≥ 0 for t ∈ [0, 1] is not true, then there exists a t0 ∈ (0, 1) such
that u(t0) = 0 > Su(t0). Let (t1, t2) be the maximal interval which contains t0 and
such that Su(t) < 0, t ∈ (t1, t2). It follows [t1, t2] 6= [0, 1] from (H2).

Case 1: If t2 < 1, we have u(t) = 0 for t ∈ [t1, t2], Su(t) < 0 for t ∈ (t1, t2)
and Su(t2) = 0. Thus (Su)′(t2) ≥ 0. From (H2), we know [ϕp((Su)′(t))]′ =
−w(t)f(t, 0, Au(t), Bu(t)) ≤ 0 for t ∈ [t1, t2] and we can get (Su)′(t) is monotone
decreasing on [t1, t2]. So t1 = 0, Su(t1) < 0 and

(Su)′(t) ≥ (Su)′(t2) ≥ 0, t ∈ [0, t2].
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On the other hand, if ξ ≤ t2, we have

0 > Su(0) =
∫ ξ

0

g(ξ, s)(Su)′(s) ds ≥ 0,

which is a contradiction.
If ξ > t2, by using mean value theorem of integral, we have

Su(0) =
∫ t2

0

g(ξ, s)(Su)′(s) ds +
∫ ξ

t2

g(ξ, s)(Su)′(s) ds

= g(ξ, ξ1)
∫ t2

0

(Su)′(s) ds + g(ξ, t2)
∫ ξ2

t2

(Su)′(s) ds

= g(ξ, ξ1)(Su(t2)− Su(0)) + g(ξ, t2)(Su(ξ2)− Su(t2))

= g(ξ, ξ1)(−Su(0)) + g(ξ, t2)Su(ξ2),

and
0 > (1 + g(ξ, ξ1))Su(0) = g(ξ, t2)Su(ξ2), (2.7)

where ξ1 ∈ [0, t2] and ξ2 ∈ [t2, ξ].
It follows that (2.7) is a contradiction if Su(ξ2) ≥ 0.
If Su(ξ2) < 0, let (t3, t4) be the maximal interval which contains ξ2 and such that

Su(t) < 0, t ∈ (t3, t4). It is obvious that [t3, t4] ⊂ [t2, 1]. If t4 < 1, we have u(t) = 0
for t ∈ [t3, t4], Su(t) < 0 for t ∈ (t3, t4) and Su(t3) = 0. Thus (Su)′(t3) ≤ 0. From
(H2), we know [ϕp((Su)′(t))]′ = −w(t)f(t, 0, Au(t), Bu(t)) ≤ 0 and ϕp((Su)′(t)) is
monotone decreasing on [t3, t4], we can obtain (Su)′(t) is monotone decreasing on
[t3, t4]. It is easy to show that

(Su)′(t) ≤ (Su)′(t3) ≤ 0, t ∈ [t3, t4].

Hence, t4 = 1 and Su(1) < 0. Since ξ ≤ η, we have (Su)′(t) ≤ 0, t ∈ [η, 1] and

0 > Su(1) = −
∫ 1

η

h(η, s)(Su)′(s) ds ≥ 0,

which is a contradiction.
Therefore, t2 < 1 is not true. We have t2 = 1.
Case 2: If t1 > 0, we have Su(t) = 0 for t ∈ [t1, 1], Su(t) < 0 for t ∈ (t1, 1) and

Su(t1) = 0. Thus (Su)′(t1) ≤ 0. We have [ϕp((Su)′(t))]′ = −f(t, 0, Au(t), Bu(t)) ≤
0 by (H2). This implies (Su)′(t) ≤ 0 and Su(t) < 0 for t ∈ (t1, 1] and Su(1) =
mint∈[t1,1] Su(t).

We can prove that
Su(t) ≥ 0 for t ∈ [0, t1]. (2.8)

If there exists a t5 ∈ [0, t1] such that Su(t5) < 0 and there is a maximal interval
[t6, t7] which contains t5 such that Su(t) < 0 for t ∈ (t6, t7). Obviously [t6, t7) ∩
[t1, 1] = ∅, so 1 6∈ (t6, t7); i.e., t7 < 1, this is a contradiction with the above
discussion. Thus we can show Su(t) ≥ 0 for t ∈ [0, t1].

