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A NON-RESONANCE PROBLEM FOR NON-NEWTONIAN
FLUIDS

OMAR CHAKRONE, OKACHA DIYER, DRISS SBIBIH

ABSTRACT. In this article we study a highly nonlinear problem which describes
a non-Newtonian fluid in a specific domain (symmetric channel). This fluid
is subjected to pressure of known differences between two parallel plates. We
establish the existence and uniqueness of a weak solution. Our solution method
is based on a minimization technique when the nonlinearity is asymptotically
on the left of the first eigenvalue of the operator k-Laplacian.

1. INTRODUCTION

Let Q C R? be a bounded domain with boundary 9Q = I' = UL T;, where
'y = {0}x] —1,1[, T2 = {1} x] — 1,1] and T's, 'y are symmetrical to the z-axis,
see Figure . In the interior of this domain, a non-Newtonian fluid is subjected
to pressures of known differences between the two sides I'y and I's.

We note by u = (up, uz)” € (C2(Q) N CH())? and —Ayu = (—Aguy, —Apuz)?,
where —Agu; = —div(|Vu;|*~2Vu;) is the operator k-Laplacian i = 1,2 and 1 <
k < oo, which is a nonlinear operator, (if k& = 2, there is the usual Laplacian). Ay
has been used on Sobolev spaces by several authors we cite for example [3] [4], we
extend some results of existence and uniqueness relative to the first eigenvalue of a
Stokes problem. Let p € L?(Q2), we note §(x,vy,s1,52) = (g1(z,y, 51), g2(x, 5y, 52)) 7,
where (x,y)T € Q, (s1,52)T € R?, §€ C(Q x R2,R?) and f = (f1, f2)T € (C(Q))2.
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FIGURE 1. Geometry of channel

For a € R, we consider the nonlinear Stokes problem

0 .
—Apuq + *i =gi1(z,y,u1) + f1 inQ,

0
19) .
—Apuz + 37]:; = g2(z,y,u2) + f2 in Q,
. o Ouy Oug - .
leU—@‘Faiy—o 1nQ,
U (O7y) = ul(Ly) on [_L 1]7 (11)
’LLQ(O,?J) = Uz(l,y) on [717 1]7
(’)ul o 8’[1,1
E((ly) = %(171/) on [—1,1],
ou ou
k—20U2 _ k—2 942 _
Vua(0,) 2 520,9) = [V (L) 252 (1,y) on [-1,1],

p(1,y) — p(0,y) = —aon [—1,1].
We assume also the growth condition:
9i(z,y,8)] <cls|*! +d(z,y) Y(z,y)" €Q, Vs ER, (1.2)

where ¢ € R and d € L¥ (Q), with 1 + % = 1.

Note that the second member of depends on u and since the pressure
difference is constant between two parallel plates of the specific domain, we prove
that we can associate to an energy functional 1. So a critical point of ¥ is
a solution of (L.I). We denote by V the closure of V in the space (W'*(Q))?,
where V = {u = (ur,u2)? € (C1(Q))?|divu = 0,u;(0,y) = u;(1,y)on [~1,1] for
t=1,2and u=0o0n I's UT'y}. We want to extend the work done by Amrouche,
Batchi and Batina in the linear case with the Laplacian operator see [I], which
showed equivalence between the classical and variational problem, existence and
uniqueness of the solution in a linear case where f = g = 0. In this paper we
introduce the k-Laplacian operator to describe the movement of non-Newtonian
fluid with a nonlinear second member, the technique used for the resolution is a
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minimization and is completely different to that given in [T, 2 [6] @]. In the case
=0, g1(x,y,51) = As1|* 7251 and ga(z,y,51) = A|s2|* 252, we have established
in [5] that the first eigenfunction A; of is well defined, strictly positive and
characterized by A7 = sup{ [, [u1[* + |u2|*; [, [Vur|* + [Vus|¥ = 1,u € V}.

This article is organized as follows. In Section 2, we prove that u is a weak
solution of if and only if u satisfies a weak formulation independent of pressure
p. In Section 3, we introduce the first eigenvalue of the operator —ﬁku + Vp and
as an application, we prove the existence of solution where the primitive of the
nonlinear function § is asymptotically in the left of the first eigenvalue. In Section
4, we add a condition of monotony for the function g and we prove the uniqueness
of the solution, then we give an example of such a function g which satisfies the
conditions. Finally we give in Section 5 a conclusion.

2. WEAK FORMULATION OF (|1.1))

We establish the equivalence between the classical problem and weak formulation
of problem which is independent of pressure p, This allows us to find the existence
of the weak solution of (1.1) by a new method of minimization.

