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EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS OF
BAM HIGH-ORDER HOPFIELD NEURAL NETWORKS WITH
IMPULSES AND DELAYS ON TIME SCALES

WENGUI YANG

ABSTRACT. By using Mawhins’s continuation theorem of coincidence degree
theory and constructing some suitable Lyapunov functions, the periodicity and
the exponential stability for a class of bidirectional associative memory (BAM)
high-order Hopfield neural networks with impulses and delays on time scales
are investigated. An example illustrates our results.

1. INTRODUCTION

The bidirectional associative memory (BAM) neural network models were in-
troduced by Kosko [0, [10]. It is a special class of recurrent neural networks that
can store bipolar vector pairs. The BAM neural network is composed of neurons
arranged in two neural fields; i.e., the F'x-field and the Fy-field. The neurons in
one field are fully interconnected to the neurons in the other field, while there is no
interconnection among neurons in the same neural field. Through iterations of for-
ward and backward information flows between the two neural fields, it performs a
two-way associative search for stored bipolar vector pairs and generalizes the single-
field auto-associative Hebbian correlation to a two-field pattern-matched hetero-
associative circuits. Therefore, BAM neural networks possesses good application
prospects in many fields such as pattern recognition, parallel computation, image
and signal processing, optimization automatic control and artificial intelligence. Re-
cently, BAM neural networks have attracted the attention of many scientists (e.g.,
mathematicians, physicists, computer scientists and so on) and many results for
BAM neural networks with or without axonal signal transmission delays including
stability and periodic solutions have been obtained [Bl [13] [15] 18] [ 24] 25] 28] [36]
and the references quoted therein. For example, in Refs. [21] 22] 23] 29], the au-
thors discussed the problem of the stability of the BAM neural networks with or
without delays, and obtained some sufficient conditions to ensure the stability of
equilibrium point. Li [12], Ho et al [7], Li and Yang [16], Chen and Cui [4], and
Xia et al [30] discussed the existence and exponential stability of the equilibrium
point of several classes of impulsive BAM neural networks using different methods,
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such as linear matrix inequality (LMI), Fixed point theorem, Halanay inequality,
Lyapunov functional method, M-matrix theory and Topological degree methods,
respectively.

On the other hand, due to the fact that high-order Hopfield neural networks
(HHNNS) have stronger approximation property, faster convergence rate, greater
storage capacity, and higher fault tolerance than lower-order neural networks, high-
order neural networks have been the object of intensive analysis by numerous au-
thors in the recent years. We refer the reader to [0, [IT], 17, 26], BT, B32] [33] B4} [35].
However, to the best of the author’s knowledge, few results have been obtained the
periodicity and the exponential stability for a class of BAM high-order Hopfield
neural networks with impulses and delays on time scales.

The objective of this paper is to investigate the existence and stability of periodic
solutions of BAM HHNNs with impulses and delays on time scales

xiA(t) = —¢(t )+ Zaw () f5(y; (t = 75(2)))

j=1
ZZ it ()95 (Y (8 — 00t () g (v (t — vija () + Li(t), T # ti,
=1
Ax (tk): () — xz(tk)—azk(xl(tk)) i=1,2,...,n, k=1,2,...,

yjA(t) +Zeﬂ Jpi(ai(t — 75i(t)))

+ Z: Z ]”‘ &jiT(t)))QT(xr(t - "A}]w(t))) + Jj (t), t ?é tr,

ij(tk):yj( ) yj(tk):ﬂjk(yj(tk))v J=12,....m, k:]-??a"'?
(1.1)
where T is an w-periodic time scale which has the subspace topology inherited
from the standard topology on R. And x; and y; are the activations of the i-th
neuron in Fx-layer and the jth neuron in Fy-layer, respectively; a;(t) > 0 and
b;j(t) > 0 represent the rate with which the ith neuron from Fx-layer and the
jth neuron from Fy-layer will reset their potential to the resting state in isolation
when disconnected from the networks and external inputs, respectively; 75, 0ji,
Viji, and Ty, Gij1, Ui represent the axonal signal transmission delays; I;(t) and
J;(t) are the external inputs on the neurons. Here, Az;(t)) = x;(t{) — x;(t; ) and
Ay;(tr) = y;(tF) — y;(t;) are the impulses at moments ¢, and t; < to < -+ is a
strictly increasing sequence such that limy .o tx = o0.
System is supplemented with initial values

x;(t) = ¢y, (), s€[-60,00NT, 6 =max{r,o,v},

yi(t) = by, (s), s€[-0,00NT, 0=max{?,q @}
T 7 cicmiti<m { tefomnr B} o= L<i<mi sy, z<m{ oin ()},
= t e t
YT icicniSyi<m { teloa)nT viat)}, 7 1<i<nigi<m { tef?i’fﬁ{ﬂ )}
6= max { max ajw(t)} 0= max { max Ujlr(t)}

1<i,r<n,1<j<m " t€[0,w]NT 1<i,r<n,1<j<m " t€[0,w]NT
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where ¢, (-) and ¢y, (-) denote continuous w-periodic function defined on [-6,0]NT
and [—é, 0] N'T, respectively.

As usual in the theory of impulsive differential equations, at the points of discon-
tinuity #; of the solution t — (z1(t),..., 2. (t),y1(t),...,ym(t))T, we assume that
(1)), vz By (8D, - ym ()T exists, and (xl(t;), o xn(ty) yi(ty ),

.. ,ym(t;))T = (z1(tr), - s Tn(tr)s y1(th), - - s Ym(tr))T. Tt is clear that, in gen-
eral,the derivatives xj(t)) and yj(tx) do not exist. On the other hand, according
to the first two and the third equalities of (L.I)), there exist the limits 2/() and
yg(tf) According to the above convention, we assume that z(t;) = «}(t, ) and
y;(te) = y;(ty).

