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WELL-POSEDNESS OF KDV TYPE EQUATIONS

XAVIER CARVAJAL, MAHENDRA PANTHEE

Abstract. In this work, we study the initial value problems associated to
some linear perturbations of KdV equations. Our focus is in the well-posedness
issues for initial data given in the L2-based Sobolev spaces. We develop a
method that allows us to treat the problem in the Bourgain’s space associated
to the KdV equation. With this method, we can use the multilinear estimates
developed in the KdV context, thereby getting analogous well-posedness re-
sults for linearly perturbed equations.

1. Introduction

In this article, we consider the initial value problem (IVP)

vt + vxxx + ηLv + (vk+1)x = 0, x ∈ R, t ≥ 0, k ∈ Z+,

v(x, 0) = v0(x),
(1.1)

and
ut + uxxx + ηLu+ (ux)k+1 = 0, x ∈ R, t ≥ 0, k ∈ Z+,

u(x, 0) = u0(x),
(1.2)

where η > 0 is a constant; u = u(x, t), v = v(x, t) are real valued functions and the
linear operator L is defined via the Fourier transform by L̂f(ξ) = −Φ(ξ)f̂(ξ).

The Fourier symbol

Φ(ξ) =
n∑
j=0

2m∑
i=0

ci,jξ
i|ξ|j , ci,j ∈ R, c2m,n = −1, (1.3)

is a real valued function which is bounded above; i.e., there is a constant C such
that Φ(ξ) < C.

We observe that, if u is a solution of (1.2) then v = ux is a solution of (1.1) with
initial data v0 = (u0)x. That is why (1.1) is called the derivative equation of (1.2).

In this work, we are interested in investigating the well-posedness results to the
IVPs (1.2) and (1.1) for given data in the low regularity Sobolev spaces Hs(R).
Recall that, for s ∈ R, the L2-based Sobolev spaces Hs(R) are defined by

Hs(R) := {f ∈ S ′(R) : ‖f‖Hs <∞},
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where

‖f‖Hs :=
( ∫

R
(1 + |ξ|2)s|f̂(ξ)|2dξ

)1/2

,

and f̂(ξ) is the usual Fourier transform given by

f̂(ξ) ≡ F(f)(ξ) :=
1√
2π

∫
R
e−ixξf(x) dx.

The factor 1√
2π

in the definition of the Fourier transform does not alter our analysis,
so we will omit it.

The notion of well-posedness we use is the standard one. We say that an IVP
for given data in a Banach space X is locally well-posed, if there exists a certain
time interval [−T, T ] and a unique solution depending continuously upon the initial
data and the solution satisfies the persistence property; i.e., the solution describes
a continuous curve in X in the time interval [−T, T ]. If the above properties are
true for any time interval, we say that the IVP is globally well-posed.

Before stating the main results of this work, we present some particular examples
that belong to the class considered in (1.1) and (1.2) and discuss the known well-
posedness results about them.

The first examples belonging to the classes (1.1) and (1.2) are

vt + vxxx − η(Hvx +Hvxxx) + (vk+1)x = 0, x ∈ R, t ≥ 0, k ∈ Z+,

v(x, 0) = v0(x),
(1.4)

and
ut + uxxx − η(Hux +Huxxx) + (ux)k+1 = 0, x ∈ R, t ≥ 0, k ∈ Z+,

u(x, 0) = u0(x),
(1.5)

respectively, where H denotes the Hilbert transform

Hg(x) = P.V.
1
π

∫
g(x− ξ)

ξ
dξ;

u = u(x, t), v = v(x, t) are real-valued functions and η > 0 is a constant.
The equation in (1.4) with k = 1 was derived by Ostrovsky et al [19] to describe

the radiational instability of long waves in a stratified shear flow. Recently, Carvajal
and Scialom [8] considered the IVP (1.4) and proved the local well-posedness results
for given data inHs, s ≥ 0 when k = 1, 2, 3. They also obtained an a priori estimate
for given data in L2(R) there by proving global well-posedness result. The earlier
well-posedness results for (1.4) with k = 1 can be found in [1], where for given data
in Hs(R), local well-posedness when s > 1/2 and global well-posedness when s ≥ 1
have been proved. In [1], IVP (1.5), when k = 1, is also considered to prove global
well-posedness for given data in Hs(R), s ≥ 1.

