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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
ANISOTROPIC ELLIPTIC SYSTEMS WITH NON-STANDARD
GROWTH CONDITIONS

GHASEM A. AFROUZI, NGUYEN THANH CHUNG, SOMAYEH MAHDAVI

ABSTRACT. In this article, we study the existence and multiplicity of solutions
for a class of anisotropic elliptic systems with non-standard growth conditions.
Our results extend the results in El Hamidi [9] to the anisotropic case.

1. INTRODUCTION

In this article, we are interested in the existence and multiplicity of solutions for
the anisotropic elliptic system

N

- Z 8961 (|83%u
'LTVI

Yo, (\311.1)
=1

u=v=0 on J9,

pi(“")ﬁﬁxiu) = Fy(z,u,v) in Q,

(1.1)

‘”(:”)_28“10 = Fy(z,u,v) in €,

where Q@ C RY (N > 3) is a bounded domain with smooth boundary 9, and
Piyqis i = 1,2,..., N are continuous functions on Q such that 2 < p;(z) < N,
2 < gi(z) < N for all x € Q, VF = (F,, F,) stands for the gradient of a C*-
function F : Q x R2 — R in the variable (u,v) € R2.

When p;(z) = p(x) for alli = 1,2,..., N, the operator involved in has simi-
lar properties to the p(z)-Laplace operator; i.e., Ap,yu == div(|Vu[P®)=2Vu). This
differential operator is a natural generalization of the isotropic p-Laplace operator
Apu := div(|Vu[P~2Vu), where p > 1 is a real constant. However, the p(x)-Laplace
operator possesses more complicated nonlinearities than the p-Laplace operator,
due to the fact that A,) is not homogeneous. The study of nonlinear elliptic
problems (equations and systems) involving quasilinear homogeneous type opera-
tors like the p-Laplace operator is based on the theory of standard Sobolev spaces
WkP(Q) in order to find weak solutions. These spaces consist of functions that
have weak derivatives and satisfy certain integrability conditions. In the case of
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nonhomogeneous p(x)-Laplace operators the natural setting for this approach is
the use of the variable exponent Sobolev spaces. Differential and partial differen-
tial equations with nonstandard growth conditions have received specific attention
in recent decades. The interest played by such growth conditions in elastic mechan-
ics and electrorheological fluid dynamics has been highlighted in many physical and
mathematical works. We refer to [0} [7} @, 12| 13| 14 [15].

In a recent article [8], Fragala et al. studied the anisotropic quasilinear elliptic
problem

N
- Z@m (|8rtu pﬁz@ziu) =\’ inQ,
i=1 (1.2)
u >0 in Q,
uw=0 on 01,

where Q C RY (N > 3) is a bounded domain with smooth boundary 9, p; > 1
for alli = 1,2,...,N and p > 1. Note that if p;, = 2 for all i = 1,2,..., N then
problem reduces to the well-known semilinear equation —Au = AuP~!. By
proving an embedding theorem involving the critical exponent of anisotropic type,
the authors obtained some existence and nonexistence results in the case when
p > py = max{p1,pa,...,pPN} Or p < p_ = min{py, pa,...,pn}. The results in [§]
have been extended by A.D. Castro et al. [4], in which the authors study problem
in the case when p_ < p < py. In order to study the existence of solutions
for the above authors have found the solutions in the space VVO1 4 (Q) which is
defined as the closure of C§°(2) with respect to the norm

N
lally = 10s,ulp,
i=1

—

where p' =
1,2,...,N.

In [2, 3, 10, [11], V. Rédulescu et al studied when p;(z) are continuous func-
tions in Q, i = 1,2,..., N. The goal of this paper is to extend the original results
of El Hamidi [9] on elliptic systems with nonstandard growth conditions to the
anisotropic case. To our best knowledge, the present paper is the first contribution
in this direction. Regarding the elliptic systems with standard growth conditions,
the readers may consult the excellent survey article of D.G.by de Figueiredo [5].

Our paper is organized as follows: In section 2, we introduce the theory of gen-
eralized Lebesgue-Sobolev spaces and the generalized anisotropic Sobolev spaces,
in which we can seek the solutions of . In section 3, we will state and prove
the main results.