Definition 2.1. A classical solution of (I.1)) is a function (u,p)T € (C*() N
C1(Q))? x L*(Q) and Vp € (C(€2))? which verify (L.I).

Theorem 2.2. If (u,p)T is a classical solution of (1.1)), then

2
Z/ |Vui\k*2Vui.Vvi—a/
i=1 /0

—1

1

vl(O,y)dy:Aﬁ(x,y,u).v—i—/ﬂf.v Yo €V
(2.1)

Proof. If (u,p)T is a classical solution of (I.1)) where u = (uy,us)”, then for v =
(v1,v2)T € V, we multiply the first equation by vy, the second equation by vy of
(1.1) and we integrate on €2, we obtain

/Q*(Akm)m+/Q*(Aku2)vg+/g(Vp).v:/Qg’(:c,y,ul,uz),UJr/Qf,v.

According to Green’s formula, we have for all 1 < i < 2,

/ —(Akui)vi = / \Vui|k_2Vui.Vvi — / |Vui|k_2Vui.ﬁvida,
Q Q oQ
where 177 is the unit outward normal to 9€2. On the one hand, we have

/ \Vui|k’2Vui.ﬁvida = |Vui|k’2Vui.ﬁvida +/ \Vui|k’2Vui.ﬁvidU
o

Fl 1—‘2

+/ |Vui|k72Vui.ﬁ'vida.
I'sul'y
Asv ey,
/ \Vui|k_2Vui.ﬁvida = 07
I'sUTy

we have on 'y, 77 = —(1,0)T and on I'y, 7= (1,0)T, thus

1
- . —o0u;
19wV = - [ [9u0.5)F 25 0.00(0.0)d
Iy 1 z



4 O. CHAKRONE, O. DIYER, D. SBIBIH EJDE-2012/37

and

1 .
V(1 )22
1 0

|V | * =2V, . ijuido = / -

(1, y)vi(1,y)dy.
T» _

As v € V, we have v;(0,y) = v;(1,y), for all =1 <y < 1,4 = 1,2. According to

(1.1), we have
/aQ |VUQ|k_2VUQ.ﬁU2 =0. (22)

On the other hand, as %—7;1(0, y) = %—7;1(1, y), thus Vuq(0,y) = Vua(1,y), we deduce
that

/ |V |* =2V, v, = 0.
o0

Then, by Green’s formula and v € V, we have

/Vp.v:/ pv.ﬁf/pdivv,
Q o0 Q

and
/ pv.ﬁ:/ pv.ﬁ+/ pv.ﬁ—F/ pv.ij
I519) I Ty T3uly
1 1
- —/ p(O,y)m(O,y)der/ p(Ly)vi(1,y)dy
—1 —1
1
— [ 619~ p(0.0) 0 0.y
-1
1
= —a/ v1(0,y)dy.
1
This proves (2.1)). [l

Now, we study the reciprocal problem; i.e., if u is a weak solution of (1.1]) with
some regularity, then w is a classical solution of (1.1)).

Definition 2.3. A weak solution of (|1.1]) is a function u € V satistying (2.1)).

Theorem 2.4. If u is a weak solution of (1.1) with u € (C?(Q) N CY(Q))?, then
there exists p € L*(Q) such that (u,p)T is a classical solution of (L.1)). Furthermore

we have Vp € (C(Q))? and —a = p(1,y) — p(0,y) = 01 %(t, y)dt.

Proof. Let u € (C?(2)NC*(£2))? which satisfies (1.1]), by Green’s formula, we have

2 1
/(—&ku—ﬁ(x,y,ul,ug)—f).v—l—Z/ \Vui|k72Vui.ﬁvida—a/ v1(0,y)dy =0
Q — Joo —1

(2.3)
for all v € V. We put F = {v € (D(2))?| dive =0} where D(Q) is the set of all
infinitely differentiable functions with compact support in Q. (2.3) becomes

/(—Eku—g'(x,y,ul,uz)—f).sz Yv € F.
Q

By (L.2), as u € (C*(Q)NC*(Q))? and f € (C(Q2))?, we have —ANpu—G(@,y, u1, uz)—
f € (C()? c (L*(Q))?, according to Rham’s theorem see [7, ], there exists
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p € L2(Q) such that —Agu+ Vp = Gz, y, u1,us) + f in (C(Q))2. Thus
2 1
Z/ |Vui\k_2Vui.ﬁvida—a/ vl(O,y)dy:/(Vp).v Yo eV, (2.4)
= Joa -1 Q

