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SINGULAR ELLIPTIC SYSTEMS INVOLVING CONCAVE
TERMS AND CRITICAL CAFFARELLI-KOHN-NIRENBERG
EXPONENTS

MOHAMMED E. O. EL MOKHTAR

ABSTRACT. In this article, we establish the existence of at least four solutions
to a singular system with a concave term, a critical Caffarelli-Kohn-Nirenberg
exponent, and sign-changing weight functions. Our main tools are the Nehari
manifold and the mountain pass theorem.

1. INTRODUCTION

In this article, we consider the existence of multiple nontrivial nonnegative solu-
tions of the

—Lyqu=(a+ 1)|9L“|_Z‘J’h|u\°‘_1u|v|ﬂJrl + )\1\1:|_Cf1|u\q_2u in Q\{0}
—L,qv=(0+ 1)\x|_2*bh|u|a+1|v\ﬁ_1v + )\2|x|_cf2|v|q_2v in Q\{0} (1.1)
u=v=0 on 09,

where L, ,w = div(|z|~22Vw) — p|z|~2@FDw, Q is a bounded regular domain in
RM (N > 3) containing 0 in its interior, —0co < a < (N —2)/2, a < b < a+ 1,
1<qg<2 2,=2N/(N—-2+42(b—a)) is the critical Caffarelli-Kohn-Nirenberg
exponent, 0 < ¢ = q(a+ 1) + N(1 — q/2), —00 < p < fig := ((N — 2(a +1))/2)?,
«, (B are positive reals such that o+ 8 = 2, — 2, A1, A2 are real parameters, f1, fo
and h are functions defined on Q.

Elliptic systems have been widely studied in recent years, we refer the readers to
[T} [7] for regular systems which derive from potential. However, only a few results
for singular systems, we can cite [3, [7]. As noticed, when a =b=c¢ =0, h = 1,
qg=2and f; = fo =1, Liu and Han [I1] studied . By applying the mountain
pass theorem, they proved that, if 0 < pu < fig — 1 then, system admits one
positive solution for all Ay, Ay € (0,71(x)). Here, () denote the first eigenvalue
of the positive operator —A — p|z|~2 with Dirichlet boundary condition. Wu [L3]
proved that the system with 2 = 0, has at least two nontrivial nonnegative
solutions when a = b = ¢ = 0, the pair of the parameters (A1, A2) belong to a
certain subset of R% and under some conditions on the weight functions fi, f» and
h. For c=0,¢=1 and h =1, system has been studied by Bouchekif and El
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Mokhtar [2]. By using the Nehari manifold, they proved that there exists a positive
constant Ay such that admits two nontrivial solutions when \i, Ao satisfy
0 < Willlfulle, + Pollfollre, < (1/2)A0.

The starting point of the variational approach to our problem is the following
Caffarelli-Kohn-Nirenberg inequality [5], which ensures the existence of a positive
constant C, p such that

( / PR
RN

In this equation, if b = a+1, then 2, = 2 and we have the weighted Hardy inequality
[6]:

v

Zedy)?/? < Oa,b/ lz| 24| Vu|?dx, for all v € C°(RY). (1.2
RN

/ |x|_2(a+1)v2dx§(1/ﬂa)/ |2| 72| Vo|?dz, for all v € C°(RY).  (1.3)
RN RN

We introduce a weighted Sobolev spaces D}%(Q) and H,, := H,,(2) which are the
completion of the space C5°(RY) with respect to the norms

1/2
fullo = ( [ tal>Ivupaz) ",
Q
1/2
s = ([ (219 = ]} )

for —co < p < fig, respectively.
It is known that by weighted Hardy inequality, the norm |[u[|, . is equivalent to
le]lo,q- More explicitly, we have
(1= (1/f1a) max(p, 0))?[Jullo,0 < |ul
for all u € H,,.
Define the space H := H,, x H, which is endowed with the norm

