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MULTIPLE SOLUTIONS FOR SEMILINEAR ELLIPTIC
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Dedicated to the memory of Professor Riichi Iino

Abstract. We consider the elliptic problem with nonlinear boundary condi-
tions:

−∆u + bu = f(x, u) in Ω,

−∂νu = |u|q−1u− g(u) on ∂Ω,

where Ω is a bounded domain in Rn. Proving the existence of solutions
of this problem relies essentially on a variational argument. However, since
Lq+1(∂Ω) ⊂ H1(Ω) does not hold for large q, the standard variational method
can not be applied directly. To overcome this difficulty, we use approximation
methods and uniform a priori estimates for solutions of approximate equations.

1. Introduction

We consider the heat equations with nonlinear boundary conditions of the form:

ut = ∆u + bu, (x, t) ∈ Ω× (0, T ),

−∂νu = β(u), (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where ∂ν denotes the outward normal derivative on the boundary, which appears in
models describing diffusion systems governed by some radiation law on the bound-
ary. The standard boundary conditions for heat equations are usually assumed to
be Dirichlet-type, Neumann-type or mixed-type boundary conditions. This con-
vention could be meaningful when the total system on the boundary is controlled
so as to keep the prescribed boundary conditions. However when the whole system
is very large, it would be no more possible to control the flux of heat through the
boundary. For such a case, the boundary condition is expected to be posed by con-
sidering the heat radiation law on the boundary. The typical example of this kind
of radiation law on the boundary is derived from the so-called Stefan-Boltzmann’s
radiation law, which says that the heat energy radiation from the surface of the

2000 Mathematics Subject Classification. 35J20.
Key words and phrases. Nonlinear boundary conditions.
c©2012 Texas State University - San Marcos.
Submitted November 17, 2011. Published February 23, 2012.

M. Ôtani was supported by grant 21340032 from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

1



2 J. HARADA, M. ÔTANI EJDE-2012/33

body J is given by J = σ(T 4−T 4
s ), where σ > 0 is a physical constant, T is the sur-

face temperature and Ts is the outside temperature. Thus Stefan-Boltzmann’s law
gives an example where β(u) is a monotone increasing function. For this case, the
unique solvability for parabolic equations(1.1) is completely covered by the abstract
(subdifferential operator) theory by Brézis [1].

However, Stefan-Boltzmann’s radiation law is valid only for an idealized situa-
tion, in other words, the radiation law rulling real situations might be perturbed
from Stefan-Boltzmann’s law. In particular, if we consider the case where the heat
flux radiated from the surface is reflected by its surrounding materials, then we must
consider also the absorption effect. For such a case, β(u) could not be a monotone
increasing function anymore, but monotone increasing with small perturbation; i.e.,
the boundary condition should be altered by

−∂νu = β(u)− g(u) x ∈ ∂Ω,

where β(u) is a monotone increasing function and g(u) is its perturbation. In fact,
such a kind of non-monotone radiation-absorption models are already proposed
from the view point of engineering (see e.g. [2]).

In this article, we are concerned with such non-monotone radiation-absorption
models and study the stationary problem of a general form:

−∆u + bu = f(x, u) in Ω,

−∂νu = β(u)− g(u) on ∂Ω,
(1.2)

where b > 0 and Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω. In [8],
the existence and the H2-regularity of solutions of (1.2) is studied for the special
case f(x, u) = f(x) under the following conditions on β(u) and g(u).

(A1) β(u) is a continuous and monotone increasing function,
(A2) lim|u|→∞ β(u)/u = ∞,
(A3) g(u) is a locally Lipschitz continuous function and there exist θ ∈ (0, 1) and

c1 > 0 such that |g′(u)| ≤ θβ′(u) + c1 ∀u ∈ R1,
(A4) there exists c2 > 0 such that |uβ(u)| ≤ c2(j(u) + u2 + 1) for all u ∈ R1,

where j(u) =
∫ u

0
β(s)ds.

The following results were presented in [8].