(p1,p2,-..,pN) and | - |, denotes the norm in LP#(Q) for all ¢ =

2. PRELIMINARIES

First, we recall some definitions and basic properties of the generalized Lebesgue-
Sobolev spaces LP(®)(Q) and W P(*)(Q) where Q is an open subset of RY. In that
context, we refer to the book by Musielak [I4], the papers by Kovécik and Rékosnik
[13] and Fan et al [6] [7]. Set

C+(Q) :={h;h € C(Q),h(x) > 1 for all z € Q}.
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For any h € C4(Q) we define h™ = sup, g h(z), h~ = inf g h(z). For any
p(z) € C (), we define the variable exponent Lebesgue space

LP@(Q) = {w : u is measurable real-valued function,/ Ju(z)|P® dx < 00}
Q

We recall the so-called Luxemburg norm on this space defined by

oy = inf {1 > 0; / 42 o) g < 1),

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many
respects: they are Banach spaces, the Holder inequality holds, they are reflexive
if and only if 1 < p~ < p¥ < oo and continuous functions are dense if p™ < oco.
The inclusion between Lebesgue spaces also generalizes naturally: if 0 < |Q] < oo
and p1,ps are variable exponents so that pi(z) < po(x) a.e. x € £ then there
exists the continuous embedding LPQ("‘”)(Q) — Lpl(’”)(Q). We denote by LP'(®)(()
the conjugate space of LP(*)(Q), where p(m) + = 1. For any u € LP(*)(Q2) and

v e LP'(®)(Q) the Holder inequahty

|/uvdm| < )|u|p )0l (@)

P (r)

holds.

An important role in manipulating the generalized Lebesgue-Sobolev spaces
is played by the modular of the LP(*)(Q) space, which is the mapping Pp(z)
L) () — R defined by

Pp(a) (1) = /Q ulP™ da.

If u € LP(®)(Q) and pt < oo then the following relations hold

provided [ul,) > 1 while
N
|u|£(w) < pP(J/’)( u) < |u|p(l (2.2)
provided |ul,,) < 1 and
|tn = ulp@) = 0 Ppa)(tn —u) — 0. (2.3)

Next, we define the space W&’p(z)(Q) as the closure of C§°(€2) under the norm
[ellpy = [Vtlp)-

We point out that the above norm is equivalent with the following norm

N

i=1
provided p(z) > 2 for all z € Q. The space (Wol’p(r (Q), ] - lpx)) is a separable
and Banach space. We note that if s € C;(Q) and s(z) < p*(x) for all Q then the
embedding

WP (Q) = L))
is compact and continuous, where p*(z) = Np(faz) if p(z) < N or p*(z) = oo if
p(z) > N.
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We introduce a natural generalization of the variable exponent Sobolev space
Wl’p(c”)(Q) that will enable us to study problem with sufficient accuracy.
Define 57 : © — R¥ the vectorial function p’' = (p1,ps,...,pn). We introduce the
anisotropic variable exponent Sobolev space, VVO1 P! (w)(Q), as the closure of C§°(Q2)
with respect to the norm

N

”uHﬁ(w) = Z |8$Lu

i=1

pi(z)-

Then WO1 P (I)(Q) is a reflexive and separable Banach space. In the case when p;
are all constants functions the resulting anisotropic space is denoted by WO1 P(Q),
where p'is the constant vector (p1,ps,...,pn). The theory of such spaces has been
developed in [4, §]. Finally, we introduce P,, P_ € RY and Pjrr, Pt P{,P” eR*
as
Py =(pf,p3,-08), P-=1.p2,- PN,

Pj_r = max{pf,p;, o ,p}}, Pt = max{p] ,p3,.--,Pnts

Py = min{pf,p%‘7 .. ,p?\}}, P~ =min{p; ,p3,---,Pn}
Throughout this paper we assume that

N

1
Y —>1 (2.4)
i=1 Pi
and define P* € R and P_ o, € Rt by
N
pPr = N ) P—,oo:maX{Pjvpj}'
S

We recall that if s € C;(Q) satisfies 1 < s(x) < P_ o for all z € Q then the
embedding Wol’pu)(Q) — L*®)(Q) is compact, see for example [IT, Theorem 1].
For (u,v) and (p,9) in W = Wol’p(x)(Q) X Wol’qm(Q), let

F(u,v) ::/QF(:U,u,v)dx.