= 1
where Vp € (C(2))2 and y — p(1,y) — p(0,y) = [, S2(t,y)dt € C*([-1,1)).
As u;(0,y) = u;(1,y) for all y € [—1,1], we have 24 =(0,y) = o (1,y). Moreover
we know that divu = 0in Q and u € (C1(Q2))?%, we conclude that 6“1 1(0,y) =
—Guz 2(0,y) = —%%(1,;{;) for all y € [-1,1]. Thus 24(0,y) = d”1(1 y) and
Vul(O y) = Vui(1,y). Hence [, |[Vui | "?Vuy.ijordo = 0.
On the other hand, according to (2.4), we have

1
/ |Vug|* 2V ug.fuedo — a/ v1(0,y)dy = / (Vp)v YveV
a0 Q

-1
= / pv.ij
oN

:/ (p(1, ) — p(0, y))v1 (0, )dy.

-1

Therefore,

! Aus
[ Vs (0.2 20, )a(0. 5}y

+ [ V()25 2‘9 L0 ety —a [ wowl @9)

-1

:/ (p(1,) — (0, ))v1 (0, y)dy.

-1
Let Hl/z( I'y) [I] be the space defined by
Hy)*(T1) = {p € LA(I'1); 3w € HY(Q), with v|r,or, = 0,0r,ur, = ¢}

pwoonTyUT,
0 onI'3uUlly.
that v € (HY(I))? and [, v.ijdo = 0, so there exists v € (H'(€2))? such that
divo = 01in © and v = v on I' (see [I]); therefore v € V. According to (2.5), we
have for all p € Hé({z(Fl),

Let p € HY*(Ty), we put v = (0, )7 where iy = { . It is clear

1

! au B’U,
k—2 2 k—2 2
/1‘ U‘2( 7y)| ax ( ’y)lj/ y / | u2(1’y)| 9x ( 7y)/“[’ y7

thus

_p0u _,0u
Vus(0.5)P 2 22 (0,9) = Va1 )2 22 1.,

or
According to (2.5)), we have

—a / 01(0,)dy = / (B(1.9) = p(0.1)01 (0. (2.6)

-1
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On the other hand, let v € Hé({Q(Fl). Now we consider 8 = (71,0)7 where
_Jy onIhuUTly
~]0 onT3UTy.
v € (H'(Q))? such that diveo = 0in Q and v = S on I [I]; therefore, v € V. By
—a [1 vdy = [, (p(1,5) = p(0,9))ydy. Finally we prove p(1,y)—p(0,y) = —a. O

" . We have 3 € (H'/?(T'))? and Joq B-7ido = 0, so there exists

3. EXISTENCE OF A SOLUTION

Let us introduce the energy functional associated with (2.1), v : V — R:
1 1 !
vty =5 [ vl g [ VP -a [ ad
k Q k O —1

—/Fl(g%yaul)—/FQ(xvy,uz)—/f1u1—/f2u27
Q Q Q Q

where F : Q x R? — R; F(z,y,u) = Fi(z,y,u1) + Fo(z,y,u2) and F;(z,y,s) =
fos gi(x,y,t)dt, i = 1,2. It is clear that 1 is well defined, C' on V and for all v € V

(3.1)

1

@' (u),v) i:/§2|Vui|k2Vui.Vvia/lvl(O,y)dy/Qg’(x,y,u).v/Qf.v.
- i (3.2)

We know that a critical point of the function ¢ is a weak solution of (1.1} and
reciprocally. We assume that the nonlinearity is asymptotically in the left of the
first eigenvalue of k-Laplacian; i.e.,

A
F(-T,y,81782) < E(‘Sl|k+|82‘k)+p(xay)> (33)
where p € L1(2) and A < A1, \; is the first eigenvalue of the problem

0
—Apuq + op = )\|u1|k_2u1 in Q,
or

0
—Agus + op = )\|u2|k_2u2 in Q,
dy

. - 8’[1,1 (’)ug - .

leu—%‘i‘aiy—O 1HQ7
u1(07y) = ul(lay) on [717 1}7 (34)
u2(07y) = u2(17y) on [_17 1}7

6’LL1 o 8%1

%(073/) - ox (Ly) on [_13 l]a

ou ou

k—2dU2 _ k—2Y702 _
Va0, )12 52 (0,9) = (Vs (L) 2 T2 (1) om [-1,1],

p(Ly) —p(0,y) =0 on [-1,1].
In [5], we have proved that the first eigenvalue Ay of (3.4) is well defined, strictly
positive and characterized by

Aflzsup{/Iull’“+|uzl";/IVullkHVuzI’“:LueV}- (3.5)
Q Q

)\1/ |u1|k+|u2|k§/|Vu1\k+|VuQ|k Yu e V. (3.6)
Q Q
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Theorem 3.1. Assume that (1.2)and(3.3) are satisfied, then there exists u € V
such that (u) = inf,ey ¥(v). Consequently, u is the weak solution of (1.1]).