Throughout this paper, we assume the following.

(H].) FOI‘ i, r = ]., 27 cee,ny _]71 = ]., 27 e,y Ci(t),dj(t), aij(t), eji(t), bijl(t)7
hjir<t), Ii(t), Jj(lf), Tij(t), O'Z‘jl(t>, ’U,‘jl(t) fji(t), &jir(t)y @jir(t) are positive
continuous periodic functions with period w > 0, and ¢;(¢) and d;(t) are
regressive. And assume that t — 7;;(t), t — 045(t), t — v (t) t — 75 (¢),
t —65ir(t) and t — ;4 (t) belong to T for ¢t € T.

(H2) There exist positive constants M;, N, M;, N;, such that Ifi(z)] < Mj,
lgj ()| < Nj, |pi(x)| < M;, |gi(z)| < N, for i =1,2,...,n, j =1,2,...,m,
z e R.

(H3) Functions f;(u),g;(u), pi(u),q:(u) satisfy the Lipschitz condition; that is,
there exist constants L;, Hj,

Ly, Hi > 0 such that |f;(u1) = fj(u2)| < Ljlur — ual, |g;(u1) — g;(uz)| <
Hijluy —us, |pi(u1) — piuz)| < Liluy —us|, |gi(u1) — gi(uz)| < Hiluy — us
for any uy,us € R, fori=1,2,...,n,j=1,2,...,m.

(H4) There exists a positive integer ¢ such that for k =1,2,...,i=1,2,...,n,
j = 1,2,...,m, {tk,k’ = 1,2,...} N [O,UJ] = tl,tg,...,tq, tk_i,_q =t + w,
@i kq() = ik (), Bjk+q(-) = Bjn()-

For convenience, we shall use the following notations.

_ 1 Izr-i-w
=t /k fOdt, ff= max  |f()l, f~= min |f@)],

w telk,k+w]NT tek,k+w]NT

where k = min {[0, +00) N T}, f(¢) is an w-periodic function.

2. PRELIMINARIES

Some preliminary definitions and theorems on time scales can be found in [2] 3],
which are excellent references for the calculus of time scales. We will recall some
basic definitions and lemmas which are used in what follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward
jump operators o, p: T — T and the graininess p: T : T — R* are defined by

o(t)=inf{s € T:s>t}, pt)=sup{seT:s<t}, ult)=0c(t)—"t.

A point ¢t € T is called left-dense if ¢t > infT and p(t) = ¢, left-scattered if
left-scattered if p(t) < ¢, right-dense if ¢ < sup T and o(t) = ¢, and right-scattered
if o(t) > t. If T has a left-scattered maximum m, then T¥ = T\{m}; otherwise
T* = T. If T has a right-scattered minimum m, then Ty = T\{m}; otherwise
Ty =T.
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A function f: T — R is right-dense continuous provided that it is continuous at
right-dense point in T and its left-side limits exist at left-dense points in T. If f is
continuous at each right-dense point and each left-dense point, then f is said to be
continuous function on T.

For y : T — R and t € T*, we define the delta derivative of y(t), y*(¢) to be
the number (if it exists) with the property that for a given ¢ > 0, there exists a
neighborhood U of ¢ such that

[y(o () = y(s)] =y (B)]o(t) = s]| <elo(t) —s|, VseU.

If y is continuous, then y is right-dense continuous, and if y is delta differentiable
at t, then y is continuous at ¢t. A function r : T — R is called regressive if
14 u(t)r(t) # 0 for all t € T*. A function r from T to R is positively regressive
if 1+ p(t)r(t) > 0 for every t € T. Denote R is the set of positively regressive
functions from T to R, and T = [0, +00) N T.

If r is regressive functlon7 then the generalized exponential function e, is defined
by

¢
er(t,s) = exp{/ EH(T)(T(T))AT} for s,teT,

with the cylinder transformation

log(1+hz) i h 7& 0
— h ) 1 )
& (z) {z if h=0.

Let p,q : T — R be two regressive functions, we define

pbq:=p+q+upq, ©Sp:=-— , POq:=pd(O9g).

1+ pp

The periodic solution 2*(t) = (2 (t),..., 2% (t), yi(t),...,y5 )T of system (.1 is
said to be exponentially stable if there exists a positive constant ¢ such that for ev-

ery g € T, there exist N = N(p) > 1 such that the solution z(t) = (z1(¢), ..., 2, (t),
y1(t), - ym ()T of (1.1)) satisfies

l2(t) = =" (O] < Nea(t.0) (3 [éni(0) = a1 ()] + D |y, (0) ~ v (@)1

where ¢ € [— max{6, é}, 0]NT.
Lemma 2.1 ([I7]). If f,g € C(T,R), and f(t) < g(t) on [k, k +w), then

/;; TN /k oAt

Lemma 2.2 ([1]). Let t1,t2 € [k,k+w]NT,t € T. If f: T — R is w-periodic,
then
I_c+w

I_c-i-w
£(t) < Fltr) + /k FABIAL and f(1) > F(t2) /k FA)AL

Lemma 2.3 ([27]). Let a,b € T. For rd-continuous functions f,g : [a,b] — R, one

has
/ |f(t) IAt g (/ab|f(t)|2At)(/ab |g(t)|2At>.
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Lemma 2.4 ([20]). Let X and Z be two Banach spaces and let L be a Fredholm
mapping of index zero. Let Q@ C X be an open bounded set and let N : Q) — Z be a
continuous operator which is L-compact on Q. Assume that

(a) for each A € (0,1), x € 02N Dom L, Lz # ANx;
(b) for each x € 0 Nker L, QNz # 0;
(¢) deg(JNQx,Q2Nker L,0) # 0, where JQN : ker L — ker L.