For Su(1) < 0, we have

Su(1) = −
∫ 1

η

h(η, s)(Su)′(s) ds.

Then, if η ≥ t1, we have

0 > Su(1) = −
∫ 1

η

h(η, s)(Su)′(s) ds ≥ 0,
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which is a contradiction.
If η < t1, by using mean value theorem of integral, there exist η1 ∈ [η, t1] ⊂ [0, t1]

and η2 ∈ [t1, 1] such that

Su(1) = −
∫ t1

η

h(η, s)(Su)′(s) ds−
∫ 1

t1

h(η, s)(Su)′(s) ds

= −h(η, t1)
∫ t1

η1

(Su)′(s) ds− h(η, η2)
∫ 1

t1

(Su)′(s) ds

= −h(η, t1)(Su(t1)− Su(η1))− h(η, η2)(Su(1)− Su(t1))

= h(η, t1)Su(η1))− h(η, η2)Su(1),

and
0 > (1 + h(η, η2))Su(1) = h(η, t1)Su(η1). (2.9)

By (2.8), we have Su(η1) ≥ 0. Hence, (2.9) is a contradiction. Therefore t1 = 0.
The above also contradicts [t1, t2] 6= [0, 1]. Thus Su(t) ≥ 0 for t ∈ [0, 1]. That is

u(t) is a fixed point of operator S. �

Next we state the Krasnosel’skii Fixed Point Theorem [10].

Lemma 2.10. Let E be a Banach space and K ⊂ E be a cone in E. Assume Ω1

and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 and A : K ∩ (Ω2\Ω1) → K
be a completely continuous operator. In addition, suppose either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2;

or
‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

hold. Then A has a fixed point in K ∩ (Ω2\Ω1).

3. Main result

Denote

M = min
{∫ 1/2

δ

ϕq

( ∫ 1/2

s

w(τ) dτ
)

ds,

∫ 1−δ

1/2

ϕq

( ∫ s

1/2

w(τ) dτ
)

ds
}

,

N = max
{

(1 +
∫ 1

0

g(ξ, s) ds)ϕq

( ∫ 1

0

w(τ) dτ
)
,

(1 +
∫ 1

0

h(η, s) ds)ϕq

( ∫ 1

0

w(τ) dτ
)}

.

For the next theorem, we assume that f satisfies the following growth conditions:
(H4) f(t, u, x, y) ≥ 0 for (t, u, x, y) ∈ [0, 1]× [c1, c3]× R2;
(H5) f(t, u, x, y) < ϕp( c2

N ) for (t, u, x, y) ∈ [0, 1]× [0, c2]× R2;
(H6) f(t, u, x, y) ≥ ϕp( c3

M ) for (t, u, x, y) ∈ [δ, 1− δ]× [δc3, c3]× R2.

Theorem 3.1. Suppose (H1)–(H6) hold. There exist constants c1, c2, c3 such that

0 < c1 ≤ min
{ g(ξ, ξ)

1 + g(ξ, 0)
,

h(η, η)
1 + h(η, 1)

}
δc2, c2 < δc3 < c3 .

Then (1.1) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < c2 ≤ ‖u2‖ ≤ c3.
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Proof. Let Ω1 = {u ∈ K : ‖u‖ < c2}. For any u ∈ Ω1, we have u ∈ K and ‖u‖ ≤ c2.
Denote

‖Tu‖ = max
0≤t≤1

|Tu(t)| = Tu(t).

If t < σu, it follows from (H5) that

Tu(t) =
[ ∫ ξ

0

g(ξ, s)ϕq

( ∫ σu

s

w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds

+
∫ t̄

0

ϕq

( ∫ σu

s

w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds
]+

<

∫ 1

0

g(ξ, s)ϕq

( ∫ 1

0

w(τ)ϕp(
c2

N
) dτ

)
ds +

∫ 1

0

ϕq

( ∫ 1

0

w(τ)ϕp(
c2

N
) dτ

)
ds

=
c2

N
ϕq

( ∫ 1

0

w(τ) dτ
)
)
[
1 +

∫ 1

0

g(ξ, s) ds
]

≤ c2,

and if t̄ > σu, we have

Tu(t) =
[ ∫ 1

η

h(η, s)ϕq

( ∫ s

σu

w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds

+
∫ 1

t̄

ϕq

( ∫ s

σu

w(τ)f(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds
]+

<

∫ 1

0

h(η, s)ϕq

( ∫ 1

0

w(τ)ϕp(
c2

N
) dτ

)
ds +

∫ 1

0

ϕq

( ∫ 1

0

w(τ)ϕp(
c2

N
) dτ

)
ds

=
c2

N
ϕq

( ∫ 1

0

w(τ) dτ
)[

1 +
∫ 1

0

h(η, s) ds
]

≤ c2.