Another two models that fit in the classes (1.2) and (1.1) respectively are the
Korteweg-de Vries-Kuramoto Sivashinsky (KdV-KS) equation

ut + uxxx + η(uxx + uxxxx) + (ux)2 = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x),
(1.6)

and its derivative equation

vt + vxxx + η(vxx + vxxxx) + vvx = 0, x ∈ R, t ≥ 0,

v(x, 0) = v0(x),
(1.7)
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where u = u(x, t), v = v(x, t) are real-valued functions and η > 0 is a constant.
The KdV-KS equation arises as a model for long waves in a viscous fluid flowing

down an inclined plane and also describes drift waves in a plasma (see [11, 21]). The
KdV-KS equation is very interesting in the sense that it combines the dispersive
characteristics of the Korteweg-de Vries equation and dissipative characteristics
of the Kuramoto-Sivashinsky equation. Also, it is worth noticing that (1.7) is a
particular case of the Benney-Lin equation [2, 21]; i.e.,

vt + vxxx + η(vxx + vxxxx) + βvxxxxx + vvx = 0, x ∈ R, t ≥ 0,

v(x, 0) = v0(x),
(1.8)

when β = 0.
The IVPs (1.6) and (1.7) were studied by Biagioni, Bona, Iorio and Scialom [3].

The authors in [3] proved that the IVPs (1.6) and (1.7) are locally well-posed for
given data in Hs, s ≥ 1 with η > 0. They also constructed appropriate a priori
estimates and used them to prove global well-posedness too. The limiting behavior
of solutions as the dissipation tends to zero (i.e., η → 0) has also been studied in
[3]. The IVP (1.8) associated to the Benney-Lin equation is also widely studied
in the literature [2, 4, 21]. Regarding well-posedness issues for the IVP (1.8) the
work of Biagioni and Linares [4] is worth mentioning, where they proved global
well-posedness for given data in L2(R).

Now, we state the main results of this work. The first result deals with the local
well-posedness results for the IVP (1.1), while the second result deals the same for
the IVP (1.2), with low regularity data.

Theorem 1.1. Let η > 0 be fixed and Φ(ξ) be as given by (1.3), then the IVP (1.1)
is locally well-posed for any data v0 ∈ Hs(R), in the following cases:

k = 1, s > −3/4,

k = 2, s > 1/4,

k = 3, s > −1/6,
k = 4, s > 0.

Theorem 1.2. Let η > 0 be fixed and Φ(ξ) be as given by (1.3), then the IVP (1.2)
is locally well-posed for any data u0 ∈ Hs(R), in the following cases:

k = 1, s > 1/4,

k = 2, s > 5/4,

k = 3, s > 5/6,
k = 4, s > 1.

The first main result, Theorem 1.1, deals with the quite general Fourier symbol
and generalized nonlinearity. As discussed above, some particular cases are studied
in the recent literature. In particular, the result of Theorem 1.1 improves the local
well-posedness result for (1.4) with k = 3 obtained in [8]. It is worth noticing that,
when η = 0 and k = 2, the IVP (1.1) turns out the modified KdV equation. We
know that for the modified KdV equation local well-posedness holds for data in Hs,
s ≥ 1/4 and we have ill-posedness for s < 1/4. However, for k = 2, Φ(ξ) = |ξ|− |ξ|3
and η > 0 it has been proved in [8] that the local well-posedness holds for s ≥ 0.
Therefore, it would really be interesting to study the limiting behavior when η → 0.
As noted in [8], it is still an open problem.
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At this point, we would like to note that the first main result for k = 1 is
just the reproduction of our earlier result in [7]. Although the result presented
in [7, Theorem 1.1] is correct, in the due course of time, we found a misleading
argument employed in the proof. More precisely, the estimate [7, (2.5)] was not as
it should have been. In this work, this flaw is corrected (see Lemma 2.3, below).
This correction leads us to develop the contraction mapping scheme in the space
Xs−p(b− 1

2 ),b.
The second main result, Theorem 1.2, in particular, improves the local well-

posedness results for (1.5) with k = 1 obtained in [1] and for (1.6) obtained in
[3].

To prove the main results we follow the techniques used in [7]. The main idea is
to use the theory developed by Bourgain [5] and Kenig, Ponce and Vega [17]. The
main ingredients in the proof are estimates in the integral equation associated to
an extended IVP that is defined for all t ∈ R (see IVPs (1.14) and (1.13) below).
The main idea is to use the usual Bourgain space associated to the KdV equation
instead of that associated to the linear part of the IVPs (1.1) and (1.2). To carry
out this scheme, the Proposition 2.9 plays a fundamental role which permits us to
use a multilinear estimates for ∂x(u2), ∂x(u3) ∂x(u4) and ∂x(u5) proved respectively
in [17, 20, 15, 18].