Then Lx = Nz has at least one solution in N Dom L.

Lemma 2.5. Let r : T — R be right-dense continuous and regressive. Let a € T
and y, € R. The unique solution of the initial value problem

y2 () =r(®)y(t) + h(t),  y(a) =ya,
Ay(tr) = y(t)) —y(ty) = enly(tr)), k=1,2,....q,
18 .
v = ot + [ e lbolhEAs 3 ettt
a k:ty €[a,t)T
Proof. The proof of Lemma is similar to that of [T4, Lemma 2.7], it is omitted.
O

According to (H1)—(H4) and k = min{[0, +00) NT}, for system (I.1), finding the
periodic solutions is equivalent to finding those of the boundary-value problem

22 () = —ci(Omi(t) + > aii (0 f5 (y; (¢ — 735()))

j=1

+ Z D bit(0)g5(y; (¢ — oiju () g (t — vize(t)) + (1),

t €k, k+wl, t#tg,

Azi(te) = zi(t) — xi(ty) = curl@i(ty)), zi(k) = 2i(k + w),

i=1,2,...,n,k=1,2,...,q, (2.1)

Yy (t) = —d;(t)y;(t) + Z eji(t)pi(wi(t — 754(t)))

3 b (Oai(i(t — 65ir (D)) gr (@ (t — Djin (1)) + J;(2),

=1 r=1
t €k, k4w, t#ty,
Ay;(te) =y () — yi(ty) = Biw(ys (t))s 5 (k) = yj(k + w),
i=12...mk=1,2,...,q.
To apply Lemma to system ({2.1)), we first make the following preparations. For
any non-negative integer ¢, let t; < w < tq41 = w+ty and Clk, k+w;ti, ta, ... 1] =
{z: [k, k+w]NT — R"™™|2(t) exists for t # t1,...,t4; 2(t]) and 2(t; ) exists at
t#ty,...,tg;and 2(ty) = 2(t,), k=1,...,q}. Let

X ={z€Clk,k+w;ti,ta, ...t : 2(t+w) = 2(t), t € T}, Z=XxROFmx+D)
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be endowed with the norm
n

2 =" max I+Z max _[y;(¢)],
i=

1 telk,k+w]NT te[k k+w]

for z(t) = (x1(t),...,zn(t),y1(¢),. .. ,ym(t))T. Then X and Z are Banach spaces
with the norm || - ||. Let

L:DomLNX —7Z, 2z (2% A2(t1),Az(ta),...,Az(t,),0), (2.2)
Al(t) A.Q?l (tl) Al‘l(tg) tee Al‘l(tq) 0
) Aot Aw(t) .- A:v;(tq) 0

N:X=Zo Ne=| Bl apt) Apit) - Apty o 2P
Bu(t) Apn(t) Ayn(t) - Aynty) 0

where Dom L = {z € Cl[k, k + w;t1,ta, ..., t,] : 2(t +w) = 2(t)},

Ai(t) = —ci(t)xi(t) + Z aij(t) fi(z;(t —7i5))

+ 30D bigt(t)gi (i (t = oije))gulan(t — vign)) + Lit)
j=11=1

Bj(t) + Ze]z pz xl T]Z( )))

- Z Z hir ()i (@i (t = 65ir (1)) @r (2 (E — Djir (1)) + J; (1)

i=1r=1
for j =1,2,...,m. Taking z = (f,C4,Cs,...,Cq,d) € In L C Z, then
ker L={z€X:2z=heR"™},

ImL:{(f,Cl,Cz,.. Cpd) €T / f(s d5+20k+d o}

k=1
and dimker L = codim Im L = n 4+ m. Define the two projectors

1 IZ?er
Pz = —ﬁ z(t)At,
k

w

1 Eer q
QNZZ Q(f7017"'aCQ7d) = (a([ f(S)AS+ZOk+d),O,,0,0)
k k=1
It is not difficult to show that P and @) are continuous and satisfy
ImP=%kerL, ImL=%ker@ =Imn(I - Q).
It is easy to see that ImL is closed in Z, which leads to the following lemma.

Lemma 2.6. Let L and N be defined by (2.2) and (2.3)), respectively, then L is a
Fredholm operator of index zero.
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Lemma 2.7. Let L and N be defined by (2.2) and (2.3)), respectively, suppose that
Q is an open bounded subset of Dom L, then N is L-compact on €.

Proof. Through an easy computation, we can find that the inverse K, : ImL —
ker PN Dom L of L, has the form

(qu)(t):[k+w s)As+ Y C —/Hw/ AsAt—ZCk

k t>tp

Therefore,
(5 ) Aityd Zk 1 ir (5 (tk))> )
o= (< & - 1 Gaa) O 0 ometan”
and then

fo B;(t)dt — ka Bik(y;(tx))
( fo fo (s dsdt>
fo fo (s)dsdt (1

(R ) (5 a0
w? k J(t)dt (n+m)x1

(Zk 1O‘zk(x1(tk))>
Zk 1 Bik(y; (tr)) (n+m)x

K,I-Q)Nz= (f%t Ai()dt = 2o, aik(mi(tk))>
(n+m)x1

Therefore, QN and K,(I — Q)N are both continuous. Using the Arzela-Ascoli

Theorem, it is easy to show that K,(I — Q)N(Q) is relatively compact. Moreover,
QN(Q) is bounded. Thus, N is L—compact on € for any open bounded set Q C X.
The proof is completed. O

3. EXISTENCE OF PERIODIC SOLUTIONS
In this section, we study the existence of periodic solution of (1.1) based on

Mawhins’ continuation theorem.