Theorem 1.1. Let (A1)–(A3) be satisfied and let f(x, u) = f(x) ∈ L2(Ω). Then
there exists a solution u ∈ H2(Ω) of (1.2). Moreover there exists c > 0 such that
every solution u of (1.2) belonging to H2(Ω) satisfies

‖u‖H2(Ω) ≤ c
(
1 + ‖f‖L2(Ω)

)
. (1.3)

Furthermore the elliptic estimates for weak solutions of (1.2) is also shown in
[8].

A function u ∈ {u ∈ H1(Ω);β(u), g(u) ∈ L1(∂Ω)} is said to be a weak solution
of (1.2) if u satisfies∫

Ω

(
∇u · ∇φ + buφ

)
dx +

∫
∂Ω

(
β(u)− g(u)

)
φ dσ =

∫
Ω

fφ dx (1.4)

for any φ ∈ H1(Ω) ∩ L∞(Ω). We set j(u) =
∫ u

0
β(s) ds and

D(j) = {u ∈ H1(Ω); j(u) ∈ L1(∂Ω)}.

Theorem 1.2. Let (A1)–(A4) be satisfied and let f(x, u) = f(x) ∈ L2(Ω). Then
every weak solution u of (1.2) with u ∈ D(j) satisfies (1.3).
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In this article, we consider the case where f(x, u) satisfies the following condi-
tions.

(B1) f(x, t) ∈ C(Ω̄× R1; R1),
(B2) thee exist p ∈ (1, 2∗) and c > 0 such that |f(x, u)| ≤ c(1 + |u|p−1), where

2∗ =

{
∞ if n = 1 or 2,
2n

n−2 if n ≥ 3.

(B3) limu→0
f(x,u)

u = 0 uniformly on x ∈ Ω,
(B4) there exist µ > 2 and r > 0 such that 0 < µF (x, u) ≤ uf(x, u) for |u| ≥ r,

where F (x, u) =
∫ u

0
f(x, s)ds.

A typical example of a function satisfying(B1)–(B4) is f(x, u) = a(x)|u|p−2u with
a(·) ∈ L∞(Ω) and 1 < p < 2∗.

The function β(u) is assumed to have the power nonlinearity β(u) = |u|q−2u;
i.e., we are concerned with the equation

−∆u + bu = f(x, u) in Ω,

−∂νu = |u|q−2u− g(u) on ∂Ω.
(1.5)

We further impose the following conditions on g(u).

(A5) limu→0
g(u)

u = 0.
(A6) g(u) is a continuous function and for any ε > 0 there exists cε > 0 such

that
|g(u)| ≤ ε|u|q−1 + cε ∀u ∈ R1.

Then our existence results are stated a follows.

Theorem 1.3. Let (B1)–(B4), (A5) and (A6) be satisfied and let 2 < q < µ. Then
there exists a nontrivial weak solution u of (1.5) belonging to H1(Ω) ∩ L∞(Ω).

Theorem 1.4. Let the assumptions in Theorem 1.3 be satisfied and let f(x, u) and
g(u) be odd in u. Then there exist infinitely many weak solutions {uk}∞k=1 of (1.5)
in H1(Ω) ∩ L∞(Ω) satisfying

lim
k→∞

I(uk) = ∞.

Here I(u) is a functional associated with (1.5) defined by

I(u) =
∫

Ω

(1
2

(
|∇u|2 + bu2

)
− F (x, u)

)
dx +

∫
∂Ω

(1
q
|u|q −G(u)

)
dσ, (1.6)

where G(u) =
∫ u

0
g(s) ds.

2. Proofs of main theorems

Proof of Theorem 1.3. We rely on the variational approach (mountain pass lemma)
to prove the existence of nontrivial solutions of (1.5). However the functional I(u)
given by (1.6) may not be well defined on H1(Ω) in general, since the functions
appearing in the boundary integral might not be integrable for any u ∈ H1(Ω). To
cope with this difficulty, we first introduce the following approximation problems:

−∆u + bu = f(x, u) in Ω,

−∂νu = βk(u)− gk(u) on ∂Ω,
(2.1)
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where the approximation functions βk and gk for β and g are given by

βk(u) =


kq−1 u > k,

|u|q−2u |u| ≤ k,

−kq−1 u < −k,

gk(u) =


g(k) u > k,

g(u) |u| ≤ k,

g(−k) u < −k.