)1/2

H,a S (1 - (1//7«1) min(,u,O))l/2||u||o,a,

1t )l = (e + 101150

From the boundlessness of € and the standard approximation arguments, it is easy
to see that ((1.2)) hold for any u € H,, in the sense

( / 2|~ JulPdz) P < Cy / 2] 20 Vo) V2, (1.4)

where C, , positive constant, 1 < p < 2N/(N —2), ¢ <p(a+1)+ N(1—p/2), and
n [13], if p < 2N/(N — 2) the embedding H,, — L,(, |z|~°) is compact, where
L, (€, || ~°) is the weighted L, space with norm

ulye = le-“fulPde).
Q
Since our approach is variational, we define the functional J := Jy, »,,, on ‘H by

J(U,U) = (1/2)“(u7 U)' Z,a - P(uav) - Q(u,v),

with
P(u,v) ::/ ([ ~2E R0+ o] da,
Q

Qu,v) = (1/q) /Q eSO faul? + Ao falv])da.
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A couple (u,v) € H is a weak solution of the system (L.1)) if it satisfies

<J/(u7 U)? (907 ¢)> = R(u, U) (<P, "/}> —S(u, U) (<P7 '(/}> - T(uv ’U)((p, w) =0
for all (p,¢) € H with

R(u, ) (0, ) = / (j2]72(VuVp + VoVi) — plz| =20+ (up + vp))
S(u,0)(, ) = / 2|22 (o + D)l o] o+ (5 + 1)l [o]*45)

T, o)) = [ ol Ouilult™ 0+ dafalol10).

Here (.,.) denotes the product in the duality H’, H, where H’ is the dual of H).
Let

. 7.0
oot weH,\ {0} (fQ |x‘_2*b u|2*d$)2/2* )
s [l v)IIZ.a

= inf .
M waye {0012 ([ 2|72t lulot | P+ da)2/2
From [I0], it is known that S, is achieved.

Lemma 1.1. Let Q be a domain (not necessarily bounded), —oco < p < [ig and
a+ 0 <2, —2. Then we have

& et 0t ety

With [(%)(ﬁﬁ-l)/?* + (%)_(O‘H)/?*] simply written as K («, 3).
Proof. The proof is essentially the same as in [1], with minor modifications. O

We put assumptions on h which is somewhere positive but which may change
sign in Q

(H1) h € C(Q) and ht = max{h,0} Z 0 in Q

(H2) There exists gy positive such that |h™ | = h(0) = max,cq h(z) > 00.

In our work, we research for critical points as the minimizers of the energy
functional associated with (1.1]) with the constraint defined by the Nehari manifold,
which are solutions of our system.

Let Ag be positive number and f;, fo be continuous functions such that

Ko = (Cag) ()Y D[S, K (e, B2 2 L(g)
and | f;(2)|co = sup,eq | fi(z)| for i = 1,2, where
2* - 2 _ 2 — q _
Lig) = (2 2\1/@Q-a)p_ 24 y11/(2.=2)
@)1= =) )

Now we state our main results as follows.

Theorem 1.2. Let fi, fo € L™®(Q). Assume that —co <a < (N —2)/2,0<c=
gla+1)+ N1 —-¢q/2), a+8+2=2,, —00 < p < fig, (H1) satisfied and A1, A2
satisfying 0 < (|A1][f1loo) @D + (|A2]] faloo) /=9 < A, then has at least
one positive solution.
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Theorem 1.3. In addition to the assumptions of the Theorem (1.2, if (H2) holds
and A1, Ao satisfy

0 < (Ml £1]o0) V=7 + (1Al faloe) VB < (1/2) Ao,
then (1.1) has at least two positive solutions.

Theorem 1.4. In addition to the assumptions of the Theorem assuming N >
max(3,6(a — b+ 1)), there exists a positive real Ay such that, if A1, Ao satisfy

0< (Ml f1lo0)E9 + (|Xa]| foloo) /79 < min((1/2)Ag, Ay),
then (1.1) has at least two positive solution and two opposite solutions.