We have
‖Tu‖ < c2 = ‖u‖ for u ∈ Ω1. (3.1)

By using Schauder fixed point theorem, we can get the T has at least one fixed
point u1 in Ω1. That is, Tu1 = u1 and ‖u1‖ < c2. If ‖u1‖ = 0, we have u1 ≡ 0,
t ∈ [0, 1], which is a contradiction with (H2). Hence, 0 < ‖u1‖ < c2.

It follows that (1.1) has at least one positive solutions u1 such that 0 < ‖u1‖ < c2

from Lemma 2.9. Let
Ω2 = {u ∈ K : ‖u‖ < c3}.

For any u ∈ ∂Ω2, we have u ∈ K and ‖u‖ = c3 and δc3 ≤ u(t) ≤ c3 for δ ≤ t ≤ 1− δ.
By Lemma 2.4, we have

‖T ∗u‖ = T ∗u(σu) ≥ T ∗u
(1
2
)
.

If σu ≥ 1/2, it follows from (H6) that

‖T ∗u‖ ≥
∫ ξ

0

g(ξ, s)ϕq

( ∫ σu

s

w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds

+
∫ 1/2

0

ϕq

( ∫ σu

s

w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds
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≥
∫ 1/2

δ

ϕq

( ∫ 1/2

s

w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds

≥
∫ 1/2

δ

ϕq

( ∫ 1/2

s

w(τ)ϕp(
c3

M
) dτ

)
ds

=
c3

M

∫ 1/2

δ

ϕq

( ∫ 1/2

s

w(τ) dτ
)

ds

≥ c3.

If σu < 1/2, it follows from (H6) that

‖T ∗u‖ ≥
∫ 1

η

h(η, s)ϕq

( ∫ s

σu

w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds

+
∫ 1

1/2

ϕq

( ∫ s

σu

w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds

≥
∫ 1−δ

1/2

ϕq

( ∫ s

1/2

w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ
)

ds

≥
∫ 1−δ

1/2

ϕq

( ∫ s

1/2

w(τ)ϕp(
c3

M
) dτ

)
ds

=
c3

M

∫ 1−δ

1/2

ϕq

( ∫ s

1/2

w(τ) dτ
)

ds

≥ c3.

Hence, we can show that

‖T ∗u‖ ≥ c3 = ‖u‖ foru ∈ ∂Ω2. (3.2)

As in the proof of (3.1), we obtain

‖T ∗u‖ < c2 = ‖u‖ for u ∈ ∂Ω1.

Therefore, by using Krasnosel’skii fixed point theorem, T ∗ has at least one fixed
point u2 ∈ Ω2\Ω1 with c2 ≤ ‖u2‖ ≤ c3. Subsequently, we prove u2 is also a fixed
point of S.

If u ∈ Ω2\Ω1 and T ∗u = u, then u ∈ K, c2 ≤ ‖u‖ ≤ c3 and mint∈[δ,1−δ] u(t) ≥
δ‖u‖ ≥ δc2. By Lemma 2.4, Lemma 2.7 and the definition of T ∗, we obtain

(T ∗u)′(t) = ϕq

( ∫ σu

t

w(τ)f+(τ, u(τ), Au(τ), Bu(τ)) dτ) ds
)
, t ∈ [0, 1]

(T ∗u)′(σu) = 0, (T ∗u)′(t) ≥ 0 if t ∈ [0, σu], (T ∗u)′(t) ≤ 0 if t ∈ [σu, 1]

and
min

0≤t≤1
u(t) = min{u(0), u(1)} ≥ 0.