Then the functional Ik associated with (2.1) is

Ik(u) =
∫

Ω

1
2

(
|∇u|2 + bu2

)
dx +

∫
∂Ω

(jk(u)−Gk(u)) dσ −
∫

Ω

F (x, u) dx,

where jk(u) =
∫ u

0
βk(s) ds, Gk(u) =

∫ u

0
gk(s) ds. Since βk, gk ∈ L∞(R) and p ∈

(1, 2∗), it is clear that Ik is well defined on H1(Ω). From (A6), there exists r0 > 0
independent of k ∈ N such that jk(u)−Gk(u) > 0 for |u| > r0. Hence by (A5) and
the trace theorem, for any η > 0 there exists δ = δ(η) > 0 independent of k ∈ N
such that∫

∂Ω

(jk(u)−Gk(u)) dσ ≥ −η‖u‖2H1(Ω) ∀u ∈ {u ∈ H1(Ω); ‖u‖H1(Ω) < δ}.

Therefore, by (B3), there exists µ, ρ > 0 independent of k ∈ N such that

Ik(u) ≥ µ‖u‖2H1(Ω) ∀u ∈ {u ∈ H1(Ω); ‖u‖H1(Ω) = ρ}. (2.2)

Next we are going to check the (PS) condition. We note that for u ∈ H1(Ω),

Ik(u)− (∇Ik(u), u)
µ

=
(1
2
− 1

µ

) ∫
Ω

(
|∇u|2 + bu2

)
dx−

∫
Ω

(
F (x, u)− uf(x, u)

µ

)
dx

+
∫

∂Ω

(
jk(u)− βk(u)u

µ

)
dσ −

∫
∂Ω

(
Gk(u)− gk(u)u

µ

)
dσ,

where ∇Ik(u) denotes the Fréchet derivative of Ik(u). From (A6), for any η > 0
there exists cη > 0 such that

jk(u)− βk(u)u
µ

−
(
Gk(u)− gk(u)u

µ

)
≥

{(
1

q+1 −
1
µ

)
|u|q+1 −

(
η|u|q+1 + cη

)
if |u| ≤ k,(

1
q+1 −

1
µ

)
kq|u| − (ηkq|u|+ cη) if |u| > k.

Since 1 < q < µ− 1, by choosing η > 0 small enough, we deduce that∫
∂Ω

(
jk(u)− βk(u)u

µ

)
dσ −

∫
∂Ω

(
Gk(u)− gk(u)u

µ

)
dσ ≥ −cη|∂Ω|.

Therefore by (B4), there exists a constant CΩ depending on |Ω| and |∂Ω| such that(1
2
− 1

µ

) ∫
Ω

(
|∇u|2 + bu2

)
dx ≤ Ik(u)− (∇Ik(u), u)

µ
+ CΩ. (2.3)

Let {uj}j∈N be a sequence such that Ik(uj) → c and ∇Ik(uj) → 0 in (H1(Ω))∗

as j → ∞. From (2.3), the sequence {uj}j∈N is bounded in H1(Ω). Hence, there
exists a subsequence of {uj}j∈N denoted again by {uj}j∈N which converges to u
weakly in H1(Ω).
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Here we note the identity

(∇Ik(uj)−∇Ik(u), uj − u)

= |∇(uj − u)|2L2 + b|uj − u|2L2 +
(
f(x, uj)− f(x, u), uj − u

)
×

∫
∂Ω

(βk(uj)− βk(u), uj − u) dσ −
∫

∂Ω

(gk(uj)− gk(u), uj − u) dσ.

(2.4)

Furthermore, by Rellich’s compactnes theorem with (B2) and the trace theorem,
we obtain

f(x, uj) → f(x, u) strongly in L(p+1)/p(Ω),

βk(uj) → βk(u), gk(uj) → gk(u) strongly in L2(∂Ω).

