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SINGULAR ELLIPTIC SYSTEMS INVOLVING CONCAVE
TERMS AND CRITICAL CAFFARELLI-KOHN-NIRENBERG

EXPONENTS

MOHAMMED E. O. EL MOKHTAR

Abstract. In this article, we establish the existence of at least four solutions
to a singular system with a concave term, a critical Caffarelli-Kohn-Nirenberg
exponent, and sign-changing weight functions. Our main tools are the Nehari
manifold and the mountain pass theorem.

1. Introduction

In this article, we consider the existence of multiple nontrivial nonnegative solu-
tions of the

−Lµ,au = (α+ 1)|x|−2∗bh|u|α−1u|v|β+1 + λ1|x|−cf1|u|q−2u in Ω\{0}

−Lµ,av = (β + 1)|x|−2∗bh|u|α+1|v|β−1v + λ2|x|−cf2|v|q−2v in Ω\{0}
u = v = 0 on ∂Ω,

(1.1)

where Lµ,aw := div(|x|−2a∇w) − µ|x|−2(a+1)w, Ω is a bounded regular domain in
RN (N ≥ 3) containing 0 in its interior, −∞ < a < (N − 2)/2, a ≤ b < a + 1,
1 < q < 2, 2∗ = 2N/(N − 2 + 2(b − a)) is the critical Caffarelli-Kohn-Nirenberg
exponent, 0 < c = q(a + 1) + N(1 − q/2), −∞ < µ < µ̄a := ((N − 2(a + 1))/2)2,
α, β are positive reals such that α+ β = 2∗ − 2, λ1, λ2 are real parameters, f1, f2
and h are functions defined on Ω̄.

Elliptic systems have been widely studied in recent years, we refer the readers to
[1, 7] for regular systems which derive from potential. However, only a few results
for singular systems, we can cite [3, 7]. As noticed, when a = b = c = 0, h ≡ 1,
q = 2 and f1 ≡ f2 ≡ 1, Liu and Han [11] studied (1.1). By applying the mountain
pass theorem, they proved that, if 0 < µ ≤ µ̄0 − 1 then, system (1.1) admits one
positive solution for all λ1, λ2 ∈ (0, η1(µ)). Here, η1(µ) denote the first eigenvalue
of the positive operator −∆ − µ|x|−2 with Dirichlet boundary condition. Wu [13]
proved that the system (1.1) with µ = 0, has at least two nontrivial nonnegative
solutions when a = b = c = 0, the pair of the parameters (λ1, λ2) belong to a
certain subset of R2 and under some conditions on the weight functions f1, f2 and
h. For c = 0, q = 1 and h ≡ 1, system (1.1) has been studied by Bouchekif and El
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Mokhtar [2]. By using the Nehari manifold, they proved that there exists a positive
constant Λ0 such that (1.1) admits two nontrivial solutions when λ1, λ2 satisfy
0 < |λ1|‖f1‖H′

µ
+ |λ2|‖f2‖H′

µ
< (1/2)Λ0.

The starting point of the variational approach to our problem is the following
Caffarelli-Kohn-Nirenberg inequality [5], which ensures the existence of a positive
constant Ca,b such that

(
∫

RN

|x|−2∗b|v|2∗dx)2/2∗ ≤ Ca,b

∫
RN

|x|−2a|∇v|2dx, for all v ∈ C∞0 (RN ). (1.2)

In this equation, if b = a+1, then 2∗ = 2 and we have the weighted Hardy inequality
[6]: ∫

RN

|x|−2(a+1)v2dx ≤ (1/µ̄a)
∫

RN

|x|−2a|∇v|2dx, for all v ∈ C∞0 (RN ). (1.3)

We introduce a weighted Sobolev spaces D1,2
a (Ω) and Hµ := Hµ(Ω) which are the

completion of the space C∞0 (RN ) with respect to the norms

‖u‖0,a =
( ∫

Ω

|x|−2a|∇u|2dx
)1/2

,

‖u‖µ,a =
( ∫

Ω

(|x|−2a|∇u|2 − µ|y|−2(a+1)|u|2)dx
)1/2

for −∞ < µ < µ̄a, respectively.
It is known that by weighted Hardy inequality, the norm ‖u‖µ,a is equivalent to

‖u‖0,a. More explicitly, we have

(1− (1/µ̄a) max(µ, 0))1/2‖u‖0,a ≤ ‖u‖µ,a ≤ (1− (1/µ̄a) min(µ, 0))1/2‖u‖0,a,

for all u ∈ Hµ.
Define the space H := Hµ ×Hµ which is endowed with the norm

‖(u, v)‖µ,a =
(
‖u‖2µ,a + ‖v‖2µ,a

)1/2
.