Then
f/(uvv)<@a "l}) = D1.7-'(u7v)(gp) + sz(uav)(i/}),
where
le(u,v)(go):/QFu(x,u,v)godx, Dg]:(u,v)(w):/QFv(x,u,v)@bdx.

The Euler-Lagrange functional associated to system (|1.1)) is

N N
1 1
J(u,v) = E /Q |0, u|P @) da + E /Q —— [0z, v qj(w)dx—/QF(x,u,v)dx.
i1 i=1

pi(z) ()

It is easy to verify that J € C1(W,R) and (u,v) € W is a weak solution of system
(1.1)) if and only if (u,v) is a critical point of J. Moreover, we have

J'(u,v)(p,9) = D1 J(u,v)(¢) + DaJ (u,v) (1)), (2.5)
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where

N
DuT,0)(@) = 3 [ (00 20,00, pdn = DiF (. 0)(e),
=1

N
Do) =Y [ o0

Let us choose on W the norm || - || defined by

qi(w)*aniuaziwdw — Do F (u,v) ().

1w, v) || := max {[|ull 5y, el g }-
The dual space of W will be denoted by W* and || - ||« will stand for its norm.
Therefore,

1" (u, 0) [l = || D1 (u, v)]

*,p(x) + ||D2J(U, U) |*7q'(;r)a
where || - ||, 5z) (respectively || - ||, g(z)) is the norm of (Wol’ﬁ(x) (Q))* (respectively

(Wy T ()"

3. MAIN RESULTS
Before stating our results, we introduce some natural growth hypotheses on the
right-hand side of system (1.1):
(F1) There exists C > 0 such that
F(z,s,t) < C(1+ |s|*® 4 [¢A1(®) 4 |g]o2(@) g B2(a))
for all (z,s,t) € Q x R?, where o, 8; € C4(Q) and P < a; <of <P,
Qf <87 <Bf <Q,i=1,2 and “2& 4+ B2 <1 for all w € O;
(F2) There exist constants R > 0, 6; > P} and 65 > QT such that
t
0< F(x,s,t) < iFs(ac,s,t) + —Fi(x,s,t)
01 02
for all (z,s,t) € Q x R? with |s|% + |¢|% > 2R;
(F3) F(x,s,t) = 0<|5|PI + |t|Qi) as (s,t) — (0,0) uniformly with respect to
x € Q.

It should be noticed that from the condition (F1), we have P_ o, = max{P*, P*} =
P*. Thus, if s € C(Q) satisfies 1 < s(z) < P* for all z € Q then the embedding

Wol’ﬁ(z)(Q) < L*®)(Q) is compact. Similarly, if s € C, (Q) satisfies 1 < s(z) < Q*
for all z € Q then the embedding Wol’(j(x)(Q) s L*@)(Q) is compact.

Theorem 3.1. If the function F satisfies the condition
[F(2,5,8)] < e (14 [s] ) + g 2)

for all (x,5,t) € Q x R2, where a3, B3 € C(Q) are two functions satisfying 1 <
az(z) < min{P~,Q_} and 1 < f3(z) < min{P~,Q_} for all x € Q, then system
(1.1) has a weak solution.

Proof. From the condition on F, using the Holder inequality and the Sobolev type

embeddings, we can show that the functional J is weakly lower semi-continuous in
W. We will show that J is coercive. Indeed, let {(um,v,)} € W be such that
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(U, vm)|| — o0 as m — oco. Without loss of generality, we may assume that
1%l 5z) = |vmllg(z). Hence, using the Sobolev type embeddings, we have

Um7’l)m Z/Qp |azrlum|pl(1 dx + Z/ |8®1Um|ql(x)d$

- / F(x,upm, vy)de

+Z/ |0, U, pl(m)dx—k /|3vam
P "" i=1

+ i=1

—cl/ |um|0‘3(m)da§—cl/ |Um\ﬂ3(m)dx—cl\9|
Q

8x.um pi(I)dm —C / (Um O¢3+ + U, an)dx
L3 [ [0l [ (et

+ =1

fcl/ (|”um|3;r +|vm|’83_)dxfcl|(2|
o 5 / 1Ot

+ i=1

() 1

| \/

\ V

| V

() a; ag
Pilt) dy — CQ(”umHﬁ(x) + Hum”ﬁ(@)

= es(llomll Gy + lomllZg,y ) = 1192,

where || denotes the measure of ().
For each i € {1,2,...,N} and m € N, we define

PE i [0, tmlp, @) < 1,
P if |a$ium|pi($) > 1.