This article is organized as follows. In Section 2, we give some preliminaries.
Section 3 and 4 are devoted to the proofs of Theorems and In the last
Section, we prove the Theorem

2. PRELIMINARIES

Definition 2.1. Let ¢ € R, E a Banach space and I € C!(E,R).
(i) (tn,vn)n is a Palais-Smale sequence at level ¢ ( in short (PS).) in E for I if
I(tun,vn) = ¢+ 0,(1) and I' (up, v,) = 0, (1),

where 0,,(1) tends to 0 as n approaches infinity.
(ii) We say that I satisfies the (PS). condition if any (PS). sequence in E for I
has a convergent subsequence.

Lemma 2.2. Let X Banach space, and J € C'(X,R) satisfying the Palais -Smale
condition. Suppose that J(0,0) =0 and that:

(i) there exist R > 0, r > 0 such that if ||(u,v)|| = R, then J(u,v) > r;
(ii) there exist (ug,vo) € X such that ||(uo,vo)|| > R and J(ug,vo) < 0.
Let ¢ = infer maxyejo,1)(J(7(t))) where
I'={y € C([0,1]; X) such that v(0) = (0,0) and v(1) = (ug, vo)},
then c is a critical value of J such that ¢ > r.

2.1. Nehari manifold. It is well known that J is of class C! in H and the solutions
of (1.1)) are the critical points of J which is not bounded below on H. Consider the
Nehari manifold

N = {(u,v) € H\{0,0} : <Jl(u7v)7 (u,v)) = 0},
Thus, (u,v) € N if and only if
1w, 0) 170 = 24 P(u,v) = Q(u, v) = 0. (2.1)

Note that N contains every nontrivial solution of (1.1). Moreover, we have the
following results.

Lemma 2.3. J is coercive and bounded from below on N .

Proof. If (u,v) € N, then by and the Holder inequality, we deduce that
J(u,v) = (26 = 2)/2:2)|(u, 0)|[7,.0 — (25 — 4)/249)Q(u, v)
2, — _
> (2= 2/29 )0 - (EED ((MA)VED (2

(Pl foloo) /A0 ) (Ca)?ll s ) |1
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Thus, J is coercive and bounded from below on N. O

Define
¢(u,v) = (J'(u,v), (u,v)).
Then, for (u,v) € N,
(@ (u,v), (w,0)) = 2[|(u, V)[I}, o — (20)*P(u,v) = qQ(u,v)
= 2= l(w,v)[}0 2424 — @) P(u,v) (2.3)
= (2. — 9)Q(u,v) = (22 = 2)[|(w, V)][} o-
Now, we split N into three parts:
Nt = {(u,v) € N : (¢ (u,v), (u,v)) >0}
NO = {(u,v) € N : (¢/(u,v), (u,v)) = 0}
N~ ={(u,v) € N : (¢ (u,v), (u,v)) < 0}.
We have the following results.

Lemma 2.4. Suppose that (ug,vo) is a local minimizer for J on N. Then, if
(ug,v0) & NO, (ug,vo) is a critical point of J.

Proof. If (ug,vo) is a local minimizer for J on N, then (ug,vp) is a solution of the
optimization problem
min J(u,v).
{(u,0):¢p(u,v)=0}
Hence, there exists a Lagrange multipliers # € R such that
J/(’LLO,U()) = quﬁ’(uo,vo) in H/
Thus,
<J/(u05 UO)) (U(), ’UQ)> = 9<¢/(U;0, ’UO), (U(), UO)>-
But (¢ (ug,v0), (ug,v0)) # 0, since (ug,vo) ¢ N°. Hence § = 0. This completes the
proof. ([l
Lemma 2.5. There exists a positive number Ay such that for all A1, Ao satisfying
0 < (Il faloe) /79 + (|allfaloc) 70 < Ao,
we have NO = (.
Proof. By contradiction, suppose N¥ # () and that
0 < (Ml f1loe) ™0 + (1Al faloe) VB0 < Ao
Then, by ([2.3) and for (u,v) € N, we have
1w, )20 = 226 = @)/ (2 = @) P(u,0) = (2 — ) /(2 = 2))Q(u,v)  (2.4)
Moreover, by the Holder inequality and the Sobolev embedding theorem, we obtain
(s 0) w0 = [(Su) K (a, B)]*+22 72 [(2 = g) /2.(2 — @) [T |oc] /372 (25)