If min0≤t≤1 u(t) = u(0), when ξ ≤ σu, by (H3) and mean value theorem of integral,
there exists a ξ1 ∈ [0, ξ] such that

u(0) = Au(ξ) =
∫ ξ

0

g(ξ, s)u′(s) ds = g(ξ, ξ1)
∫ ξ

0

u′(s) ds ≥ g(ξ, ξ)(u(ξ)− u(0))

and

u(0) ≥ g(ξ, ξ)u(ξ)
1 + g(ξ, ξ)

≥ δg(ξ, ξ)
1 + g(ξ, ξ)

‖u‖ ≥ δg(ξ, ξ)c2

1 + g(ξ, ξ)
≥ δg(ξ, ξ)c2

1 + g(ξ, 0)
. (3.3)
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When ξ > σu, by (H3) and mean value theorem of integral, there exist ξ2 ∈ [0, σu]
and ξ3 ∈ [σu, ξ] such that

u(0) =Au(ξ) =
∫ σu

0

g(ξ, s)u′(s) ds +
∫ ξ

σu

g(ξ, s)u′(s) ds

= g(ξ, ξ2)
∫ σu

0

u′(s) ds + g(ξ, ξ3)
∫ ξ

σu

u′(s) ds

= g(ξ, ξ2)(u(σu)− u(0)) + g(ξ, ξ3)(u(ξ)− u(σu))

≥g(ξ, ξ)u(ξ)− g(ξ, 0)u(0)

and

u(0) ≥ g(ξ, ξ)u(ξ)
1 + g(ξ, 0)

≥ δg(ξ, ξ)
1 + g(ξ, 0)

‖u‖ ≥ δg(ξ, ξ)c2

1 + g(ξ, 0)
. (3.4)

If min0≤t≤1 u(t) = u(1), when η ≤ σu, by (H3) and mean value theorem of
integral, there exist η1 ∈ [η, σu] and η2 ∈ [σu, 1] such that

u(1) = −Bu(η) = −
∫ σu

η

h(η, s)u′(s) ds−
∫ 1

σu

h(η, s)u′(s) ds

= −h(η, η1)
∫ σu

η

u′(s) ds− h(η, η2)
∫ 1

σu

u′(s) ds

= −h(η, η1)(u(σu)− u(η))− h(η, η2)(u(1)− u(σu))

= h(η, η2)u(η)− h(η, η1)u(1) + (h(η, η2)− h(η, η1))u(σu)

≥ h(η, η)u(η)− h(η, 1)u(1)

and

u(1) ≥ h(η, η)u(η)
1 + h(η, 1)

≥ δh(η, η)
1 + h(η, 1)

‖u‖ ≥ δh(η, η)c2

1 + h(η, 1)
. (3.5)

When η > σu, by (H3) and mean value theorem for integrals, there exists η3 ∈ [η, 1]
such that

u(1) = −Bu(η) = −
∫ 1

η

h(η, s)u′(s) ds

= h(η, η3)(u(η)− u(1)) ≥ h(η, η)(u(η)− u(1))

and

u(1) ≥ h(η, η)u(η)
1 + h(η, η)

≥ δh(η, η)
1 + h(η, η)

‖u‖ ≥ δh(η, η)c2

1 + h(η, η))
≥ δh(η, η)c2

1 + h(η, 1)
. (3.6)

Hence, it follows

min
0≤t≤1

u(t) ≥ min
{ g(ξ, ξ)

1 + g(ξ, 0)
,

h(η, η)
1 + h(η, 1)

}
δc2 ≥ c1

from (3.3)–(3.6).
Therefore, if u ∈ Ω2 \ Ω1 and T ∗u = u, we have

c1 ≤ u(t) ≤ ‖u‖ ≤ c3.

It follows f(t, u(t), Au(t), Bu(t)) ≥ 0, t ∈ [0, 1] from (H4). Thus, T ∗u = Su.
That is, the fixed point of T ∗ on Ω2 \ Ω1 is also a fixed point of S. We can get
the boundary-value problem (1.1) has at least one positive solutions u2 such that
c2 ≤ ‖u2‖ ≤ c3. The proof is complete. �
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For the next theorem, we have a new assumption:
(H7) For each t ∈ [0, 1], g(t, s) and h(t, s) are monotone with respect to s.

We denote

Mg = max{max
t∈[0,1]

g(t, 0), max
t∈[0,1]

g(t, t)}, Mh = max{max
t∈[0,1]

h(t, 1), max
t∈[0,1]

h(t, t)}.