Proof. Asis convex and class C!, it suffices to show that v is coercive; i.e., ¥ (u) —
+00 when [|ul|y1. — +00. According to (3.6), the function u — ([, |[Vauy [F)1/* +
(fo, IVu2|")¥/* := ||ul|y define a norm in V. We have successively

v = ¢ [1Vaf+p [ Vel —a [ - [ P (. 60

2
(f,u) = /Q frus + /Q faz < 3 1Fill e il
=1

2

< CZ Vuil[(Lky2, where ¢ >0
i=1

= cfjullv.

1
Ay <[ oy
-1 o9
< |)\|c'(/ lui(1,9)F)/*dy  (Holder’s inequality), where ¢ > 0
o0

< |)\|c’(/ Vur)/E (V= (LF(@9))2  trace theorem )
Q
= c"||ul]|ly, where ¢’ >0,

the trace theorem is because V' C W;“]f(Q) and W;“’f(Q) — (L*(0£2))? with con-

tinuous injection.
+ / p(z,y)
Q

«
F(x,y,u) <
| P =]

A
\
S

g
—=
_|_
=
[\v]
=

a
<o Lvalt e v s [ pe.
Ak Ja Q
~ 0 if 0
where a := 1 @< It follows that
a ifa>0.
1 a k k /
P(u) > (L= ) [ [Vur]® + [Vuo|* = cllullv — cflully = | plz,y).
k A7 Ja Q
Hence
1 -
() > — (1= )l — ¢ ully — / p(z,y), where ¢’ > 0. (3.8)
k A1 Q
Finally, as (1 — %) > 0, the property is proved. O

4. UNIQUENESS OF THE SOLUTION
We assume again that the function g is decreasing in the following sense:
(G(z,y,€) = g, y,€),6 =€) <0 forall &€ € R (4.1)
Theorem 4.1. Problem has a unique solution.
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Proof. Let u and @ be two solutions of problem (2.1). For all v € V, we have

2
Z{/Q[(|Vui\k_2vui — |V [*2Va). Vo, — (gi(2,y, w) — gi@, v, ﬂz))vz]} =0.
i=1

(4.2)
In particular for v = u — w, we have
2
Z { / [(IVu* 2V, — [V * 2 Vi;).V (u; — ;)
2, (43)

- (gi(xay7ui) - gl(xayailfvz))(ul - ﬂl)]} =0.
As (JE[F726 — |€F2¢) (€ =€) > 0 for all £ # ¢ € R? and (d.1)), we deduce that

2
Z/(\vumf?vui V2V ). Y (s — ) = 0. (4.4)
i=179

Thus Vu; = Vi, i = 1,2, therefore u; = u; + ¢, where e € R. As u;,u; € V, we
have ¢ = 0, this completes the proof. ([l

Example of function §. We consider g(z,y,s) = (g1(s1),92(s2)) for all s =
(51,82) € R? and (x,y)T € R?, where

se) 2 (=1
gi(si) = & (k—1)"% if —(k—1)Yk <s; < (k—1)Y*k

(EE) + $ = )ED/F i s < —(k— 1/,

[%]]s}

We have g;(z,y,.) is a continuous function, so it has a primitive F;, for i = 1,2.

0.2+

0.1+

FIGURE 2. Graph of g;

For k =2 and a = 1, Figure , we have
L) ifs>1

2\1+s2
9i(s) =1 1 if —1<s<1
s(52) +5 ifs<L



EJDE-2012/37 A NON-RESONANCE PROBLEM 9

(i) g satisfies (1.2), indeed: If s; > (k — 1)*/*, then

a, skt O e
i(8)) = = () < =|si|" 7
|9i(s)] 2(1+(|si|k)) |sil
If 5; < —(k — 1)%/*, then
Igi(8)|=g(M)+ flsz|’“ Lye<2 S8 |F=1 4+ ¢ for all s € R?,
2 1+ (Isil?)

where c € R and ¢ = ¢+ 31 (k — )
(ii) We have F(z,y,s1,s2) = Fi(z,y,51) + Fa(z,y, s2), where Fi(x,y,s) =
Jy 9i(z,y, t)dt, i=1,2. So

° So, |t
Fi(z,y,s)= | gi(t)dt < —( - )dt + ¢, where ¢ € R.
0 o 2 1+t

< ;;c In(1 + |s|*) + ¢, where ¢’ € R.