As noted earlier, the IVPs (1.2) and (1.1) are globally well-posed for given data in
Hs(R), s ≥ 1. As the models under consideration do not have conserved quantities,
the global well-posedness have been proved by constructing appropriate a priori
estimates. However, for given data in Hs(R), s < 1 no a priori estimates are
available. Also, the lack of conserved quantities prevent us to use the recently
introduced I-method [12, 13], to obtain global solution for the low regularity data.

Now we introduce function spaces that will be used to prove the main results.
We consider the following IVP associated to the linear KdV equation

wt + wxxx = 0, x, t ∈ R,
w(0) = w0.

(1.9)

The solution to (1.9) is given by w(x, t) = [U(t)w0](x), where the unitary group
U(t) is defined as

Û(t)w0(ξ) = eitξ
3
ŵ0(ξ). (1.10)

For s, b ∈ R, we define the space Xs,b as the completion of the Schwartz space
S(R2) with respect to the norm

‖w‖Xs,b
≡ ‖U(−t)w‖Hs,b

:= ‖〈τ〉b〈ξ〉sÛ(−t)w(ξ, τ)‖L2
τL

2
ξ

= ‖〈τ − ξ3〉b〈ξ〉sŵ(ξ, τ)‖L2
τL

2
ξ,

(1.11)

where ŵ(ξ, τ) is the Fourier transform of w in both space and time variables, and
〈·〉 = (1 + | · |2)1/2. The space Xs,b is the usual Bourgain space for the KdV
equation (see [5]) and using the Sobolev embedding theorem one has that Xs,b ⊂
C(R;Hs(R)), whenever b > 1/2.

Note that, the IVPs (1.2) and (1.1) are defined only for t ≥ 0. To use Bourgain’s
type space, we should be able to write these IVPs for all t ∈ R. For this, we define

η(t) ≡ η sgn(t) =

{
η if t ≥ 0,
−η if t < 0

(1.12)
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and write the IVPs (1.1) and (1.2) in the following forms

vt + vxxx + η(t)Lv + (vk+1)x = 0, x, t ∈ R, k ∈ Z+,

v(0) = v0,
(1.13)

and
ut + uxxx + η(t)Lu+ (ux)k+1 = 0, x, t ∈ R, k ∈ Z+,

u(0) = u0,
(1.14)

respectively. From here onwards we consider the IVPs (1.13) and (1.14) instead of
(1.1) and (1.2) respectively.

Now we consider the IVP associated to the linear parts of (1.14) and (1.13),

wt + wxxx + η(t)Lw = 0, x, t ∈ R,
w(0) = w0.

(1.15)

The solution to (1.15) is given by w(x, t) = V (t)w0(x) where the semigroup V (t) is
defined as

V̂ (t)w0(ξ) = eitξ
3+η|t|Φ(ξ)ŵ0(ξ). (1.16)

Observe that, defining Ũ(t) by ̂̃
U(t)u0(ξ) = eη|t|Φ(ξ)û0(ξ), the semigroup V (t)

can be written as V (t) = U(t)Ũ(t) where U(t) is the unitary group associated to
the KdV equation (see (1.10)).

This paper is organized as follows: In Section 2, we prove some preliminary
estimates and in Section 3 we prove the main results.

2. Preliminary estimates

This section is devoted to obtain some preliminary estimates that are essential in
the proof of the main results. Before going to details, we consider a cut-off function
ψ ∈ C∞(R), such that 0 ≤ ψ(t) ≤ 1,

ψ(t) =

{
1 if |t| ≤ 1,
0 if |t| ≥ 2.

(2.1)

Also, we define ψT (t) ≡ ψ( tT ).
Let p = 2m + n, observe that the Fourier symbol given in (1.3) can be written

as

Φ(ξ) = −|ξ|p +
∑

0≤i≤2m, 0≤j≤n,
(i,j) 6=(2m,n)

ci,jξ
i|ξ|j , ci,j ∈ R,

= −|ξ|p + Φ1(ξ),

(2.2)

where the degree of Φ1 is less than p. In what follows, we present some elementary
lemmas.