If (H7) holds, for each t ∈ [0, 1], when g(t, s) is decreasing with respect to s, there
exists a ξ̄1 ∈ [0, t] such that

|(Au)(t)| = |
∫ t

0

g(t, s)u′(s) ds| = g(t, 0)|
∫ ξ̄1

0

u′(s) ds| ≤ 2g(t, 0)‖u‖ ≤ 2Mg‖u‖,

and when g(t, s) is monotone creasing with respect to s, there exists a ξ̄2 ∈ [0, t]
such that

|(Au)(t)| = |
∫ t

0

g(t, s)u′(s) ds| = g(t, t)|
∫ t

ξ̄2

u′(s) ds| ≤ 2g(t, t)‖u‖ ≤ 2Mg‖u‖.

As above, if (H7) holds, we can show that

|(Bu)(t)| ≤ 2Mh‖u‖, for each t ∈ [0, 1].

As in the proof of Theorem 3.1, we obtain the following theorem under the assump-
tion taht f satisfies the following growth conditions:

(H8) f(t, u, x, y) ≥ 0 for (t, u, x, y) ∈ [0, 1]× [c1, c3]× [−2Mgc3, 2Mgc3]
× [−2Mhc3, 2Mhc3];

(H9) f(t, u, x, y) < ϕp( c2
N ) for (t, u, x, y) ∈ [0, 1] × [0, c2] × [−2Mgc2, 2Mgc2] ×

[−2Mhc2, 2Mhc2];
(H10) f(t, u, x, y) ≥ ϕp( c3

M ) for (t, u, x, y) ∈ [δ, 1−δ]×[δc3, c3]×[−2Mgc3, 2Mgc3]×
[−2Mhc3, 2Mhc3].

Theorem 3.2. Suppose (H1)–(H3) and (H7)–(H10) hold. Then there exist con-
stants c1, c2, c3 such that such that

0 < c1 ≤ min
{ g(ξ, ξ)

1 + g(ξ, 0)
,

h(η, η)
1 + h(η, 1)

}
δc2, and c2 < δc3 < c3

Then (1.1) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < c2 ≤ ‖u2‖ ≤ c3.

We have a new assumption:
(H11) For each t, s ∈ [0, 1], gs(t, s) and hs(t, s) are bounded.

We denote

Ng = max{max
t∈[0,1]

g(t, 0), max
t∈[0,1]

g(t, t), sup
t,s∈[0,1]

gs(t, s)},

Nh = max{max
t∈[0,1]

h(t, 1), max
t∈[0,1]

h(t, t), sup
t,s∈[0,1]

hs(t, s)}

If (H11) holds, for each t ∈ [0, 1], we have

|(Au)(t)| = |
∫ t

0

g(t, s)u′(s) ds|

= |(g(t, t)u(t)− g(t, 0)u(0))−
∫ t

0

gs(t, s)u(s) ds| ≤ 3Ng‖u‖.



12 M. JIA, P. WANG EJDE-2012/31

As above, if (H11) holds, we can show that

|(Bu)(t)| ≤ 3Nh‖u‖, for each t ∈ [0, 1].

As in the proof of Theorem 3.1, we can get the following theorem, and f satisfies
the following growth conditions:
(H12) f(t, u, x, y) ≥ 0 for (t, u, x, y) ∈ [0, 1]× [c1, c3]× [−3Ngc3, 3Ngc3]

× [−3Nhc3, 3Nhc3];
(H13) f(t, u, x, y) < ϕp( c2

N ) for (t, u, x, y) ∈ [0, 1] × [0, c2] × [−3Ngc2, 3Ngc2] ×
[−3Nhc2, 3Nhc2];

(H14) f(t, u, x, y) ≥ ϕp( c3
M ) for (t, u, x, y) ∈ [δ, 1−δ]×[δc3, c3]×[−3Ngc3, 3Ngc3]×

[−3Nhc3, 3Nhc3].

Theorem 3.3. Suppose (H1)–(H3) and (H11–(H14)) hold. Then there exist non-
negative constants c1, c2, c3 such that

0 < c1 ≤ min
{ g(ξ, ξ)

1 + g(ξ, 0)
,

h(η, η)
1 + h(η, 1)

}
δc2, and c2 < δc3 < c3

Then (1.1) has at least two positive solutions u1 and u2 such that

0 < ‖u1‖ < c2 ≤ ‖u2‖ ≤ c3.
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