Hence, by letting j →∞ in (2.4), we find that uj converges to u strongly in H1(Ω).
Thus it is verified that Ik satisfies (PS)-condition for any k ∈ N. Now we define

I0(u) =
∫

Ω

1
2

(
|∇u|2 + bu2

)
dx−

∫
Ω

F (x, u)dx. (2.5)

Since Ik(u) = I0(u) for u ∈ C∞
0 (Ω) and (B4) implies that there exist constants

γ1, γ2 > 0 such that (see [7])

F (x, ξ) ≥ γ1|ξ|µ − γ2 ∀x ∈ Ω, ∀ξ ∈ R1, (2.6)

it is easy to see that there exists φ0 ∈ C∞
0 (Ω) independent of k ∈ N such that

Ik(φ0) ≤ 0 = Ik(0).

Note that due to mountain pass lemma [7], there exists a critical value of Ik char-
acterized by

ck = inf
γ∈Γ

max
t∈[0,1]

Ik(γ(t)),

where Γ = {γ ∈ C([0, 1];H1(Ω)); γ(0) = 0, γ(1) = φ0}. Take γ(t) = tφ0 as a test
path in Γ for all k ∈ N, then we obtain

ck ≤ max
t∈[0,1]

Ik(tφ0) = max
t∈[0,1]

I0(tφ0) =: c∗, (2.7)

which implies the boundedness of {ck}∞k=1. Moreover, from (2.2) it is clear that for
k ∈ N,

ck ≥ µρ2.

Therefore, the critical point with the critical value ck gives a nontrivial solution of
(2.1). Let uk be a critical point of Ik with the critical value ck, then by using (2.7),
we can derive the H1-boundedness of {uk}∞k=1. In fact, taking u = uk in (2.3), then
from ∇Ik(uk) = 0, we have(1

2
− 1

µ

) ∫
Ω

(|∇uk|2 + bu2
k)dx ≤ Ik(uk) + CΩ ≤ c∗ + CΩ. (2.8)

Furthermore, we can derive the following L∞-estimates for uk.

Lemma 2.1. Let n ≥ 2. Then there exist c = c(n, p, g) > 0 and γ = γ(n, p) ≥ 1
such that any weak solution uk ∈ H1(Ω) of (2.1) with ‖uk‖H1(Ω) ≤ K satisfies

‖uk‖L∞(Ω) ≤ cKγ .
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Proof. Our proof is based on Moser’s iteration argument; see [4, Lemma 3.1] or [3,
Theorem 8.17]. Here we use the notation ‖u‖r = ‖u‖Lr(Ω) for r ∈ [1,∞]. From
(A6), we can choose R0 > 0 such that (β(u) − g(u))u ≥ 0 for |u| ≥ R0. We set
wk = max{uk, 0} and m0 = sup|u|≤R0

|g(u)|/|u|. Then we see that

(βk(uk)− gk(uk))wk ≥ −m0w
2
k.

Hence multiplying (2.1) by wα (α ≥ 1), we obtain

min(
4α

(α + 1)2
, b)‖w(α+1)/2

k ‖2H1(Ω) ≤
∫

Ω

wα
k F (x, uk)dx + m0

∫
∂Ω

wα+1
k dσ.

From (B2) and (B3), there exists c > 0 such that |F (x, u)| ≤ c(|u|+|u|p). Therefore,

min(
4α

(α + 1)2
, b)‖w(α+1)/2

k ‖2H1(Ω) ≤ c

∫
Ω

(
wα+1

k + wα+p
k

)
dx + m0

∫
∂Ω

wα+1
k dσ.

(2.9)
Furthermore, from the trace inequality, we obtain∫

∂Ω

wα+1
k dσ = ‖w(α+1)/2‖2L2(∂Ω)

≤
( ε

α + 1
)
‖∇w

(α+1)/2
k ‖22 + c

(α + 1
ε

)
‖w(α+1)/2

k ‖22.
(2.10)

Let p∗ = 2n/(n− 2) if n ≥ 3 and p∗ = 2p if n = 2. We choose θ ∈ (0, 1) such that
1/2p = θ/2 + (1 − θ)/p∗ and set κ = p∗/2 > 1. By the Hölder inequality and the
interpolation inequality, we have∫

Ω

wα+p
k dx ≤ ‖wp−1

k ‖p/(p−1)‖wα+1
k ‖p ≤ ‖wk‖p−1

p ‖wα+1
k ‖1−θ

κ ‖wα+1
k ‖θ

1.