From the boundlessness of Ω and the standard approximation arguments, it is easy
to see that (1.2) hold for any u ∈ Hµ in the sense

(
∫

Ω

|x|−c|u|pdx)1/p ≤ Ca,p(
∫

Ω

|x|−2a|∇v|2dx)1/2, (1.4)

where Ca,p positive constant, 1 ≤ p ≤ 2N/(N − 2), c ≤ p(a+ 1) +N(1− p/2), and
in [13], if p < 2N/(N − 2) the embedding Hµ ↪→ Lp(Ω, |x|−c) is compact, where
Lp(Ω, |x|−c) is the weighted Lp space with norm

|u|p,c = (
∫

Ω

|x|−c|u|pdx)1/p.

Since our approach is variational, we define the functional J := Jλ1,λ2,µ on H by

J(u, v) := (1/2)‖(u, v)‖2µ,a − P (u, v)−Q(u, v),

with

P (u, v) :=
∫

Ω

|x|−2∗bh|u|α+1|v|β+1dx,

Q(u, v) := (1/q)
∫

Ω

|x|−c(λ1f1|u|q + λ2f2|v|q)dx.
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A couple (u, v) ∈ H is a weak solution of the system (1.1) if it satisfies

〈J ′(u, v), (ϕ,ψ)〉 := R(u, v)(ϕ,ψ)− S(u, v)(ϕ,ψ)− T (u, v)(ϕ,ψ) = 0

for all (ϕ,ψ) ∈ H with

R(u, v)(ϕ,ψ) :=
∫

Ω

(
|x|−2a(∇u∇ϕ+∇v∇ψ)− µ|x|−2(a+1)(uϕ+ vψ)

)
S(u, v)(ϕ,ψ) :=

∫
Ω

|x|−2∗bh((α+ 1)|u|α|v|β+1ϕ+ (β + 1)|u|α+1|v|βψ)

T (u, v)(ϕ,ψ) :=
∫

Ω

|x|−c(λ1f1|u|q−1ϕ+ λ2f2|v|q−1ψ).

Here 〈., .〉 denotes the product in the duality H′, H, where H′ is the dual of H).
Let

Sµ := inf
u∈Hµ\{0}

‖u‖2µ,a

(
∫
Ω
|x|−2∗b|u|2∗dx)2/2∗

,

S̃µ := inf
(u,v)∈(H\{(0,0)})2

‖(u, v)‖2µ,a

(
∫
Ω
|x|−2∗b|u|α+1|v|β+1dx)2/2∗

.

From [10], it is known that Sµ is achieved.

Lemma 1.1. Let Ω be a domain (not necessarily bounded), −∞ < µ < µ̄a and
α+ β ≤ 2∗ − 2. Then we have

S̃µ :=
[
(
α+ 1
β + 1

)(β+1)/2∗ + (
α+ 1
β + 1

)−(α+1)/2∗
]
Sµ.

With [(α+1
β+1 )(β+1)/2∗ + (α+1

β+1 )−(α+1)/2∗ ] simply written as K(α, β).

Proof. The proof is essentially the same as in [1], with minor modifications. �

We put assumptions on h which is somewhere positive but which may change
sign in Ω̄

(H1) h ∈ C(Ω̄) and h+ = max{h, 0} 6≡ 0 in Ω
(H2) There exists %0 positive such that |h+|∞ = h(0) = maxx∈Ω̄ h(x) > %0.
In our work, we research for critical points as the minimizers of the energy

functional associated with (1.1) with the constraint defined by the Nehari manifold,
which are solutions of our system.

Let Λ0 be positive number and f1, f2 be continuous functions such that

Λ0 := (Ca,q)−q(|h+|∞)−1/(2∗−2)[(Sµ)K(α, β)]2∗/2(2∗−2)L(q)

and |fi(x)|∞ = supx∈Ω̄ |fi(x)| for i = 1, 2, where

L(q) := (
2∗ − 2
2∗ − q

)1/(2−q)[(
2− q

2∗(2∗ − q)
)]1/(2∗−2).

Now we state our main results as follows.