and
[[(w, 0)] e < [(%)_1/(2_‘1)(“)\1”]”1|oo)1/(2_q) + (X2l f2loo) Y P79) (Ca g))-
(2.6)

From (2.5) and (2.6), we obtain (|A1]]f1]ec)™ @=9 + (|A2]|f2]e0) /=9 > Ay, which
contradicts an hypothesis. O
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Thus N = Nt UN~. Define

c:= inf J(u,v), c":= inf J(u,v), ¢ := inf J(u,v).
ueN ueN+ uEN —

In the sequel, we need the following Lemma.

Lemma 2.6. (i) For all A1, Ao with 0 < (|A1][f1]e0)™ @D + (|A2]|f2]00) /3~ <
Ay, one has ¢ < ¢t < 0.
(ii) For all Ay, A such that 0 < (|A1][f1]oo)Y =D+ (|A2]| f2]00) Y B9 < (1/2)Aq,
one has
¢” > Co = Co(A, A2y Sy L fullwer, s 1 fll#¢r,)
(2. —2) (2—9q) 2/(2,—2) 2,/(2.—2) 2./(2.—2)
—_ * K * * . * *

= (B Dyl V0 + (Dl alo) /) Co)".

Proof. (i) Let (u,v) € N*. By (2.3)), we have
(2= a)/2.2 = D]ll(w, 0)[[}.0 > Plu,v)

and so
T (u,v) = (=1/2)[|(w, 0) [0 + (2« = D) P(u,v)
2.(2.—q) —2(2, —1)(2—q)
_[ — ]H(U,U)Hi’a.
2.2(2, )
We conclude that ¢ < ¢t < 0.
(ii) Let (u,v) € N~. By (2.3)), we obtain

(2 = 0)/2.(2 = D (w, V)[4 < Plus,0).

Moreover, by (H1) and Sobolev embedding theorem, we have

P(u,v) < [K (o, B)]72/2(8,) 7221 |oc [ (u, 0)

2.
wa

This implies

P T e = AR X

for all w € N~. By (2.2)), we obtain
2, —q _
I 2 (2. = /220l ~ (25— D) (1o 2
+ (|)\2||f2|oo)1/(2_q)) (Cap) I, 0) 1], a-

Thus, for all (A1, A2) such that 0 < (|A1]]f1]e0) ™ =D +(| 2| f2]oe) /=D < (1/2)Ay,
we have J(u,v) > Cp. O

For each (u,v) € H with [, [#]72+Phlul*To|?+ dz > 0, we write

2
(2 - Q)”(uv U)”u,a ](2—(1)/2*(2*—(1) > 0.

tm = tII] X ) =
a (u U) [2*(2* _ q) fQ \z|—2*bh|u|a+1|v\ﬁ+ld$
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Lemma 2.7. Let A1, A2 real parameters such that 0 < [M|[| filln, + [X2|[| f2lln, <
Ao. For each (u,v) € H with [, |z|~2<*hlu|** | 1dz > 0, one has the following:

(i) If Q(u,v) < 0, then there exists a unique t= > t,, such that (t"u,t"v) € N~
and

J(t"u, t”v) = sup(tu, tv).
>0

(i1) If Q(u,v) > 0, then there exist unique t™ and t~ such that 0 < tT < t,, <t~,
(tTu,ttv) e NT, (t7u,t7v) e N7,

J(tTu,ttv) = inf J(tu,tv) and J(t u,t”v) = sup J(tu, tv).
0<t<t, >0

The proof of the above lemma is the same as in [4], with minor modifications.
Proposition 2.8 ([]). (i) For all A1, A2 such that
0 < (Aallfrloo) =2 + (Al foloc) V379 < A,

there exists a (PS).+ sequence in N'T.
(ii) For all Ay, Ay such that 0 < (|A1][f1]e0)Y G~ 4+(|A2]| f2]00) Y B9 < (1/2)Aq,
there exists a (PS).- sequence in N~ .