Thus

a
F(x,y,s1,82) = Fi(x,y,51) + Fa(2,y,52) < ﬁ In(1 + |s1]*) + % In(1+ |so|*) + ¢

(st fsal) + ¢

IA

IN

%(s? +1)% 4+

consequently F' satisfies condition

(iii) Finally g is decreasing. For s; > ( )l/k
ooy @ (B =1)si (1 + (s)%) — s (ki)
9i(si) = 2( (1+ (s l)k)Z )
e (kst™2 4 ks?h=2 — k=2 _ 22 _ g2h—2
2 T+ (0 )
o« sk —1—sh)
2T ="

(=)t 2 (k(=5) )] /(1 + (=50
= 2| = (= 2)(=s0) s = (k= 2) (=) s + (=54

(=) %2 k()% s ] /(14 (=)t
= S| = (= 2)(=s) i 4 2(=s) P s+ (=)

+ (=8)% 72 )1+ (=s0)k)?

S (=) = (k= 2)si + 2(=s0)"si + (=50) + (=) 1] /(1 + (=5)")*
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(=5)" 72 [ = ksi s+ (=50)" (281 — )] /(1 + (=50)")?
(=5)" [ = (k= U)si + (=s0)"si] /(1 + (=5:)")?

= 5 (=) Psi[ = (k= 1)+ (=] /(1 + (=) < 0.

Conclusion. We have shown the existence and uniqueness of a solution by a mini-
mization method. We can also define the other eigenvalues and placed them between
two consecutive eigenvalues, in this case we must consider using saddle points.

o
2
o
2

REFERENCES

[1] C. Amrouche, M. Batchi, J. Batina; Navier-Stokes equations with periodic boundary conditions
and pressure loss, Applied Mathematics Letters. 20 (2007), 48-53.

[2] C. Amrouche, E. Ouazar, Solutions faibles H? pour un modele de fluide non newtonien, C. R.
Acad. Sci. Paris, Ser. 1341 (2005), 387-392.

[3] A. Anane; Simplicité et isolation de la premiere valeur propre du p-Laplacien avec poids, C.
R. Acad. Sci. Paris, t. 305 (1987), 725-728.

[4] A. Anane, O. Chakrone; Sur un théoréme de point critique et application atiin probleme de
non-résonance entre deux valeurs propres du p-Laplacien Annales de la faculté des sciences
de Toulouse sér. 6, 9 No. 1 (2000), 5-30.

[5] O. Chakrone, O. Diyer, D. Sbibih; Properties of the first eigenvalue of a model for non New-
tonian fluids, Electronic Journal of Dfferential equations. Vol. 2010 (2010), No. 156, 1-8.

[6] J. Cossio, S. Herrén; Existence of radial solutions for an asymptotically linear p-Laplacian
problem; J. Math. Anal. Appl. 345 (2008), 583-592.

[7] R. Dautray, J. L. Lions; Analyse mathématique et calcul numérique pour les sciences et les
techniques, tome 3, Masson, Paris, 1985.

[8] P. Dreyfuss; Introduction & ’analyse des équations de Navier-Stokes; note de cours, 69 pages,
rapport de l'université de Fribourg, 2005, http://www.iecn.u-nancy.fr/~dreyfuss/P10.pdf.

[9] P. Svacek; On approximation of non-Newtonian fluid flow by the finite element method, Com-
putational and applied Mathematics. 218 (2008), 167-174.

OMAR CHAKRONE
UNIVERSITE MOHAMMED I, FACULTE DES SCIENCES, LABORATOIRE LANOL, OUJDA, MAROC
E-mail address: chakrone@yahoo.fr

OKACHA DIYER
UNIVERSITE MOHAMMED I, ECOLE SUPERIEURE DE TECHNOLOGIE, LABORATOIRE MATSI, OUJDA,
MAROC

E-mail address: odiyer@yahoo.fr

DRISS SBIBIH
UNIVERSITE MOHAMMED I, ECOLE SUPERIEURE DE TECHNOLOGIE, LABORATOIRE MATSI, OUJDA,
MAROC

E-mail address: sbibih@yahoo.fr



	1. Introduction
	2. Weak formulation of (1.1)
	3. Existence of a solution
	4. Uniqueness of the solution
	Example of function 
	Conclusion

	References