Theorem 1.2. Let f1, f2 ∈ L∞(Ω). Assume that −∞ < a < (N − 2)/2, 0 < c =
q(a + 1) + N(1 − q/2), α + β + 2 = 2∗, −∞ < µ < µ̄a, (H1) satisfied and λ1, λ2

satisfying 0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < Λ0, then (1.1) has at least
one positive solution.
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Theorem 1.3. In addition to the assumptions of the Theorem 1.2, if (H2) holds
and λ1, λ2 satisfy

0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < (1/2)Λ0,

then (1.1) has at least two positive solutions.

Theorem 1.4. In addition to the assumptions of the Theorem 1.3, assuming N ≥
max(3, 6(a− b+ 1)), there exists a positive real Λ1 such that, if λ1, λ2 satisfy

0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < min((1/2)Λ0,Λ1),

then (1.1) has at least two positive solution and two opposite solutions.

This article is organized as follows. In Section 2, we give some preliminaries.
Section 3 and 4 are devoted to the proofs of Theorems 1.2 and 1.3. In the last
Section, we prove the Theorem 1.4.

2. Preliminaries

Definition 2.1. Let c ∈ R, E a Banach space and I ∈ C1(E,R).
(i) (un, vn)n is a Palais-Smale sequence at level c ( in short (PS)c) in E for I if

I(un, vn) = c+ on(1) and I ′(un, vn) = on(1),

where on(1) tends to 0 as n approaches infinity.
(ii) We say that I satisfies the (PS)c condition if any (PS)c sequence in E for I

has a convergent subsequence.

Lemma 2.2. Let X Banach space, and J ∈ C1(X,R) satisfying the Palais -Smale
condition. Suppose that J(0, 0) = 0 and that:

(i) there exist R > 0, r > 0 such that if ‖(u, v)‖ = R, then J(u, v) ≥ r;
(ii) there exist (u0, v0) ∈ X such that ‖(u0, v0)‖ > R and J(u0, v0) ≤ 0.

Let c = infγ∈Γ maxt∈[0,1](J(γ(t))) where

Γ = {γ ∈ C([0, 1];X) such that γ(0) = (0, 0) and γ(1) = (u0, v0)},
then c is a critical value of J such that c ≥ r.

2.1. Nehari manifold. It is well known that J is of class C1 inH and the solutions
of (1.1) are the critical points of J which is not bounded below on H. Consider the
Nehari manifold

N = {(u, v) ∈ H\{0, 0} : 〈J ′(u, v), (u, v)〉 = 0},
Thus, (u, v) ∈ N if and only if

‖(u, v)‖2µ,a − 2∗P (u, v)−Q(u, v) = 0. (2.1)

Note that N contains every nontrivial solution of (1.1). Moreover, we have the
following results.

Lemma 2.3. J is coercive and bounded from below on N .

Proof. If (u, v) ∈ N , then by (2.1) and the Hölder inequality, we deduce that

J(u, v) = ((2∗ − 2)/2∗2)‖(u, v)‖2µ,a − ((2∗ − q)/2∗q)Q(u, v)

≥ ((2∗ − 2)/2∗2)‖(u, v)‖2µ,a − (
(2∗ − q)

2∗q
)
(
(|λ1||f1|∞)1/(2−q)

+ (|λ2||f2|∞)1/(2−q)
)
(Ca,p)q‖(u, v)‖q

µ,a.

(2.2)
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Thus, J is coercive and bounded from below on N . �

Define
φ(u, v) = 〈J ′(u, v), (u, v)〉.

Then, for (u, v) ∈ N ,

〈φ′(u, v), (u, v)〉 = 2‖(u, v)‖2µ,a − (2∗)2P (u, v)− qQ(u, v)

= (2− q)‖(u, v)‖2µ,a − 2∗(2∗ − q)P (u, v)

= (2∗ − q)Q(u, v)− (2∗ − 2)‖(u, v)‖2µ,a.

(2.3)

Now, we split N into three parts:

N+ = {(u, v) ∈ N : 〈φ′(u, v), (u, v)〉 > 0}
N 0 = {(u, v) ∈ N : 〈φ′(u, v), (u, v)〉 = 0}
N− = {(u, v) ∈ N : 〈φ′(u, v), (u, v)〉 < 0}.

We have the following results.

Lemma 2.4. Suppose that (u0, v0) is a local minimizer for J on N . Then, if
(u0, v0) /∈ N 0, (u0, v0) is a critical point of J .