3. PrROOF OF THEOREM

Now, taking as a starting point the work of Tarantello [12], we establish the
existence of a local minimum for J on A/ 7T.

Proposition 3.1. For all A\, Ao with 0 < (|\1]|fi]ee)” @D 4 (|A2]| fo]oe) /9 <
Ao, the functional J has a minimizer (ug,vg ) € N and it satisfies:
(1) J(ug,vg) =c=ct,
(ii) (ug,vg) is a nontrivial solution of (L.1)).
Proof. Tf 0 < (A1 f1]00) Y @=D + (|A2]| f2]00) Y/ 39 < Ag, then by Proposition
i), there exists a (un,vn)n (PS).+ sequence in N'*, thus it bounded by Lemma
Then, there exists (ug,v) € H and we can extract a subsequence which will
denoted by (un, vy )n such that
(un,vn) — (ug,vd) weakly in H
(tnsvn) = (ug,vg)  weakly in (L2 (€, |z|~%))?
(tn,vp) — (ug,vg) strongly in (LY(Q, |x|¢))?
Uy, — u{f a.e in 2,

vy — vy a.ein Q.

(3.1)

Thus, by ( , (ug,vg) is a weak nontrivial solution of . Now, we show
that (un,vn) converges to (ug,vg) strongly in H. Suppose otherwise. By the
lower semi-continuity of the norm, then either |luf| .. < liminf, e [[tuna or
v e < iminf, oo [|Un]l e and we obtain

¢ < J(ug,vg) = (2« = 2)/22)[I(ug 00150 — (2 — 0)/2:0)Q(ug , vg)
< hnrrilng(un,vn) =c
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We obtain a contradiction. Therefore, (u,,v,) converge to (ug,vg) strongly in H.
Moreover, we have (ud,vj) € N'*. If not, then by Lemma [2.7] there are two num-
bers t and t;, uniquely defined so that (tJug,tdvy) € ./\/Jr and (t~ud,t7vf) €
N~. In particular, we have t§ <ty = 1. Smce

d d?
pn g 2J(tug,tvo+) =t > 0,

there exists t§ < t~ < tg such that J(tJud,tdvgd) < J(t"ug,t"vd). By Lemma
2.7 we obtain

J(tgud tdvg) < J(tud, t7od) < J(tgug tovg) = J(ugd,vg ),

which contradicts the fact that J(ug,vd) = c+. Since J(ug,vd) = J(lug |, |vg])
and (Juf|,|vg]) € N7T, then by Lemma 2.4, we may assume that (uj,vd) is a
nontrivial nonnegative solution of ([1.1)). By the Harnack inequality, we conclude

that uf > 0 and vg > 0, see for example [9]. O

J(tuar,tvg)u:tar =0 and

4. PROOF OF THEOREM [L3|

Next, we establish the existence of a local minimum for J on N~. For this, we
require the following Lemma.