Lemma 2.1. There exists M > 0 such that for all |ξ| ≥M , one has that

Φ(ξ) = −|ξ|p + Φ1(ξ) < −1. (2.3)

Proof. The inequality (2.3) is a direct consequence of

lim
|ξ|→∞

Φ1(ξ) + 1
|ξ|p

= 0.

�
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Lemma 2.2. The Fourier symbol Φ(ξ) satisfies the estimate

〈Φ(ξ)〉 ≤ c〈ξ〉p. (2.4)

Proof. It is not difficult see that

〈Φ(ξ)〉 ≤ 〈|ξ|p〉+ 〈Φ1(ξ)〉

≤ 〈ξ〉p +
∑

0≤i≤2m, 0≤j≤n,
(i,j) 6=(2m,n)

|ci,j |〈ξi|ξ|j〉

≤ 〈ξ〉p +
∑

0≤i≤2m, 0≤j≤n,
(i,j) 6=(2m,n)

|ci,j |〈ξ〉i+j

≤ 〈ξ〉p
(
1 +

∑
0≤i≤2m, 0≤j≤n,

(i,j) 6=(2m,n)

|ci,j |
)
.

�

Lemma 2.3. Let 0 < T ≤ 1, 1/2 ≤ b ≤ 1 and a ≤ B. Then we have

‖ΨT (·)ea|·|‖Hb
t
≤ ce2B

(
T

1
2−b + |a|b−1/2

)
. (2.5)

Proof. Let h(t) = Ψ(t) ea|t|T , so that hT (t) = ΨT (t) ea|t|. A straight forward calcu-
lation yields

‖ΨT (·)ea|·|‖Hb
t

= ‖hT ‖Hb
t
≤ c T 1/2‖hL2 + c T 1/2−b‖Db

th‖L2 . (2.6)

We know that

‖h‖2L2 =
∫ 2

−2

|Ψ(t)|2 e2a|t|T dt ≤ 4 e4BT ‖Ψ‖2L∞ . (2.7)

To bound the term ‖Db
th‖L2 , we explore ĥ(τ) by integrating by parts two times,

and obtain

ĥ(τ) =
∫ +∞

0

Ψ(t)eaTte−itτ dt+
∫ 0

−∞
Ψ(t)e−aTte−itτ dt

=
−1

aT − iτ

(
1 +

∫ +∞

0

dΨ
dt

(t) et(aT−iτ) dt
)

− 1
aT + iτ

(
1−

∫ 0

−∞

dΨ
dt

(t)e−t(aT+iτ) dt
)

=
−2aT

(aT )2 + τ2
+

1
(aT − iτ)2

∫ +∞

0

d2Ψ
dt2

(t) et(aT−iτ) dt

+
1

(aT + iτ)2

∫ 0

−∞

d2Ψ
dt2

(t)e−t(aT+iτ) dt.

From this we have that

|ĥ(τ)| ≤ 2|a|T
(aT )2 + τ2

+
4 e2BT ‖d

2Ψ
dt2 ‖L∞

(aT )2 + τ2
, (2.8)

|ĥ(τ)| ≤ 4 e2BT ‖Ψ‖L∞ ≤ ce2B . (2.9)
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From (2.8) and (2.9), we obtain

|ĥ(τ)| ≤ 2|a|T + ce2B

1 + (aT )2 + τ2
. (2.10)

Multiplying (2.10) by |τ |b, taking square and integrating on R, we obtain

‖Db
th L

22
= ‖|τ |bĥ(τ)‖2L2

≤ ca2T 2

∫
R

|τ |2b

(1 + a2T 2 + τ2)2
dτ + ce4B

∫
R

|τ |2b

(1 + a2T 2 + τ2)2
dτ

≤ ca2T 2

∫
R

|τ |2b

(a2T 2 + τ2)2
dτ + ce4B

∫
R

|τ |2b

(1 + τ2)2
dτ

≤ c|aT |2b−1 + ce4B

≤ c e4B〈aT 〉2b−1,

(2.11)

where in the second inequality we used τ = |a|Tx. Thus

‖ΨT (·)ea|·|‖Hb
t
≤ ce2B

(
T 1/2 + T 1/2−b + |a|b−1/2

)
. (2.12)

Since T ≤ 1, we conclude (2.5) from (2.6), (2.7), (2.11) and (2.12). �

Remark 2.4. Considering T = 1, the estimate (2.5) yields

‖ΨT (·)ea|·|‖Hb
t
≤ ce2B〈a〉b−1/2. (2.13)

I what follows we present some results from the earlier works [9] and [7]. Before
providing the exact announcement we gather some elementary estimates.