Proof. If (u0, v0) is a local minimizer for J on N , then (u0, v0) is a solution of the
optimization problem

min
{(u,v):φ(u,v)=0}

J(u, v).

Hence, there exists a Lagrange multipliers θ ∈ R such that

J ′(u0, v0) = θφ′(u0, v0) in H′

Thus,
〈J ′(u0, v0), (u0, v0)〉 = θ〈φ′(u0, v0), (u0, v0)〉.

But 〈φ′(u0, v0), (u0, v0)〉 6= 0, since (u0, v0) /∈ N 0. Hence θ = 0. This completes the
proof. �

Lemma 2.5. There exists a positive number Λ0 such that for all λ1, λ2 satisfying

0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < Λ0,

we have N 0 = ∅.

Proof. By contradiction, suppose N 0 6= ∅ and that

0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < Λ0.

Then, by (2.3) and for (u, v) ∈ N 0, we have

‖(u, v)‖2µ,a = 2∗(2∗ − q)/(2− q)P (u, v) = ((2∗ − q)/(2∗ − 2))Q(u, v) (2.4)

Moreover, by the Hölder inequality and the Sobolev embedding theorem, we obtain

‖(u, v)‖µ,a ≥ [(Sµ)K(α, β)]2∗/2(2∗−2)[(2− q)/2∗(2∗ − q)|h+|∞]−1/(2∗−2) (2.5)

and

‖(u, v)‖µ,a ≤ [(
2∗ − q

2∗ − 2
)−1/(2−q)((|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q))(Ca,q)q].

(2.6)
From (2.5) and (2.6), we obtain (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) ≥ Λ0, which
contradicts an hypothesis. �
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Thus N = N+ ∪N−. Define

c := inf
u∈N

J(u, v), c+ := inf
u∈N+

J(u, v), c− := inf
u∈N−

J(u, v).

In the sequel, we need the following Lemma.

Lemma 2.6. (i) For all λ1, λ2 with 0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) <
Λ0, one has c ≤ c+ < 0.

(ii) For all λ1, λ2 such that 0 < (|λ1||f1|∞)1/(2−q)+(|λ2||f2|∞)1/(2−q) < (1/2)Λ0,
one has

c− > C0 = C0(λ1, λ2, Sµ, ‖f1‖H′
µ
, ‖f2‖H′

µ
)

= (
(2∗ − 2)

2∗2
)[

(2− q)
2∗(2∗ − q)|h+|∞

]2/(2∗−2)[K(α, β)]2∗/(2∗−2)(Sµ)2∗/(2∗−2)

− (
(2∗ − q)

2∗q
)((|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q))(Ca,q)q.

Proof. (i) Let (u, v) ∈ N+. By (2.3), we have

[(2− q)/2∗(2∗ − 1)]‖(u, v)‖2µ,a > P (u, v)

and so

J(u, v) = (−1/2)‖(u, v)‖2µ,a + (2∗ − 1)P (u, v)

< −[
2∗(2∗ − q)− 2(2∗ − 1)(2− q)

2∗2(2∗ − q)
]‖(u, v)‖2µ,a.

We conclude that c ≤ c+ < 0.
(ii) Let (u, v) ∈ N−. By (2.3), we obtain

[(2− q)/2∗(2∗ − q)]‖(u, v)‖2µ,a < P (u, v).

Moreover, by (H1) and Sobolev embedding theorem, we have

P (u, v) ≤ [K(α, β)]−2∗/2(Sµ)−2∗/2|h+|∞‖(u, v)‖2∗µ,a.

This implies

‖(u, v)‖µ,a > [(Sµ)K(α, β)]2∗/2(2∗−2)[
(2− q)

2∗(2∗ − q)|h+|∞
]−1/(2∗−2) (2.7)

for all u ∈ N−. By (2.2), we obtain

J(u, v) ≥ ((2∗ − 2)/2∗2)‖(u, v)‖2µ,a − (
(2∗ − q)

2∗q
)
(
(|λ1||f1|∞)1/(2−q)

+ (|λ2||f2|∞)1/(2−q)
)
(Ca,p)q‖(u, v)‖q

µ,a.