QG om =

)

Using (2.1]), (2.2) and some simple computations, we infer that for any m, we have
im

N
pi(®)
| 1ol o2 32 Omml

N
N
>3 Oetnlyny = 3 (1Onmly ~ Bl )
i=1

{irim=PF}

SN 10ty \ P2
>N( i=1 170 B s ) - N
= N

P
_ Hum”ﬁ(w)
NP:fl

— N.

Thus, we obtain

Pz
1 ||Um||5(x)
I (imsvm) = o (2 = N) = o (luml sy + lumll3) )

= s (lomll ) + lomlli ) = 1l

q(z)
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||Um|| 5 () -
2 o~ (Il + o)

— ca(lomllginy + lomllgsy) — e

By the definition of the norm on W, we have |[(tm,vm)| = [[tmllz@) — oo as
m — oo. The above inequality and the assumptions on ag, (3 imply that J is
coercive and thus, J has a minimum point (u,v) € W and (u,v) is a weak solution
which may be trivial of problem . (Il

Theorem 3.2. Assume that the conditions (F1)-(F3) are satisfied. Then syste
(1.1) has at least one nontrivial weak solution.

To prove Theorem [3.2] we will use the mountain pass theorem. We need to verify
the following lemmas.

Lemma 3.3. Let {(um,vm)} be a Palais-Smale sequence for the Euler-Lagrange
functional J. If the condition (F2) is satisfied then {(wm,vm)} is bounded.

Proof. Let {(tm,vm)} be a Palais-Smale sequence for the functional J. This means
that J(um, vm) is bounded and ||J' (um, vm )|« — 0 as m — oco. By the condition
(F2), there exists ¢ > 0 such that for all m,

¢ > J(um,Um)

72/ |am,um +Z/ |axlvm

|31ium‘pi(x) U
Z/Q(ZW_WF (x,um,vm)>dw

pi(z)

qi (

dx — / F(z,upm, vm)dx
Q

i=1
N
|0, 0 |,
Heiiml = Tmp dr —
+\/Q (; (Iz(x) 0, v(x7umavm)) X — Cs,

where c5 is a positive constant. Then,

c> ( Z/ . pi(z) da:+< Z/ |02, Vm,
/ (Z\@mlu pi(@) _ | F,(z, um,vm)um)dm
=1
i/ Z‘a Vi |qz(90) (2, U, Uy )V m)dm—65 (3.2)

>(Lfi)2/|8 U pi(m)dz+(11)§:/|5 v
“\PF =y Qf 6/ &= Jo "

1
- EHDIJ(UWHUm)”*,ﬁ(fv)'numHﬁ(z)

(%) gy

ai(2) g

1
- g”DQJ(umvvm)”*,(T(JC)'HUm”rj(m) —C5
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Now, suppose that the sequence {(u,, v, )} is not bounded. With loss of generality,
we may assume that |[um||l5z) > |vmllg@) and [[umll5e) > 1 for all m. Then, by

(3-2),
> (L (@)
c> (—+— |8$7u pi dx—l—( |8z7v
P+
*ﬁ(x)”“m”ﬁ( HD?J(umavm)H*q HUqu(x —Cs

- inDlJ(um,vm)
( - ) Z |6“’1um|p (z)

1
- <EHD1J(uma Um)”*,ﬁ(w) + @HDQJ(Uma Um)”*ﬁ(w)) ||um||ﬁ(a:) — Cs.

Using (3.1)), we have

Pz
z> (i _ i) ||U’VVL||5(1)
“\PH 6/ NPT

1 1
= (GNP 7, v gt + 11 D2T (o, ) g )il = e

qi(z) dx

But this cannot hold true since P~ > 1, 6; > P and ||(um, vn) || = [[tim || z) — 00
as m — oo. Hence, the sequence {(um, v )} is bounded in W. |

In the following lemma, we show every bounded Palais-Smale sequence for the
functional J contains a convergent subsequence.