By the Sobolev inequality and the assumption ‖uk‖H1(Ω) ≤ K, we see that∫
Ω

wα+p
k dx

≤ cKp−1‖wα+1
k ‖1−θ

κ ‖wα+1
k ‖θ

1

≤ c
(( ε

α + 1
)
‖wα+1

k ‖κ + K(p−1)/θ
( ε

α + 1
)−(1−θ)/θ‖wα+1

k ‖1
)

≤ c
(( ε

α + 1
)
‖w(α+1)/2

k ‖22∗ + K(p−1)/θ
( ε

α + 1
)−(1−θ)/θ‖wk‖α+1

α+1

)
≤ c

(( ε

α + 1
)
‖w(α+1)/2

k ‖2H1(Ω) + K(p−1)/θ
( ε

α + 1
)−(1−θ)/θ‖wk‖α+1

α+1

)
.

(2.11)

Hence, in view of (2.9), (2.10) and (2.11), taking ε > 0 small enough, we obtain

‖w(α+1)/2
k ‖2H1(Ω) ≤ cK(p−1)/θ(α + 1)ν‖wk‖α+1

α+1

for some ν ≥ 1. Therefore, from the Sobolev inequality, it follows that

‖wk‖α+1
κ(α+1) ≤ cK(p−1)/θ(α + 1)ν‖wk‖α+1

α+1.

By the same iteration argument as in the proof in [3, Theorem 8.17], we can show
that here exists γ > 0 such that

‖wk‖∞ ≤ cKγ‖wk‖2,
which assures the L∞-estimates for wk = max{uk, 0}. By the arguments similar to
those above, we can also derive the L∞-estimates for min{uk, 0}. Thus the proof
is completed. �
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For the case n ≥ 2, Lemma 2.1 and (2.8) assure that {uk}∞k=1 is bounded in
L∞(Ω). As for the case n = 1, (2.8) with the embedding H1(Ω) ⊂ L∞(Ω) as-
sures the boundedness of {uk}∞k=1 in L∞(Ω). Hence there exists A > 0 such that
‖uk‖L∞(Ω) ≤ A. Therefore if solutions uk are classical ones, then it is clear that by
the construction of βk and gk, we find that

βk(uk) = β(uk), gk(uk) = g(uk) for k > A.

Thus it is easy to see that uk with k > A satisfies (1.4) and gives the desired solution.
To verify this rigorously for uk ∈ H1(Ω)∩L∞(Ω), we prepare the following lemma,
which completes the proof of Theorem 1.3. �

Lemma 2.2. Let Ω be a domain in Rn such that the trace theorem in Lp(Ω) holds
true for some p ∈ [1,∞) and let u belong to W 1,p(Ω) ∩ L∞(Ω). Then u belongs to
L∞(∂Ω) and satisfies

‖u‖L∞(∂Ω) ≤ ‖u‖L∞(Ω).

Proof. We are going to apply the “L∞-energy method” developed in [5, 6]. Since
u ∈ W 1,p(Ω) ∩ L∞(Ω) assures that |u|r ∈ W 1,p(Ω) for all r ∈ [1,∞) and the trace
theorem works in Lp(Ω), we have

‖u‖Lps(∂Ω) = ‖|u|s‖1/s
Lp(∂Ω)

≤
(
Cp

{( ∫
Ω

sp|u|(s−1)p|∇u|pdx
)1/p

+
( ∫

Ω

(|u|s)pdx
)1/p})1/s

≤ C1/s
p s1/s‖u‖

s−1
s

L∞(Ω)

(
‖∇u‖Lp(Ω) + ‖u‖Lp(Ω)