Thus, for all (λ1, λ2) such that 0 < (|λ1||f1|∞)1/(2−q)+(|λ2||f2|∞)1/(2−q) < (1/2)Λ0,
we have J(u, v) ≥ C0. �

For each (u, v) ∈ H with
∫
Ω
|x|−2∗bh|u|α+1|v|β+1dx > 0, we write

tm := tmax(u, v) = [
(2− q)‖(u, v)‖2µ,a

2∗(2∗ − q)
∫
Ω
|x|−2∗bh|u|α+1|v|β+1dx

](2−q)/2∗(2∗−q) > 0.



EJDE-2012/39 SINGULAR ELLIPTIC SYSTEMS 7

Lemma 2.7. Let λ1, λ2 real parameters such that 0 < |λ1|‖f1‖H′
µ

+ |λ2|‖f2‖H′
µ
<

Λ0. For each (u, v) ∈ H with
∫
Ω
|x|−2∗bh|u|α+1|v|β+1dx > 0, one has the following:

(i) If Q(u, v) ≤ 0, then there exists a unique t− > tm such that (t−u, t−v) ∈ N−

and
J(t−u, t−v) = sup

t≥0
(tu, tv).

(ii) If Q(u, v) > 0, then there exist unique t+ and t− such that 0 < t+ < tm < t−,
(t+u, t+v) ∈ N+, (t−u, t−v) ∈ N−,

J(t+u, t+v) = inf
0≤t≤tm

J(tu, tv) and J(t−u, t−v) = sup
t≥0

J(tu, tv).

The proof of the above lemma is the same as in [4], with minor modifications.

Proposition 2.8 ([4]). (i) For all λ1, λ2 such that

0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < Λ0,

there exists a (PS)c+ sequence in N+.
(ii) For all λ1, λ2 such that 0 < (|λ1||f1|∞)1/(2−q)+(|λ2||f2|∞)1/(2−q) < (1/2)Λ0,

there exists a (PS)c− sequence in N−.

3. Proof of Theorem 1.2

Now, taking as a starting point the work of Tarantello [12], we establish the
existence of a local minimum for J on N+.

Proposition 3.1. For all λ1, λ2 with 0 < (|λ1||f1|∞)1/(2−q) +(|λ2||f2|∞)1/(2−q) <
Λ0, the functional J has a minimizer (u+

0 , v
+
0 ) ∈ N+ and it satisfies:

(i) J(u+
0 , v

+
0 ) = c = c+,

(ii) (u+
0 , v

+
0 ) is a nontrivial solution of (1.1).

Proof. If 0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < Λ0, then by Proposition 2.8
(i), there exists a (un, vn)n (PS)c+ sequence in N+, thus it bounded by Lemma
2.3. Then, there exists (u+

0 , v
+
0 ) ∈ H and we can extract a subsequence which will

denoted by (un, vn)n such that

(un, vn) ⇀ (u+
0 , v

+
0 ) weakly in H

(un, vn) ⇀ (u+
0 , v

+
0 ) weakly in (L2∗(Ω, |x|−2∗b))2

(un, vn) → (u+
0 , v

+
0 ) strongly in (Lq(Ω, |x|−c))2

un → u+
0 a.e in Ω,

vn → v+
0 a.e in Ω.

(3.1)

Thus, by (3.1), (u+
0 , v

+
0 ) is a weak nontrivial solution of (1.1). Now, we show

that (un, vn) converges to (u+
0 , v

+
0 ) strongly in H. Suppose otherwise. By the

lower semi-continuity of the norm, then either ‖u+
0 ‖µ,a < lim infn→∞ ‖un‖µ,a or

‖v+
0 ‖µ,a < lim infn→∞ ‖vn‖µ,a and we obtain

c ≤ J(u+
0 , v

+
0 ) = ((2∗ − 2)/2∗2)‖(u+

0 , v
+
0 )‖2µ,a − ((2∗ − q)/2∗q)Q(u+

0 , v
+
0 )

< lim inf
n→∞

J(un, vn) = c.
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We obtain a contradiction. Therefore, (un, vn) converge to (u+
0 , v

+
0 ) strongly in H.