Lemma 3.4. Let {(tm,vm)} be a bounded Palais-Smale sequence for the func-
tional J. If the condition (F1) is satisfied then {(tm,vm)} contains a convergent
subsequence.

Proof. Let {(tum,vm)} be a bounded Palais-Smale sequence for the functional J.
Then there is a subsequence, still denoted by {(um,v,m)} which converges weakly
in W to a function (u,v) € W. Then J'(tp,, vy) — 0 in W* as m — oco. Thus, we
have

P =20 (D, Uy — O, 1) dit

N
' (my Om) (U, — 1, 0) = Z/ |0, U
=179

- / Fou(z, tm, vm) (U, — w)dx
Q

and

6@ =29 0, (D, U — O, v)dx

N
' (s 0 ) (0, 0y, — ) = Z/ |02, Vm
=179

f/E,(z,um,vm)(vmfv)dx,
Q

which tends to 0 as m — co. -
On the other hand, let a3, B2 be two continuous and positive functions on £

such that N
oa(w) + 0a(z) | Ba(2) + Pa(2)

P o =1 forallze Q.
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Using the Young inequality, we obtain

ag(z)P* B2(2)Q*

|5|°2@) |¢|P2(2) < |s|TmETFE® 4 |t B@rhe = |s|[* @) 4 [¢f@)

where
as(x)P* . Bo(z)Q* .
on(r) = — 2O e gy @O
az(x) + oz () Ba(r) + fBa()
for all z € Q. From (F1), we can obtain that there exists ¢; > 0 such that
F(25,0)] < 7 (14 [s] @) 4 [ 4 [5]240) 4 1))

for all (z,s,t) € Q x R2. From this inequality, using the reflexivity of the spaces,
the boundedness of the sequences and the Holder inequality, we can show that

lim Fu(x, tm, vm) (U, —u)dz =0,

lim Fy(x, U, V) (U, — v)dx = 0.
m— 00 Q

Therefore,

N
lim E /|5Iium
m—00

=179

N
lim " / 10,0 |7 @) 720, 00 (O, U, — D, v)da = 0. (3.4)
m—00 4 1J/0

1=

Since {u,,} converges weakly to u in Wol’ﬁ(CE)((l)7 by (3.3), we find

N
Jim 3 [ (v

1=

P20 Ay — O, u

piu)fzamiu) (D, U — O, u)dz = 0.

Next, we apply the inequality (see [16])

(€26 = ") - (€ =m) 2 27"|¢ —n[", €&neRY, (3.5)
valid for all r > 2. Relations and show actually {u,,} converges strongly
to u in W, P (I)(Q). Similarly, from we conclude that {v,,} converges strongly
to v in Wol“i(m) (Q). Thus, {(um,vm)} converges strongly to (u,v) in W. O

Proof Theorem[3.2 Let us show that the functional J satisfies the conditions of the
mountain pass theorem in [I]. By Lemmas3.3|and J satisfied the Palais-Smale
condition in W.

First, let s € C+(Q) and function vector 7= (ry,72,...,7y) be such that s(x) <

R_ - in Q. Using the continuous embedding Wol’F('r)(Q) — L*®)(Q), we deduce

that there exist 81,82 € (0,1) such that for all w € Wy ™) (Q) with [Jw|s) < 01 it
follows that [lwl|s(z) < d2.
For (u,v) € W with ||(u,v)|| < 1, using the Young and Holder inequalities, the

fact that ("Q(x)Pt&E(x) + 52(9”)6;23;(%) =1 for all z € Q, it follows that

/ |u‘az(w)|v|ﬁz(w)dw
Q
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P* Qr
(|u|®2 @) 2Tz _ (Jv]P2(@)) B2 +5a ) —~
<[ ( T (an(a) + () + S (Ba) + () ) da
Q P Q*
az () % B2(x) %
< (|u| ) 2@ a3 (@) dx 4 (|v| )a2< )+82(2) do
Q Q
< 1 1 o2 (x) ﬁ
< (( P )+ + ( o )+)“(|U| )ez 2 ap(e)+ag () |1|r32(x(>;§2‘<z>
as(z)+as(2) B2 (2)+ B2 (2) = -
1 1 et
Ba(x P _
L s o) [l sy [Heaeme
B2 () + B2 (z) az(@)+az(x) @ -

o [ (o o)
Q
< o (Ilullgz,y + 012, ).