Lemma 4.1. For all Ay, Ay such that 0 < (|A1]|f1leo)Y @D 4+ (| \2]| fa]oo) /P~ <
(1/2)Ao, the functional J has a minimizer (ug ,vy ) in N~ and it satisfies:
(i) J(ug,vg) =c¢™ >0,
(i) (ug,vq ) is a nontriwvial solution of (L.1) in H.
Proof. TE0 < (IA1]]f1]ee) ™ @=D 4+ (| Xa]] f2] 0o )/ ?~9 < (1/2)Ag, then by Proposition
(i) there exists a (un, vy )n, (PS).~ sequence in N7, thus it bounded by Lemma
Then, there exists (ug ,v, ) € H and we can extract a subsequence which will
denoted by (un, vy )n such that
(Un, vp) = (ug ,vy ) weakly in H
(nyvn) = (ug,vg)  weakly in (L*(Q, y[~"))
(tn,vn) — (ug,vy)  strongly in (LY(Q, |x|¢))?
Up — Ug  a.e in £,
v, — v, a.ein Q.
This implies P(un,vn) — P(ug,v; ), as n — oco. Moreover, by (H2) and (2.3)) we

obtain
P(uy,vn) > A((Z)H(Umvn)”i,av (4.1)

where, A(q) := (2—¢q)/2+(2«—q). By (2.5) and (4.1)) there exists a positive number
O = [A(Q K (a, B)]/ -2 (8,)2 /272,
such that
P(up,vy) > Ch. (4.2)

This implies P(ug , v ) > Ch.

Now, we prove that (uy,, vy, ), converges to (u , vy ) strongly in H. Suppose other-
wise. Then, either ||ug ||4,q < lminf, oo |[tn|/ua or |vg |upe < liminf, o [[vn]]4,a-
By Lemma there is a unique ¢, such that (t5ug,t5v, ) € N~. Since

(Un,vn) €N, J(Un,vy) > J(tun, tv,), forallt >0,
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we have

J(tgug ,to vy ) < nh_)rr;o J(ty Un,tg vp) < nlLIr;o I (Un,vp) =7,

and this is a contradiction. Hence, (upn, vn)n — (ug , vy ) strongly in H. Thus,
J(tn, vy) converges to J(ug,vy ) =c¢~ as n — +o0.

Since J(ug , vy ) = J(Jug |, |vg |) and (ug ,vy ) € N7, then by ([4.2) and Lemma [2.4]
we may assume that (ug , vy ) is a nontrivial nonnegative solution of (1.1). By the
maximum principle, we conclude that u, > 0 and v, > 0. (I

Now, we complete the proof of Theorem|[I.3] By Propositions[3.I]and Lemmal[d.1}
we obtain that (1.1)) has two positive solutions (ug,vy) € N and (ug,vy) € N ™.
Since NT NN~ = (J, this implies that (ud,vy) and (ug ,v, ) are distinct.

5. PROOF OF THEOREM [[4]
In this section, we consider the Nehari submanifold of N
N, = {(u,v) € H\{0,0} : (J'(u,v), (u,v)) =0 and ||(u,v)||.,q > 0 > 0}.
Thus, (u,v) € N, if and only if
1w, 0) 150 = 2 P(u,0) = Q(u,v) = 0 and || (w,v) 0 > 0 > 0.
Firstly, we need the following Lemmas.

Lemma 5.1. Under the hypothesis of theorem[1.], there exist oo, Ao > 0 such that
N, is nonempty for any X € (0,A2) and o € (0, 0p).

Proof. Fix (ug,vo) € H\{0,0} and let
g(t) = (J'(tug, tvo), (tug, tvg))
= 1%||(u0,v0) 12,4 — 2:* P(ug, vo) — tQ(uo, o).
Clearly g(0) = 0 and g(t) — —o0 as n — +o0o. Moreover, we have
g(1) = ||(UO>UO)||i,a — 2. P(ug,vo) — Q(uo,vo)
> [l (uo, v0)}1.0 — 21K (a, B)]72/2(8,0) =22 |1 ool (w0, w0) 1 77a]
= ((Aallfrlo) B0+ (Dol foloo) VD) I (w0, v0) 0

If || (w0, v0)|l p,a = 0 > 0 for

0<0<00= (INF]oc20(2: = 1)V ([K (0, B)]S,)> /2272,
|ht | € (0, a0) for ag = ([K (v, 3)]S,)%/?/(2.(2. — 1))2-=1/2 then there exists