Moreover, we have (u+
0 , v

+
0 ) ∈ N+. If not, then by Lemma 2.7, there are two num-

bers t+0 and t−0 , uniquely defined so that (t+0 u
+
0 , t

+
0 v

+
0 ) ∈ N+ and (t−u+

0 , t
−v+

0 ) ∈
N−. In particular, we have t+0 < t−0 = 1. Since

d

dt
J(tu+

0 , tv
+
0 )�t=t+0

= 0 and
d2

dt2
J(tu+

0 , tv
+
0 )�t=t+0

> 0,

there exists t+0 < t− ≤ t−0 such that J(t+0 u
+
0 , t

+
0 v

+
0 ) < J(t−u+

0 , t
−v+

0 ). By Lemma
2.7, we obtain

J(t+0 u
+
0 , t

+
0 v

+
0 ) < J(t−u+

0 , t
−v+

0 ) < J(t−0 u
+
0 , t

−
0 v

+
0 ) = J(u+

0 , v
+
0 ),

which contradicts the fact that J(u+
0 , v

+
0 ) = c+. Since J(u+

0 , v
+
0 ) = J(|u+

0 |, |v
+
0 |)

and (|u+
0 |, |v

+
0 |) ∈ N+, then by Lemma 2.4, we may assume that (u+

0 , v
+
0 ) is a

nontrivial nonnegative solution of (1.1). By the Harnack inequality, we conclude
that u+

0 > 0 and v+
0 > 0, see for example [9]. �

4. Proof of Theorem 1.3

Next, we establish the existence of a local minimum for J on N−. For this, we
require the following Lemma.

Lemma 4.1. For all λ1, λ2 such that 0 < (|λ1||f1|∞)1/(2−q) +(|λ2||f2|∞)1/(2−q) <
(1/2)Λ0, the functional J has a minimizer (u−0 , v

−
0 ) in N− and it satisfies:

(i) J(u−0 , v
−
0 ) = c− > 0,

(ii) (u−0 , v
−
0 ) is a nontrivial solution of (1.1) in H.

Proof. If 0 < (|λ1||f1|∞)1/(2−q)+(|λ2||f2|∞)1/(2−q) < (1/2)Λ0, then by Proposition
2.8 (ii) there exists a (un, vn)n, (PS)c− sequence in N−, thus it bounded by Lemma
2.3. Then, there exists (u−0 , v

−
0 ) ∈ H and we can extract a subsequence which will

denoted by (un, vn)n such that

(un, vn) ⇀ (u−0 , v
−
0 ) weakly in H

(un, vn) ⇀ (u−0 , v
−
0 ) weakly in (L2∗(Ω, |y|−2∗b))2

(un, vn) → (u−0 , v
−
0 ) strongly in (Lq(Ω, |x|−c))2

un → u−0 a.e in Ω,

vn → v−0 a.e in Ω.

This implies P (un, vn) → P (u−0 , v
−
0 ), as n → ∞. Moreover, by (H2) and (2.3) we

obtain
P (un, vn) > A(q)‖(un, vn)‖2µ,a, (4.1)

where, A(q) := (2−q)/2∗(2∗−q). By (2.5) and (4.1) there exists a positive number

C1 := [A(q)K(α, β)]2∗/(2∗−2)(Sµ)2∗/(2∗−2),

such that
P (un, vn) > C1. (4.2)

This implies P (u−0 , v
−
0 ) ≥ C1.

Now, we prove that (un, vn)n converges to (u−0 , v
−
0 ) strongly inH. Suppose other-

wise. Then, either ‖u−0 ‖µ,a < lim infn→∞ ‖un‖µ,a or ‖v−0 ‖µ,a < lim infn→∞ ‖vn‖µ,a.
By Lemma 2.7 there is a unique t−0 such that (t−0 u

−
0 , t

−
0 v

−
0 ) ∈ N−. Since

(un, vn) ∈ N−, J(un, vn) ≥ J(tun, tvn), for all t ≥ 0,
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we have

J(t−0 u
−
0 , t

−
0 v

−
0 ) < lim

n→∞
J(t−0 un, t

−
0 vn) ≤ lim

n→∞
J(un, vn) = c−,

and this is a contradiction. Hence, (un, vn)n → (u−0 , v
−
0 ) strongly in H. Thus,

J(un, vn) converges to J(u−0 , v
−
0 ) = c− as n→ +∞.

Since J(u−0 , v
−
0 ) = J(|u−0 |, |v

−
0 |) and (u−0 , v

−
0 ) ∈ N−, then by (4.2) and Lemma 2.4,

we may assume that (u−0 , v
−
0 ) is a nontrivial nonnegative solution of (1.1). By the

maximum principle, we conclude that u−0 > 0 and v−0 > 0. �

Now, we complete the proof of Theorem 1.3. By Propositions 3.1 and Lemma 4.1,
we obtain that (1.1) has two positive solutions (u+

0 , v
+
0 ) ∈ N+ and (u−0 , v

−
0 ) ∈ N−.