On the other hand, assuming (F1), Wol’ﬁ(z)(Q) — LPI(Q) and Wol’q(m)(Q) —
Lerr(Q). Then there exist c¢19 > 0 and c¢17 > 0 such that

\u|P++ < c1o|ull 5y, for all u e Wol’ﬁ(w)(Q),
|U|Qjrr < e11]v]|g(z), for all v € W(}’q(w)(Q).

Let € > 0 be small enough such that
P 1 Q+ 1
— e < o
2QT N9+

By (F1) and (F3), there exists a constant c(e) > 0 such that
(e, 5,1)] < elfsl T+ [£95) + e() (18] 4 17 + 5|2 [t2)) - (3.6)
for all (z,s,t) € QxR?. For [|(u,v)| < 1 sufficiently small, we have [Ju/z,) < 1 and

lv]|gzy < 1. For such an element u we obtain |0y, ulp, ) < 1 for alli=1,2,..., N.
Using ([2.1) and some simple computations, we obtain

N N + N P
Z/Q Ol P 2 |00 ulyi gy 2 D 100w
i=1 1=1 i=1

pi(z)

N +
> N(Zi:l |?\x]iu‘Pi(1))P+ (3.7)
HUHZ?
NPifl
Similarly, we deduce that

Qf
H )

Z/ |0, 0|9 da ot (3.8)
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Combining relations and (3.8)), we obtain
qi(x)

pi(
/ |517u Z |C{)Ldzf/F(x,u,v)dx
pEe) ai(x) Q

Jull 2 ||UH
> pl@) f) | P Y — |U|Qid$
PINP -1 Q+NQ -1

—efe) [ (e ol + |u|a2<$>|v|"2<””)dx
Q

P+ Q+
lallss, IS,
T prNPIL T QfNeEt

= () (Jlully,) +||v||q(w + llullsz, + 0122,

Qfy 1@t
C10 || ||p(I) 6011+HU||§(J;)

P{ T
HUII,;(I) ”U”(j‘( )

2P+NPI71 2Q+NQ171
=) (Jlully, + Il + lullgg) + Il )-

Since o > Pj_r and §; > Qi, 1 = 1,2, there exist r € (0,1) and § > 0 such that
J(u,v) > 6 > 0 for any ||(u,v)|| = r.

On the other hand, we have known that the assumption (F2) implies the following
assertion: for every = € Q, s,t € R, the inequality

F(z,5,t) > m(\s\fh + |2 — 1) (3.9)

holds, see [9, page 38].
For (ug,vo) € W\{(0,0)} and ¢ > 1, we have

a t pz(m) 812 t (I1(7:)
J(tug, tvg) = Z | pu(0| / O tool®™ U0| —/F(x,tuo,tvo)d;c
=179 g

tP+ N
< — / |8751u0

- Clgtgl / |u0|91da§ — 612t02 / |’U0|02d1‘ — (C12.
Q Q

%) gy

o 5 /m

Since 6; > Pj and 0y > Qi, J(tug,tvg) — —oo as t — +oo. Moreover, J(0,0) =
0, considering Lemmas and we obtain that the functional J satisfies the
conditions of the mountain pass theorem. So J admits at least one nontrivial critical
point and thus system has at least one nontrivial weak solution. ([

Next, we prove under some symmetry conditions on the function F' that system
(1.1) possesses infinitely many nontrivial weak solutions.

Theorem 3.5. Assume that the conditions (F1), (F2) are satisfied, and F(z,s,t)
is even in s,t. Then system (1.1]) possesses infinitely many (pairs) of solutions with
unbounded energy.
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Because I/VO1 P (x)(Q) and VVO1 ’5(3”)((2) are reflexive and separable Banach spaces,
then W and W™ are too. There exist {e;} C W and {ej} C W* such that

W =spanfej:j=1,2,...}, W"=span{e:j=1,2,...},

1 ifi—
ene)) =9 7
0, if¢#j,
where (-, -) denoted the duality product between W and W*. For convenience, we
write X; = span{ej}, Y = @?lej, Zy = @32, X;. In our arguments, we will use
the following Fountain theorem.