Theorem 3.1. Assume that (H1)-(H4) hold, then system (1.1)) has at least one
w-periodic solution.

Proof. Based on the Lemma[2.6)and Lemma[2.7] what we need to do is just to search
for an appropriate open, bounded subset € for the application of the continuation
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theorem. Corresponding to the operator equation Lz = ANz, A € (0,1), we have

xz‘A(t) = A{ —ai(t )+ Zam )fi (w5 (t = 735(2)))

Azi(ty) = zi(t]) — zi(ty) = aar(@i(ty)),  zi(k) = zi(k +w),
1=1,2,....,n, k=1,2,...,q,

(3.1)
yr(t) = ~d +Zeﬂ il = 7i(1)))
ZZ i (0 it = 630 () ot — 63500 + T5(0) ),
ﬁc %::—i- wl, t # tg,
ij(tk) yi () =y () = By (t)),  y; (k) = y;(k + w),
i=1,2,....m k=1,2,....q
For the sake of convenience, we define
k4w 1/2
Ifle= ([ r0ra) ™, for re @R)

Suppose that (x1(t), z2(t), ..., 2, (1), yl(t) yg(t),...,ym(t))T € X is a solution of

(3.1)) for a certain A € (0,1). Integratmg over the interval [k, k +w], we obtain

k+w q
[ Ai(t) At + Zaik(ﬂ%(tk)) =0, i=12,...,n,
3

k=1

k+w q
/]_c B;(t)At + Zﬂjk(yj(tk)) =0, j=12,....,m.
=1

Hence
k+w
/ ci(s)zi(s)As
k
k4w m
S O SCHCTACEE N
o (3.2)
£ 303 b (095 (st — o ))an(wn(t — via(0) + L)) A
j=11=1
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k4w
[ tomeas
k —

n

(3.3)

where ¢ = 1,2,...,n, 7 = 1,2,...,m. Let flv,m,fj,ﬁj@é tr) € [k,k +w]NT,
k=1,2,...,q, such that xl(é-l) = infte[l;,l;+w]ﬂ'ﬂ‘ xl(t)V ml(nl) = SUP¢e(k, k4w]NT ml(t)v

Y;i(&) = nfycm irw)nm ¥ (), ¥ (1) = Subicippqwinr ¥i(t), @ = 1,2,....m, j =
1,2,...,m. Then by (3.2) and the Lemma then we have

m

k4w
wei() < [ |2 sttt =6

Z D bt ()95 (y; (t = () gi(y(t — viga(8))) + Lit)| At

+

]} m m
+/E ZZ\%I Mg (yi (t — o ()lg(vi(t —viu(t)))|At

j=1 Jj=11=1
fori=1,2 ,n. Hence
x4(§4)<l<(za M, +§:ib+NNZ+I+)+lzq:|a'k(T~(tk))\>
T 1111Ul Y o (3-4)

= By, 2—1,2,...,n.
Similarly, by (3.3]) and Lemma we obtain

((Ze 1 Y R+ 07) + LS (6]

i=17r=1 ot (3.5)
:Bj7 j=12....m

I /\
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By (3.2)), we have

we;xi(n;) > —/k
-2

m

Fw MM
D a6 f;(y;(t = 73;(t)))

j=1

m

D bigi(t)g; (i (t = oiju(0) i (et — vize(t))

=1

~

Jj=1

Hlat = aa(ai(t)]
E+w k=1
> / Z s ()15 (95t — 5(6) | A
k+ m
- / SOS " b (®)llgs (w5 (¢ — izt ) lan(aalt — visa(0)) At

m
m
=11=1

J

E—&-w
_/;; |Ii(t)|At—Z|@ik(xi(tk))|
(L + NN+ 1) - Yt
k=1

j=11=1

fori=1,2,...,n. Hence

ai( >_*((Za M, +§:§:6U1NM+I >+izq:|aik($i(fk))|> (3.6)
; k=1 :

Jj=11=1
=—-B,, 2—1,2,...,71.

Similarly, by (3.3)), we obtain

v () = i((Ze W+ 3SR, +J+)+li|ﬁjk(yj(tk))|)

i=1r=1 wk:l (37)
=-Bj, j=12,....,m

Set tg =td =k, tyr1 = k +w. From (3.4)), (3.6) and Lemma we have

E+w
ﬁ 1 (1) At
k

:Z/j 2O+ 3 Jai(t]) — 2alth)|
k=17t k=1

k—1

E+u k+w ™m
< Jp e OlsIa [T a0l - O
ftw m m
e[S B ollas ot = )l (e = v ()]

k+w
n /k |L;(t)| At + Z lein (@i (tr))]

k=1
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< (s ([ ewra)” (33)
+ f: (/klwr“’ |a; (t )2At)1/2</kk+w (st Tij(t)mQAt)l/z
i

i (/k+w lg; (y, (t — Uijl(t)))|2At)l/2

k+w q
([ e = v nPA) T F 4 3 faus(aitan))

k=1

< Vel D waiaty + 305 Wbl N N+ I+ 3 st )