Since N+ ∩N− = ∅, this implies that (u+
0 , v

+
0 ) and (u−0 , v

−
0 ) are distinct.

5. Proof of Theorem 1.4

In this section, we consider the Nehari submanifold of N

N% = {(u, v) ∈ H\{0, 0} : 〈J ′(u, v), (u, v)〉 = 0 and ‖(u, v)‖µ,a ≥ % > 0}.

Thus, (u, v) ∈ N% if and only if

‖(u, v)‖2µ,a − 2∗P (u, v)−Q(u, v) = 0 and ‖(u, v)‖µ,a ≥ % > 0.

Firstly, we need the following Lemmas.

Lemma 5.1. Under the hypothesis of theorem 1.4, there exist %0, Λ2 > 0 such that
N% is nonempty for any λ ∈ (0,Λ2) and % ∈ (0, %0).

Proof. Fix (u0, v0) ∈ H\{0, 0} and let

g(t) = 〈J ′(tu0, tv0), (tu0, tv0)〉
= t2‖(u0, v0)‖2µ,a − 2∗t2∗P (u0, v0)− tQ(u0, v0).

Clearly g(0) = 0 and g(t) → −∞ as n→ +∞. Moreover, we have

g(1) = ‖(u0, v0)‖2µ,a − 2∗P (u0, v0)−Q(u0, v0)

≥ [‖(u0, v0)‖2µ,a − 2∗[K(α, β)]−2∗/2(Sµ)−2∗/2|h+|∞‖(u0, v0)‖2∗µ,a]

− ((|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q))‖(u0, v0)‖µ,a.

If ‖(u0, v0)‖µ,a ≥ % > 0 for

0 < % < %0 = (|h+|∞2∗(2∗ − 1))−1/(2∗−2)([K(α, β)]Sµ)2∗/2(2∗−2),

|h+|∞ ∈ (0, α0) for α0 = ([K(α, β)]Sµ)2∗/2/(2∗(2∗ − 1))(2∗−1)/2∗ , then there exists

Λ2 := [(|h+|∞2∗(2∗ − 1))([K(α, β)]Sµ)−2∗/2]−1/(2∗−2) −Θ× Φ,

where

Θ := (2∗(2∗ − 1))2∗−1((|h+|∞)2∗/2[K(α, β)]Sµ)−(2∗)
2/2,

Φ := [(|h+|∞2∗(2∗ − 1))([K(α, β)]Sµ)−2∗/2]−1/(2∗−2)

and there exists t0 > 0 such that g(t0) = 0. Thus, (t0u0, t0v0) ∈ N% and N% is
nonempty for any λ ∈ (0,Λ2). �
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Lemma 5.2. There exist M , Λ1 positive reals such that

〈φ′(u, v), (u, v)〉 < −M < 0

for (u, v) ∈ N% and any λ1, λ2 satisfying

0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < min((1/2)Λ0,Λ1).

Proof. Let (u, v) ∈ N%, then by (2.1), (2.3) and the Holder inequality, allows us to
write

〈φ′(u, v), (u, v)〉

≤ ‖(un, vn)‖2µ,a[((|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q))B(%, q)− (2∗ − 2)],

where B(%, q) := (2∗ − 1)(Ca,p)q%q−2. Thus, if

0 < (|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < Λ3 = [(2∗ − 2)/B(%, q)],

and choosing Λ1 := min(Λ2,Λ3) with Λ2 defined in Lemma 5.1, then we obtain
that

〈φ′(u, v), (u, v)〉 < 0, for any (u, v) ∈ N%. (5.1)
�

Lemma 5.3. Suppose N ≥ max(3, 6(a−b+1)) and
∫
Ω
|x|−2∗bh|u|α+1|v|β+1dx > 0.

Then, there exist r and η positive constants such that
(i) we have

J(u, v) ≥ η > 0 for ‖(u, v)‖µ,a = r.

(ii) there exists (σ, ω) ∈ N% when ‖(σ, ω)‖µ,a > r, with r = ‖(u, v)‖µ,a, such
that J(σ, ω) ≤ 0.