Proposition 2.5. For any functions ϕ, g such that ϕg ∈ H1 and suppϕ ⊂ [−L,L]
we have

‖ϕg‖L2 ≤ CL‖ d
dt

(ϕg)|‖L2 , (2.14)

where C is independent of g, ϕ, L.

Proof. We have

‖ϕg‖2L2 =
∫ L

−L
|g(x)ϕ(x)|2dx ≤ 2L‖ϕg‖2L∞ .

Now, using the known inequality ‖u‖2L∞ ≤ c‖u‖L2‖u′‖L2 , we obtain

‖gϕ‖2L2 ≤ CL‖g ϕ‖L2‖ d
dt

(g ϕ)‖L2 ,

thereby getting the required estimate. �

Lemma 2.6. The following estimate holds

‖ΨT g‖H1 ≤ C‖Ψ2T g‖H1 . (2.15)

Proof. We have

‖ΨT g‖H1 ∼ ‖ΨT g‖L2 + ‖ d
dt

(ΨT g)‖L2 .

It is obvious that ‖ΨT g‖L2 ≤ ‖Ψ2T g‖L2 . Thus to get the desired estimate (2.15) it
is sufficient to prove that

‖ d
dt

(ΨT g)‖L2 ≤ C‖ d
dt

(Ψ2T g)‖L2 . (2.16)
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To prove (2.16), observe that in the support of ΨT one has g = gΨ2T . On the
other hand

‖ d
dt

(ΨT g)‖L2 = ‖ d
dt

(ΨT )g + ΨT
d

dt
(g)‖L2 ≤ ‖ d

dt
(ΨT )g‖L2 + ‖ΨT

d

dt
(g)‖L2 . (2.17)

From the observation above (g = gΨ2T in the support of ΨT ) we obtain

‖ΨT
d

dt
(g)‖L2 = ‖ΨT

d

dt
(gΨ2T )‖L2 ≤ ‖ d

dt
(gΨ2T )‖L2 . (2.18)

We have
‖Ψ′(

t

T
)g‖2L2 =

∫
R
|Ψ′(

t

T
)|2|g(t)Ψ2T |2dt

≤ ‖gΨ2T ‖2L∞
∫

R
|Ψ′(

t

T
)|2dt

= T‖gΨ2T ‖2L∞
∫

R
|Ψ′(τ)|2dτ

≤ CΨ′T‖gΨ2T ‖2L∞ .

(2.19)

Now, using the known inequality ‖u‖2L∞ ≤ c‖u‖L2‖u′‖L2 ; from (2.19) and (2.14) it
follows that

‖Ψ′(
t

T
)g‖2L2 ≤ CΨ′T‖gΨ2T ‖L2‖ d

dt
(gΨ2T )‖L2 ≤ CΨ′T

2‖ d
dt

(gΨ2T )‖2L2 .

This completes the proof. �

Proposition 2.7. Let 0 ≤ b ≤ 1, B1 ≤ B2 ≤ 0. Then

‖ΨT (t)
∫ t

0

eB1|t−x| f(x) dx‖Hb ≤ C (1+T ) ‖Ψ2T (t)
∫ t

0

eB2 |t−x| f(x) dx‖Hb , (2.20)

where C = CΨ = Cmax
{
‖Ψ‖L∞ , ‖dΨdt ‖L∞

}
is a constant independent of B1, B2

and f .

Proof. The proof of this result follows by using estimate (2.15) from Lemma 2.6.
For details we refer to [9]. �

Lemma 2.8. Let −1/2 < b′ ≤ 0, 1/2 < b ≤ b′/3 + 2/3, T ∈ (0, 1], |a| < B. Then

‖ψT (t)
∫ t

0

ea|t−t
′|f(t′)dt′‖Hb

t
≤ cB,ψT

1+b′/2−3b/2‖f‖Hb′ , (2.21)

where cB,ψ is a constant independent of a, f and T .

A detailed proof of the above lemma has been presented in [7], so omit it. We
start with following Proposition that plays a central role in the proof of the main
results of this work. The result of this Proposition allows us to work in the usualXs,b

space associated to the KdV group U(t) defined by (1.10) instead of the Bourgain
space associated to the group V (t) defined by (1.16).