j=1 j=11=1 k=1

Similarly, from and (3.7)), and the Lemma [2.3] we obtain
E+w
[ ly® ()| At < Vod! ;]2 JrZwe M + Zzwb;rNN
k
i=1r=1 (39)
+Jfw+ Z B (y; (t))]-

k=1
From Lemma 2.5 and 3] for i = 1,2,...,n, j = 1,2,...,m, we obtain

t
i(t) = e e, (o) (t k)i (k) + /k/\e rei(t) (£ 0( (Zaw ()i (5 (s — 75(s)))

m

YO biji(9)g; (w5 (s — i () a(wi(s — vin(s))) + Ii(s))As
j=11=1

+ Y eaambtam(z(ty),
k:ti €[k, t)r

53 (8) = a0 (1, By (6 /Ae iy (s (Zeﬂ Spi(ai(s — 3i(5)))

NE

303 B ()40 (@ils = 33in () (2 (s = 05r (5))) + T (s) ) As

i=1r=1
+ e_xd; (1)t te) Bik (y(te))-
k:tke[fc,t)jr

Hence
k+w

2i(t)] < | |+Z/ s ()15 (95 (5 — 735()))|As

m k+w
+le/k ‘ ZJZ( )ng(yj( Uz’jl(s)))Hgl(yl(S*Uijl(S)))‘As

;:«Hul
+/;; Le)as+ Y lau(z(t)]

kit €[k,t)T
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m m m q
< |x; (k)| + Z a;jNjw + Z Z bijiN;Niw + Liw + Z |evirs (i (k)|
j=1 j=11=1 k=1

= Uys,
n n n B q
ly; (0] < [y, (k Zé Niw + Y > hjir NiNew + Jjw + > Bk (w5 ()|
i=1 i=1r=1 k=1
= aj?

where i =1,2,...,n, j=1,2,...,m; that is,

ktw oA\ 1/2
ol = ([ lestPar) " < i

- e (3.10)
sl = ([ oPar) " <.
Substituting (3.10)) in (3.8) and (3.9)), we obtain
E+w m m m
/12 |xiA(t)|At <wcu; + Zwa;;Mj + Z Zwb;leNl
Jil == (3.11)
+I+w+2|alk (), i=1,2,... .0,
k=1
and
k+w A
/E |yjA(t)|At§wd;'u] Zwe M, —|—2th NN,
J=tr=t (3.12)

F o+ Bl =12 m
k=1

From and (| - - ) and Lemma n there exist positive constants

Cz,CJ (z = 1,2,.. n,j = 1,2,...,m) such that for ¢ € [k, kz+w] NT, |z;(¢)| < ¢,
ly; ()] < ¢, 1=1,2,...,n, j =1,2,...,m. Clearly, ¢, andcj (i=12,...,n,j =
1,2,...,m) are independent of \. Denote H* =30, G+, G+ C, where
C > 0 is taken sufficiently large such that

HliIl {Ei,Jj}H*

1<isn,1<j<m

B m m m 1 q
> nmax (|5 + Y [ M+ D2 Y b Ny = — > lai(wi(t)])
j=1 j=11=1 g
~ n ) . n n_ o 1 q
+ mmax <|Jj| + > el M+ > > hyi My N, — ” > |ﬁjk(yj(tk))|>~
=1 =1 r= k=1

Now we take Q = {(x1(t),. .., 20 (), y1(), ..., ym )T : | (21 (2), ..., 20 (t),y1(t),
o ym(@)T|l < H*}. Thus (a) of Lemma is satisfied. When (z1(¢), ..., z, (%),
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y1(t), .. ym (DT € 0QNR™, (21(t), ..., 20(t),y1(t), ..., ym(t))T is a constant vec-
tor in R™ with |z1| 4+ - + |zp| + |y1| + - + |ym| = H*, then

(_Cl Li +Zaljfj (i (t = 7i; (1))

-

j=11

Ms

bijig; (y; (t — oiu(t))gr (i (t — viz(t)))

Il
—

q
+ i - azk xz tk )
nx1

E»—t

(xi)nxl o
@N ((yj)mxl) -
( djy;(t +Zeﬂpl zi(t — 75:(t)))
+ Z Z hjir@i (i (t = 550 ()@ (21 (t — 0jir (1))

i=1r=1

1
;- wkz_lﬁjk(yjuk)))m

(n+m)x1

Therefore,

Joxe ({& ::a) |

Ciwi(t Zaljfj yj Tz]( )

=1

q

bijag; (y; (t = oiu(t))gu(y(t — vign(t))) — I + 5 > (i ))’

Ms
NE

11

Il
—
B
Il
—

J
n

> [dt) = 3 sl = 2(0)

n
Ms

<.
I
—

|
\E
NE
S
_|_
SR
M=
>
Ea
g
g

bjirGi(wi(t — Gjir (1)) gr (22 (t — 0jir (1)) —

©
I
—
Il
_
=~
I
—

T

> Gilri(t) + — Z lovir (i (t))| — Z Z |ai;| M Z bijiM;N,

=1 =1 j=1

=YL+ dlys |+—Z|ﬂjkyjtk>>| Do lel M
. p :

+

N

<
I

—
-

(] +Z|a”|M SoS b MiN =S e (ea(t))])
k=1

=1 Jj=11=1
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Y (1 Z s+ 33 g N, — Z G0 (w5 (t0))1)

j=1 = i=1r=1 =1
> min(e) 3 ()] + min(d)) 1)
=1 Jj=
~ m ) m m 1 q
nmax<|fi|+zlaij|Mj+ZlZ lMlekzlmik(zi(tk)))
J= J