Proof. We assume that the minima of J are realized by (u+
0 , v

+
0 ) and (u−0 , v

−
0 ). The

geometric conditions of the mountain pass theorem are satisfied. Indeed, we have
(i) By (2.3), (5.1) and P (u, v) ≤ [K(α, β)]−2∗/2(Sµ)−2∗/2|h+|∞‖(u, v)‖2∗µ,a, we

obtain

J(u, v) ≥ [(1/2)− (2∗ − 2)/(2∗ − q)q]‖(u, v)‖2µ,a − C2‖(u, v)‖2∗µ,a,

where C2 = [K(α, β)]−2∗/2(Sµ)−2∗/2|h+|∞ Using the function l(x) = x(2∗−x) and
if N ≥ max(3, 6(a − b + 1)), we obtain that [(1/2) − (2∗ − 2)/(2∗ − q)q] > 0 for
1 < q < 2. Thus, there exist η, r > 0 such that

J(u, v) ≥ η > 0 when r = ‖(u, v)‖µ,a is small.

(ii) Let t > 0. Then for all (φ, ψ) ∈ N%

J(tφ, tψ) := (t2/2)‖(φ, ψ)‖2µ − (t2∗)P (φ, ψ)− (tq/q)Q(φ, ψ).

Letting (σ, ω) = (tφ, tψ) for t large enough. Since

P (φ, ψ) :=
∫

Ω

|x|−2∗bh|φ|α+1|ψ|β+1dx > 0,

we obtain J(σ, ω) ≤ 0. For t large enough we can ensure ‖(σ, ω)‖µ,a > r. �

Let Γ and c defined by

Γ := {γ : [0, 1] → N% : γ(0) = (u−0 , v
−
0 ), γ(1) = (u+

0 , v
+
0 )},

c := inf
γ∈Π

max
t∈[0,1]

(J(γ(t))).
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Proof of Theorem 1.4. If

(|λ1||f1|∞)1/(2−q) + (|λ2||f2|∞)1/(2−q) < min((1/2)Λ0,Λ1),

then, by the Lemma 2.3 and Proposition 2.8 (ii), the function J satisfying the
Palais-Smale condition on N%. Moreover, from the Lemmas 2.4, 5.2 and 5.3, there
exists (uc, vc) such that

J(uc, vc) = c and (uc, vc) ∈ N%.

Thus (uc, vc) is the third solution of our system such that (uc, vc) 6= (u+
0 , v

+
0 ) and

(uc, vc) 6= (u−0 , v
−
0 ). Since (Sλ1,λ2,µ) is odd with respect (u, v), we obtain that

(−uc,−vc) is also a solution of (1.1). �
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[3] M. Bouchekif, Y. Nasri; On elliptic system involving critical Sobolev-Hardy exponents,
Mediterr. J. Math., 5 (2008) 237-252.

[4] K. J. Brown, Y. Zhang; The Nehari manifold for a semilinear elliptic equation with a sign
changing weight function, J. Differential Equations, 2 (2003) 481–499.

[5] L. Caffarelli, R. Kohn, L. Nirenberg; First order interpolation inequality with weights, Com-
pos. Math., 53 (1984) 259–275.

[6] K. S. Chou, C. W. Chu; On the best constant for a weighted Sobolev-Hardy Inequality, J.
London Math. Soc., 2 (1993) 137-151.

[7] D. G. de Figueiredo; Semilinear elliptic systems, Lecture Notes at the Second School on
“Nonlinear functional analysis and application to differential equations”, held at ICTP of
Trieste, April 21-May 9, (1997).

[8] L. Ding, S. W. Xiao; Solutions for singular elliptic systems involving Hardy-Sobolev critical
nonlinearity, Differ. Equ. Appl., 2 (2010) 227-240.

[9] P. Drabek, A. Kufner, F. Nicolosi; Quasilinear Elliptic Equations with Degenerations and
Singularities, Walter de Gruyter Series in Nonlinear Analysis and Applications, Vol. 5 (New
York, 1997).

[10] D. Kang, S. Peng; Positive solutions for singular elliptic problems, Appl. Math. Lett., 17
(2004) 411-416.

[11] Z. Liu, P. Han; Existence of solutions for singular elliptic systems with critical exponents,
Nonlinear Anal., 69 (2008) 2968-2983.

[12] G. Tarantello; Multiplicity results for an inhomogeneous Neumann problem critical exponent,
Manuscripta Math., 81 (1993) 57-78.

[13] T.-F. Wu; The Nehari manifold for a semilinear system involving sign-changing weight func-
tions, Nonlinear Anal., 68 (2008) 1733-1745.

[14] B. J. Xuan; The solvability of quasilinear Brézis-Nirenberg-type problems with singular
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