Lemma 3.6 ([I7, Fountain theorem]). Assume that X is a separable Banach space,
I € CY(X,R) is an even functional satisfying the Palais-Smale condition. More-
over, for each k = 1,2, ..., there exist p, > r, > 0 such that

(A1) MaX{yeYy: |lull=pk} I(u) <0;

(AQ) inf{ueZk: llull=rs} I(u) — +o0 as k — oo.
Then I has a sequence of critical values which tends to +oo.

For every a > 1, u,v € L*(Q2), we define |(u,v)|, := max{|ulq, |v],}. In the
assumption (F1), let az(z) and B2(x) be two continuous and positive functions on
2 such that

az(z) 4 as(x) + Ba(a) + Bo() =1forallz € Q.

P Q*
Set . B
i (02() +02(2) Ba(@) + Palw) o
¢ a;eﬂ{ P* ’ Q* a1 (), Bi( )}, (3.10)
be=min {SRESIEE, BT ai@), u(a)} (31)

Then we obtain the following result whose proof can be found in [9].
Lemma 3.7 ([9]). Denote
Cr = sup {[(w,0)]a : [[(uw,0)[[ =1, (u,0) € Zy}.
Then limg_, o, Cy, = 0.
Now, we are in the position to prove Theorem [3.5]

Proof Theorem[3.5, It suffices to show that J has an unbounded sequence of critical
points. The proof is based on the Fountain theorem. According to the assumptions
on F, Lemmas and J is an even functional and satisfies the Palais-Smale
condition. We will show that if k is large enough, then there exist py > rr > 0 such
that (A1) and (A2) hold.

It is clear that for every v € Cy (Q), w € LY®)(Q), there exists £ € © such that

[ 1wl @z =l
Q T

For any (uk,vr) € Z, |urllpe) > 1 and |[vgllgm) > 1 and [[(ug, vx)|| = 7& (rp will

be specified below), we have
6 qi (@ )
+Z/ ‘ Uk' —/ F(x,ug,v)dz
Q

z/

17z kT
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P+Z/ |0 uk|pl(x)dx+—2/ |0y vk|ql(“’)da:

+ =1 +11

N (R R R e R T e P R
Q

o
lJrll 5 v kllq( (
. - a1 (¢ P1(Es)
> e (o ) g (B2 ) 2~
— clul2 ) — clun 52— el9),

where &F, €5, n¥,nk € Q and || denotes the measure of (2. Therefore,

- Q-
el vkl ! .
J(ug, vp) > }f(w - 1) -—c g |7 — cygfugl )
PINFP-71 QIN9-——
k k
— caalur )3 — eiglop 1) — ey
1

> min{P~,Q”} _ C a1 (€9
2 maxpr, oty e vl ex3(Cil (e v )

— c13(C| (g, o) )P ) = 15 (Cil| (g, vr) )40

— c13(C | (g, 03) )1 5) — 1
1

> -
~ max{P],Qf}
where a, b are defined by (3.10) and (3.11)). At this stage, we fix 71 as follows:

(e, 0 [P 9=F — 10 G| (e, o) | — s,

1 —L
T = (emmin{P_Q@_ 1) 5 100 as k — +oo.
F <2c14c;; max{P}, Qi})

Consequently, if || (uk, v )|| = 7% then

1
J(up,vp) > ————
(e vr) 2 2max{P},Q¥}

From (F2), we have F(z,s,t) > c1a(|s|? +t|% — 1) for every x € Q and s,t € R.
Therefore, for any (u,v) € Y;\{(0,0)} with [|(u,v)]] = 1 and 1 < p = t; with
tr — 400, we have

N N
J(tpu, tgv) = Z/ |0t Pi(@) g 4 Z/ |0x; trv

Q+ N
< P_ /\(%Zupl(x dz+— /|3 )

— Clgtzl/ |u|91da: — Clgtzz/ |v|92dx+012.
Q Q

Since 6; > Pjr'r and 0, > Qi and dim(Yy) = k, it is easy to see that J(txu, txv) —
—o0 as k — +oo for (u,v) € Y. This implies

max{J(u,v) : || (u, v)[| = px, (u,v) € Y3} <0

(e, vg) [P 9= — €44 — 400 as k — +oo.

@)y — / F(z,tru, tyv)de
Q

ai() o
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for every pjy large enough. Then the proof of Theorem [3.5] is completed by the
Fountain theorem. (|
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