Proposition 2.9. Let b > 1/2 and −1/2 < b′ ≤ 0, T ∈ (0, 1]. Then

‖ψ(t)V (t)u0‖Xs,b
≤ c‖u0‖s+p(b−1/2). (2.22)

If 1/2 < b ≤ b′/3 + 2/3, s ∈ R then

‖ψT (t)
∫ t

0

V (t− t′)F (t′)dt′‖Xs,b
≤ c T 1+b′/2−3b/2‖F‖Xs,b′ , (2.23)

where c is a constant.
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Proof. To prove (2.22), we have

‖ψ(t)V (t)u0‖Xs,b
= ‖〈ξ〉sû0(ξ)‖ψ(t)eΦ(ξ)η|t|‖Hb

t
‖L2

ξ
.

Using Lemma 2.2 and Lemma 2.3, we obtain

‖ψ(t)V (t)u0‖Xs,b
≤ ‖〈ξ〉sû0(ξ)‖ψ(t)eΦ(ξ)η|t|‖Hb

t
‖L2

ξ

≤ c‖〈ξ〉sû0(ξ)〈Φ(ξ)〉b− 1
2 ‖L2

ξ

≤ c‖〈ξ〉sû0(ξ)〈ξ〉p(b−
1
2 )‖L2

ξ
.

This proves (2.22).
Now, to prove (2.23), let M be as in Lemma 2.1. From the definition of Bour-

gain’s space, we have

‖ψT (t)
∫ t

0

V (t− t′)F (t′)dt′‖Xs,b

= ‖〈ξ〉s‖ψT (t)
∫ t

0

e−it
′ξ3eΦ(ξ)η|t−t′|F̂ (t′)(ξ)dt′‖Hb

t
‖L2

ξ

≤ ‖〈ξ〉s‖ψT (t)
∫ t

0

e−it
′ξ3eΦ(ξ)η|t−t′|F̂ (t′)(ξ)dt′‖Hb

t
‖L2

ξ(|ξ|<M)

+ ‖〈ξ〉s‖ψT (t)
∫ t

0

e−it
′ξ3eΦ(ξ)η|t−t′|F̂ (t′)(ξ)dt′‖Hb

t
‖L2

ξ(|ξ|≥M)

=: I1 + I2.

To estimate I1, note that for |ξ| < M , one has

|Φ(ξ)| ≤
n∑
j=0

2m∑
i=0

|ci,j | |ξ|i|ξ|j ≤
n∑
j=0

2m∑
i=0

|ci,j |M i+j =: cM .

Therefore, using Lemma 2.8, we obtain

I1 ≤ cM,ψT
1+b′/2−3b/2‖〈ξ〉s‖e−itξ

3
F̂ (t)‖Hb′

t
‖L2

ξ(|ξ|≤M)

≤ cM,ψT
1+b′/2−3b/2‖F‖Xs,b′ .

To estimate I2, we observe that for |ξ| ≥ M , one can write the Fourier symbol as
Φ(ξ) = (Φ(ξ)+1)−1, where from Lemma 2.1, Φ(ξ)+1 < 0. Now, using Proposition
2.7 and Lemma 2.8, we obtain

I2 ≤ a(1 + T )‖〈ξ〉s‖ψ2T (t)
∫ t

0

e−it
′ξ3e−η|t−t

′|F̂ (t′)(ξ)dt′‖Hb
t
‖L2

ξ(|ξ|≥M)

≤ cψT
1+b′/2−3b/2‖F‖Xs,b′ .

�

In what follows we record the familiar multilinear estimate in the Bourgain’s
space associated to the KdV group.

Proposition 2.10. Let k = 1, 2, 3, 4, and s > ak. There exist γ ∈ ( 1
2 , 1) and

r(s) > 0 such that if b and b′ are two numbers satisfying 1
2 < b ≤ b′ + 1 < γ and

b′ + 1
2 ≤ r(s), then for u ∈ Xs,b the following estimate holds

‖(uk+1)x‖Xs,b′ ≤ c ‖u‖k+1
Xs,b

, (2.24)
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where

a1 = −3
4
, a2 =

1
4
, a3 = −1

6
, a4 = 0. (2.25)

For the proof of the above proposition, we refer to [17, 14], [20], [15], [18] respec-
tively for k = 1, k = 2, k = 3 and k = 4.