MM
M:ﬂ

— mmax <|J | +Z el +

=1

P e
Ryir M = =7 B (t0))]) > 0.
k=1

1 1

i
Z
I

Consequently, QN (x1,...,Tn, Y1, Ym)T # (0,...,0,0,...,0)T for (xq,...,2,,
Yt Ym)T € 02 Nker L. This satisfies condition (b) of Lemma Define
U:kerL x [0,1] — X by
\I}(xlw"axn?ylv"'vym?X) :_X(mlw'wxnﬂylv‘"?ym)T
+(1_X)QN(xh'“,mnaylw"?ym)T'
When (21, .., Tn, Y15+, Ym) L € OQNker L, (T1,...,Tn,Y1,---,Ym)’ is a constant
vector in R with 377 [z + 3271, |y;| = H*, we have

U(Z1y ey Ty Y1y - s Yy X) #(O,...,O,O,...,O)T.

Therefore,
deg (QN(xl(t), @i (@), ym ()T, QN ker L, (0, .., 0,0, ... ,O)T)
— deg (QN(—xl(t), i)y =1 (B)s o~y ()T, QN ker L,

(o,...,o,o,...,O)T) £ 0.

Condition (c) of Lemma is also satisfied. Thus, by Lemma we obtain that
Lx = Nz has at least one solution in X. That is, system (1.1) has at least one
w-periodic solution. The proof is complete. ([l

4. GLOBAL EXPONENTIAL ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS

In this section, we will construct some suitable Lyapunov functions to study the
global exponential asymptotic stability of the periodic solution of (1.1)).
Theorem 4.1. Assume that (H1)—(H4) hold. Suppose further that

(H5) there exists n + m positive constants €; > 0 and e,q; >0, i =1,2...,n,
7 =1,2....,m such that

—c; & + Z a;;-Ljsnﬂ- + Z Z b;;‘l (Hle€n+j + Hle5n+l) <0, 1=12,...,n,
j=1 j—l =1

—dy sn+J+ZeﬂL Eﬁ-Zth (HNE-i—HNE) <0, j=1,2,...,m
=1 r=1

(H6) the impulse operators e;(x;(t)), i = 1,2,...,n satisfy
ai(zi(ty)) = —vin(zi(ty) — 25 (1), 0<yn <2, i=12,....n, keZ",
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Bi(y;(te)) = =0in(y;(te) — w5 (1), 0<d&n <2, j=1,2,....m, keZv.
Then the w-periodic solution of (1.1) is globally exponentially stable.

Proof. According to Theorem we know that (|1.1) has an w-periodic solution

Z*(t) = (xif<t)7 s ”T:L(t)’ yi‘(t)v
conys ()T, Suppose that x(t) = (z1(t), ..., 20 (t),y1(t), -, Ym(t))T is an arbi-
trary solution of (1.1]). Then it follows from system (1.1} that

(a(t) — 2 (1) = —ea(t)(w:(t) — 7 (1))
+ 2 au 0Lt = 7y(0) = 55— 7 (0)

<.
Il
—

>~ > bu(t) (5 (s (¢ = i)t = vin (1))

=1

= 95 (W} (t = o (®)a(vi (t = vizn())),

+
NE

m

<.
Il
—

Q

(45() = w5 () = ~d, (D) (s (1) — w5 (1)
+ 2 es) (it = 7:(0)) = il 0 = (1))

S he ) (@it = Gjin(£))ar (e (t = D4in())

i=1r=1
— i@ (t = 75ir (1)) gr (2 (t — @jz’r(t)))),
fori=1,2,...,n,t>0,t#ty, k € Z*, with initial values given by
zi(t) = ¢z, (s), s€[-0,00NT, ¢=1,2,...,n,
yi(t) = by, (s), s€[-0,0]nT, j=12,...,m,
where 6 and 0 are defined as before. By condition (H3), we obtain
[(2i(t) — a7 ()2
m
< = |wi(t) = e (O + Y afiLylyi (¢ = 73;(0)) — 7 (t = 735(1)]
- = (4.1)
+ 307 b (HiNily; (¢ = 01 (8) = w3 (¢ = 7i(0)

=11l=1

+ HN;ly(t = via(8) = wi (= vz (1))

<.

[(y;(t) —y; (£)) 21" < —d5 ly; () — 5 ()] + Z efiLilwi(t —#5i(t)) — 2} (t — 75(1))]

PRI (BN ot = 6500 (4)) = 7 (¢ = 6300 (1)

A, Mo (= 050r(8) = @3t = 050 (D)),
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for i = 1,2,...,n, j = 1,2,...,m, t > 0, t # t, k € ZT, where [z2(t)]* and
[yjA(t)]Jr denote the upper right derivative. Also, in view of condition (H6), one has
zi(ty +0) — 27 (te +0) = i(t) + ci(wi(te)) — i (tr) — (@7 (te))
= (1 = yir) (@i (tr) — i (tk)),
Yt +0) —yi (te +0) = y;(te) + B (y;(tr)) — ¥ (te) — Bi(yj (tr))
= (1= Bir)(y;(tr) — 5 (tk)),
thus
@itk + 0) — 2 (tk + 0)] = [1 = yarl |2 (tr) — 27 (te)] < |2s(te) — 27 (E)],
lyj (te +0) — yj (tk + 0)| = |1 = Sklly; (tr) — 5 ()] <y (te) — vy ()l
fori =1,2,...,n,j =1,2,...,m, k € Z". According to condition (H5), it can

always find a small enough constant n > 0 satisfying 1 — u(¢)n > 0 for all ¢t € T,
namely, —1 € BT such that