Ag = [(Jh7 |oo2:(2 = D) ([K (e, §)]S,) "> /2) 7V 72 — @ x @,

where
© i= (2u(20 = 1)* (I ]oo)* 2K (01, B)]8) )2,
@ 1= (I |oo2+ (20 = D)([K (e B))S,) 727271/ 372

and there exists tg > 0 such that g(to) = 0. Thus, (touo,tove) € N, and N, is
nonempty for any A € (0, As). O
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Lemma 5.2. There exist M, Ay positive reals such that
(¢ (u,v), (u,v)) < =M <0
for (u,v) € N, and any A1, Ny satisfying
0 < (IMf1lo) 7% + (X2l foloo) /=7 < min((1/2)A0, As).-
Proof. Let (u,v) € N, then by , and the Holder inequality, allows us to

write
(@ (u,v), (u,0))
< s 0l a (A1) ED 4 (1ol foloo) VB 9) B, q) — (2. = 2)],
where B(p,q) := (2. — 1)(Cap)90% 2. Thus, if
0 < (Mllfileo) 70+ (Dallfoloo) VE77 < Ag = [(2. = 2)/ Ble, q));

and choosing Ay := min(Ag, A3) with Ay defined in Lemma then we obtain
that

(¢ (u,v), (u,v)) <0, for any (u,v) € N,. (5.1)

O

Lemma 5.3. Suppose N > max(3,6(a—b+1)) and [, |z|~2 hlu|** v Tldz > 0.
Then, there exist r and n positive constants such that
(i) we have
J(u,v) >n >0 for|[(u,v)||pa =1
(ii) there exists (o,w) € N, when ||(o,w)|| 0 > 7, with r = |[(u,v)|4.q, such
that J(o,w) < 0.

Proof. We assume that the minima of .J are realized by (ug,vd) and (ug , vy ). The
geometric conditions of the mountain pass theorem are satisfied. Indeed, we have

(i) By (2.3), and P(u,v) < [K(a, B)]7*/2(8,) /20" |oo | (w, 0) 54, we

obtain

I(u,v) > [(1/2) = (2 = 2)/(2« = @)q]ll(w, 0)I[},.0 = Call(w,0)] 70

where Cy = [K (o, 8)]~2/2(S,)~2+/2|h* | Using the function I(x) = z(2. — x) and
if N > max(3,6(a — b+ 1)), we obtain that [(1/2) — (2. — 2)/(2« — q)q] > 0 for
1 < g < 2. Thus, there exist 7, 7 > 0 such that

J(u,v) >n >0 when r=|(u,v)|yq is small.
(ii) Let ¢ > 0. Then for all (¢,v) € N,
J(tp. 1) = (£2/2) (0, V)7 — ()P (o, 9) — (t7/0)Q(¢, ).
Letting (o,w) = (t¢, ty) for t large enough. Since

P(e,v) := / |2 Rl g|* P d > 0,
Q
we obtain J(o,w) < 0. For ¢ large enough we can ensure ||(o,w)||,a > 7. O
Let I and ¢ defined by

= {’Y: [Ov 1} - QI’Y(O):(’ME,UO—), 7(1):(1‘3’@(—;)}7

:= inf t))).
¢ JQHJQ}S‘E(J(W( )
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Proof of Theorem[I]] If
(Ml filoo) B2 4+ (1Aa]| f2]o0) /P79 < min((1/2)Ag, Ay),

then, by the Lemma and Proposition (ii), the function J satisfying the
Palais-Smale condition on N,. Moreover, from the Lemmas and there
exists (uc, v.) such that

J(ue,ve) = ¢ and  (ue,v.) € N,

Thus (ue,v.) is the third solution of our system such that (u.,v.) # (ug,vg) and
(Ue,ve) # (ug,vg ). Since (Sx, ,,.) is odd with respect (u,v), we obtain that
(—ue, —v.) is also a solution of (1.1)). O
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