)1/s → ‖u‖L∞(Ω) ,

as s →∞. Then the conclusion follows from [6, Lemma 2.2]. �

Proof of Theorem 1.4. We again consider approximation problems (2.1). Since g(u)
and f(·, u) are assumed to be odd functions, we can apply the symmetric mountain
pass lemma to obtain infinitely many solutions for approximation problems. In fact,
let < λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues of −∆ with homogeneous Dirichlet
boundary condition and let ei be the corresponding i-th eigenfunctions. We claim
that for a sufficiently large k0 ∈ N, there exist ρ > 0, α > 0 such that Ik(u) ≥ α
for all u ∈ V + := span {ek; k ≥ k0} with ‖u‖H1(Ω) = ρ. Indeed, by (B2) and the
interpolation inequality, we obtain

Ik(u) ≥
∫

Ω

(1
2
|∇u|2 + b|u|2

)
dx− C

∫
Ω

|u|pdx− C

≥ b̃‖u‖2H1 − C‖u‖r
L2‖u‖p−r

L2∗ − C

≥
(
b̃− C1λ

−r/2
k0

‖u‖p−2
H1

)
‖u‖2H1 − C2,

where b̃ = min(1/2, b), r
2 + p−r

2∗ = 1. Then since r = n(1 − p/2∗) > 0, taking

ρ =
√

2(C2 + 1)/b̃ and choose k0 ∈ N such that C1λ
−r/2
k0

ρp−2 ≤ b̃/2, we find that
Ik(u) ≥ 1 for all u ∈ V + with‖u‖H1 = ρ.

Now we put V − := span {ek; k < k0}, the orthogonal complement of V + in
H1

0 (Ω). Since Ik|V − = I0|V − and V − is finite dimensional, by virtue of (2.6), there
exists R > 0 independent of k ∈ N such that

Ik(u) ≤ 0 for u ∈ V − \BV −(R),
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where BV −(R) = {u ∈ V −; ‖u‖H1(Ω) < R}. Then by the symmetric mountain pass
lemma [7, Theorem 9.12], there exist infinitely many critical points {uj

k}∞j=1 of Ik

whose critical values {cj
k}∞j=1 are unbounded and characterized by

cj
k = Ik(uj

k) = inf
h∈Γ

max
u∈V −

Ik(h(u)),

where Γ = {h ∈ C(V −;H1(Ω));h is odd, h(u) = u if u ∈ V − \ BV −(R)}. Take
id ∈ Γ as a test path, then we obtain

cj
k ≤ max

u∈V −
Ik(u) = max

u∈V −
I0(u) =: c∗j ,

whence follows the boundedness of {cj
k}∞k=1. Hence the H1-boundedness of {uj

k}k∈N
follows from (2.8); i.e., there exists C such that

‖uj
k‖

2
H1(Ω) ≤ C

(
Ik(uj

k) + 1
)
≤ C(c∗j + 1).

Moreover from Lemma 2.1, we obtain the L∞-estimates for {uj
k}k∈N.

‖uj
k‖L∞(Ω) ≤ c(1 + c∗j )

γ/2 =: Aj .

Hence by the construction of βk and gk and Lemma 2.2, we note that for k > Aj ,

βk(uj
k) = β(uj

k), gk(uj
k) = g(uj

k).

Therefore, the critical point uj
k of the functional Ik with k ≥ Aj turn out to be the

critical points of I. Thus, we can find infinitely many critical points {uk}∞k=1 of I
whose critical values are unbounded, which completes the proof. �

Remark 2.3. (1) If we assume that g is a locally Lipschitz continuous function on
R, then every solution in H1(Ω) ∩ L∞(Ω) of (1.5) given in Theorems 1.3 and 1.4
belongs to H2(Ω). In fact, Since (A3) and (A4) are satisfied with β, g replaced by
βk, gk respectively, we can apply Theorem 1.2.

(2) In Theorems 1.3 and 1.4, if n = 1, then (B2) can be dropped while if n = 2,
then it suffices that |f(x, ξ)| ≤ c expϕ(ξ), with ϕ(ξ)ξ−2 → 0 as |ξ| → ∞; see [7].
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