(*Ci_ + 7’})51 + Z a;"ijen(t,t — Tij (t))5n+j

o (4.2)
ZZ TV (HjNignyjen(t,t — oi(t) + HINjensien(t,t — viji(t))) <0
j=11=1

fori=1,2,...,n;

n
(—d; +nentj + D efiLiey(t,t — 7i(t))e;

=1

+ Z Z Wl (HiNyeien(t,t — 6500 (t) + HoNigyen(t,t — 05i,(t))) < 0
i=1r=1
for j=1,2,....,m
Now we define a Lyapunov function V = (01, ..., ¢n, V1, ..., %m)T, with
wi(t) = ey(t, 0)|xi(t) —xi (t)], te[-0,00]NT,i=1,2,...,n
Di(t) = eq(t, 0)ly; (1) —y; ()], ¢ € [-0,00]NT,j=1,2,...,m,
where ¢ € [—max{6,0},0] N'T. In view of ([@.1)), we obtain

R
= e (t, o) i(t) — 7 (1)] + eyo(t), ) sign(ai(t) — 7 (1)
% (= ettt +Za” (w3t = 725(8) = £y (¢ = 735)))

+

DD b (95wt = o ®)) gyt — vip (1))

=1

~

j=1
= 9505 (¢ = oi3u (D) gu (i (¢ = iz (1)) )
< eyt 0)las(t) = 1 (1) + €9 (0 (1) o) (4.3)

x (= e la() \+Z%L 5 (¢ = 7i5(8)) — v (¢ = 735(0)]
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>

j=11

+ HiNjlyi(t —viju(t)) —y[ (t — 'Uijl(t))D)

Ms

bz H 3Ny (t = oiju(t)) — y;(t —oij(t))]

Il
-

< ey(o (), 0) ((—¢7 +mlait) |+Z%L s (8 = 755 (£)) — (¢ = 735(1)

NE
NE

+ b (HiNily; (t — 0iju(t)) — y; (t — oiju(t))]

<

Il
-
o~

Il
ol

+ HiNjlyi(t = v (8) = wi (¢ = Uijz(t))|))

< (1+ ptn) (e +n)eit +Z%Len = T () (1 = 735 (1))

+

NE
NE

b (HiNiey (t,t — oiu(1))0;(t — oiu(t))

j=11=1

+ HiNje(t,t = viga(D)ut = vis(1)) ).

i @)

K2

< (U () (=5 + 0yt +ZeﬂL enltt = 75 (0)pilt = (1))

ZZ hin( (HiNyey(t.t = 6jin () @it — Gin(t))
ﬁ .

et w())w(t*oﬁr(w))),
fori=1,2,...,n,7=1,2,...,m. Also,
Qpl(tk +0) = ‘1 - 72k|901(tk) < CPi(tk)a 1=1,2,...,n, ke Z+7
ity +0) = |1 — §ulv;(te) < ¥j(tx), 7=1,2,....m, ke Z".

Let epr = maxi<i<n,1<j<mi€isEn+tjts €L = Mili<i<n i<j<mi€i,entj}, lo = (1 —
n m .

0)(Xizy |bw —xlo+22521 |9y, —Yjlo) /eL, where —p > 0 is a constant, ¢, —27|o =

SUP,e(—g,0)nt | Pa. () — 27 (0); [dy; — Yjlo = SuP e (g gyt |9y, (@) — 5 ()| Then

lpi(0)| = en(t, 0)|¢z,(0) — z;(0)] <eilo, 0€[—6,0]NT, i=1,2,...,n
|1/}1(Q)| = Bn(t, Q)‘gby, (U) - y;(@” < 5n+jl()5 S [70:0} mT, J = 1323 cee,

In the following, we will prove that |p;(t)| < €ilo, |¥;(t)] < €nyjlo, for t > 0,
1=1,2,...,n,5=1,2,...,m. If it is not true, no loss of generality, then there exist
some i and t1 (t; > 0) such that [p;, (t1)] = €50, [@5 (t1)]T > 0 and |¢;(t)| < eilo,

€ [*0,151]0']1‘, |¢J(t)| < 5n+j107 te [*é,tl]ﬁT, for i = 1,2,...,n, _] = 1,2,...,m
However, from and , we obtain

[io (t)]
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m
< (1 + p(ta)n) ((—C{O +m)eio + Y at i Ljeq(t,t — Tigi(t))e;

j=1

+ZZZ)%0]Z H Nlen t1,t1 — Uzojl(tl))€] —|—H1N en(t1,t1 — Um]l(h))&))l
j=11=1

<0,

this is a contradiction. So |p;(t)| < €ilo, |¥;(t)| < entjlo, for t >0,i=1,2,...,n
j=1,2,...,m. That is,

)

i=1

en(t, 0)|xi(t) — z; ()| < eilo < %(1 - Q)(Z |Gz — @i lo + Z |by; — y}‘\o)
=1

fort>0,7=1,2,...,n, and

en(t 0)lys () = 5 ()] < 2npslo < (Zm il + 164, ~ ujlo)
j=1

fort >0, 5=1,2,...,m, which means that

POREHCIES IMOERHOIR
< Peoy(t,0)(1 = 0)(n+m)( Y 16, (0) — i (@l (4.5)

i=1

+ > 190, (0) =y (@)lo)-
j=1

Denote =9 = on = —n/(1+pun) € R, N = N(o) =ep/em(l —0)(n+m) > 1, in
view of (4.5, we have

lo(t) = (0] < Neoolt,0)( Y I62,(0) ~ wi(ello + Z 94,(0) = 55 ()l ),

and we can conclude that the w-periodic solution of (|1.1)) is globally exponentially
stable and this completes the proof. [

5. AN ILLUSTRATIVE EXAMPLE

In this section, we give an example to illustrate the results in this article. Let
T = Upeo[2k, 2k + 1]. We will apply our main results to the BAM HHNNs with
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impulses and delays on time scales
xiA(t) = —q(t )+ Zalj ()5 (y; (¢t = 755(1)))
2D b gt — oot = ven) + 10, £ # b
sz(tk) = ( ‘(tk)) = —’}/ik(l‘i(tk)—x*(t)), 1=1,2, k=1,2,...,
yi(t) = ) + Zeﬂ i@t — 75(t)))
+ Z Z Rjir ()i (2i(t — Gir(t)))@r (2, (t = Djir () + J5 (1), t F# ty,
Ay;(te) = Bik(y;(te)) = =k (y;(te) —y; (), =12, k=12,...,
(5.1)
where
1 . 1 1
fi(z) = sm( 7 z), fa(x)=sin (ﬁz), g1(z) = arctan (ﬁx),
g2(x) = arctan( L x), p1(x) = cos (%x), pa(z) = cos( !

3
1 1
q1(x) = arccot (ﬁx), g2(x) = arccot (ﬁx)

Obviously, f;(x),g;(x)(j =1,2), pi(x), ¢;(x)(i = 1,2) satisfy (H2) and (H3), and

My =My =1Ly =Ly =H =Hy=1, N1=N2=g7
MleQZﬁlzigzﬁlzﬁgzl, NlZNQZ']T.
Take

a11(t) =1+ cos(2nt), aia(t) = 2+ cos(2nt),

a1 (t) = 2 + cos(2mt),
as2(t) = 3+ cos(2nt), ¢1(t) = 20 4 5sin(27t),

co(t) = 33 + 16 sin(27t),

Il(t) =1+ sin(27rt), IQ(t) =1+ COS(?’/Tt), blll(t) = b222(t) = 1 + 1SiIl(QT('t),

4 4
1 1 1 1
b112( ) = b212( ) = g g S(Q’]Tt), blgl(t) = bggl(t) = 5 —+ g COS(2’]’('1/L)7
1 1 1
bioo(t) = bo11(t) = G + g sin(27t), mEp =14+ 3 sin(2 + k),

6
Yo, = 1 + - cos(5+k?),k € ZT, eni(t) =1 +sin(2nt), eio(t) =1+ 2sin(27t),

e21(t) =1+ 2cos(27t), eaa(t) =3 +sin(2nt), di(t) = 21 + 6 cos(27t),
da(t) = 31 4 14 cos(2nt), J1(t) =2+ 3sin(2nt), Jo(t) = 3 + 2 cos(2nt),

1 1. 1 1
hlll(t) = hggg(t) = g + é s1n(27rt), hllg(t) = hglg(t) ==+ = COS(QTFt)7

6 6
1 1 1
hlgl(t) = hzgl(t) O —+ TO s1n(27rt) hlgg(t) = hgll(t) 12 —+ E COS(27Tt)
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2 4
o =1+ 3005(3 +k), dp=1+4 ?sin(9+ k), kezt.

One can verify that (H1) is satisfied, and w = 1, ¢; = 15, ¢; = 17, af; = 2,
aB =3, a;‘l =3, a;’Q =4, b;rn = b3_22 =1/2, bi_12 = bi‘—u =2/3, bi‘—Zl = bé‘_21 = 2/5,
bige = by = 1/3, 0 < i < 2(i = 1,2), dy = 15, dy = 17, ef; = 2, ef;, = 3,
e3 = 3, ey = 4, iy = hiyy = 1/4, by = hi1p = 1/3, hiy = hfy = 1/5,
his = hi;, = 1/6,0 < 81 < 2(i = 1,2), so, if we take 61 = 3 =3 = &4 = 1, we
can obtain

2 2 2
—c e+ ZGELJ‘EHJ‘ + ZZ bfjl (HjNigaqj + HiNje24)
= j=11=1
19
= —1 —_
5+5+ 1O7T <0,
2 2 2
—Cy 2+ Za;}ngerj + ZZ 2]1 H iNigat; + HiN; 52+l)
i=1 =1 1=1
19
-1 -
T+ 7+ 1O7T <0,

—d3 63+Z€11L €5 +ZZhW HiNT5i+ﬁTNZ-5T) =—-15+5+ %ﬂ <0,
=1 r=1

- PSRN 19
—dyes+ Ze%L i+ ;;hm iNoe; + H Nie,) = =17+ 7+ 07 <0
Conditions (H5) and (H6) are satisfied. From Theorem and we know that
(5.1) has at least one 1-periodic solution and this solution is exponential stable.

Conclusion. By using the continuation theorem of coincidence degree theory and
constructing some suitable Lyapunov functions, sufficient conditions are derived
to guarantee the stability and existence of periodic solutions for a class of BAM
HHNNs with impulses and delays on time scales. In fact, both continuous and
discrete systems, are very important in implementing and applications. But it is
troublesome to study the existence and stability of periodic solutions for continuous
and discrete systems respectively. Therefore, it is meaningful to study that on time
scales which can unify the continuous and discrete situations. The system we study
here gives an affirmative exemplum for this problem.
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