Before providing another multilinear estimate to prove Theorem 1.2, we intro-
duce some new notation from [20], and auxiliary results.

For any Abelian additive group Z with an invariant measure dξ, we use Γk(Z)
to denote the hyperplane

Γk(Z) := {(ξ1, . . . , ξk) ∈ Zk : ξ1 + · · ·+ ξk = 0}, k ≥ 2,

endowed with the measure∫
Γk(Z)

f :=
∫
Zk−1

f(ξ1, . . . , ξk−1,−ξ1 − · · · − ξk−1)dξ1 . . . dξk−1.

We define a [k;Z]-multiplier to be any function m : Γk(Z) → C and also define
‖m‖[k;Z] to be the best constant such that the inequality

|
∫

Γk(Z)

m(ξ)
k∏
j=1

fj(ξj)| ≤ ‖m‖[k;Z]

k∏
j=1

‖fj‖L2(Z),

holds for all test functions fj on Z. Note that, in our case the Abelian group Z
will be Euclidean space Rn+1 with Lebesgue measure.

In what follows, we state in the form of Lemmas, some properties satisfied by
the [k;Z]-multiplier, whose proof can be found in [20].

Lemma 2.11 (Comparison principle). If m and M are [k;Z] multipliers such that
|m(ξ)| ≤M(ξ) for all ξ ∈ Γk(Z), then ‖m‖[k;Z] ≤ ‖M‖[k;Z] and

‖m(ξ)
k∏
j=1

aj(ξj)‖[k;Z] ≤ ‖m‖[k;Z]

k∏
j=1

‖aj‖∞,

where a1, . . . , ak are functions from Z to R.

Lemma 2.12. For any [k;Z]-multiplier m : Zk → R, the following properties hold:

(1) TT ∗ identity:

‖m(ξ1, . . . , ξk)m(−ξk+1, . . . ,−ξ2k)‖[2k;Z] = ‖m(ξ1, . . . , ξk)‖2[k+1;Z].

(2) Translation invariance:

‖m(ξ)‖[k;Z] = ‖m(ξ + ξ0)‖[k;Z],

for any ξ0 ∈ Γk(Z).
(3) Averaging:

‖m ∗ µ‖[k;Z] ≤ ‖m‖[k;Z]‖µ‖L1(Γk(Z)),

for any finite measure µ on Γk(Z).

The following proposition is crucial in proving multilinear estimates that are
essential in the proof of the second main result of this work.
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Proposition 2.13. Let k = 2, 3, 4, 5. Under the hypothesis of the Proposition 2.10,
we have

‖
k∏
j=1

uj‖Xs,b′ ≤ c

k∏
j=1

‖uj‖Xs,b
, s > sk, (2.26)

where s2 = −3/4, s3 = 1/4, s4 = −1/6, s5 = 0.

Proof. To prove the estimate (2.26), we will use the techniques developed by Tao
in [20] on [k, Z] multipliers. Consider uj ∈ Xs,b for j = 1, . . . k, uk+1 ∈ X−s,−b′ and
use properties of the Fourier transform, to obtain∫

R2
(
k∏
j=1

uj)(ξ, τ)uk+1(ξ, τ)dξdτ

=
∫

R2

∫
R(k−1)×(k−1)

û1(ξ1, τ1)û2(ξ2, τ2) . . .

ûk(ξ −
k−1∑
j=1

ξj , τ −
k−1∑
j=1

τj)ûk+1(−ξ,−τ)dξ1dτ1 . . . dξk−1dτk−1dξdτ

=:
∫

ξ1+ξ2+···+ξk+1=0

τ1+τ2+···+τk+1=0

k+1∏
j=1

ûj(ξj , τj)dξ1dτ1 . . . dξ4dτ4,

Therefore, using duality proving (2.26) is equivalent to proving∫
ξ1+ξ2+···+ξk+1=0

τ1+τ2+···+τk+1=0

k+1∏
j=1

ûj(ξj , τj)dξ1dτ1 . . . dξk+1dτk+1

.
k∏
j=1

‖uj‖Xs,b
‖uk+1‖X−s,−b′ .

Let

〈ξj〉s〈τj − ξ3j 〉bûj(ξ, τ) = f̂j(ξ, τ), j = 1, . . . , k,

〈ξk+1〉−s〈τk+1 − ξ3k+1〉−b
′
ûk+1(ξ, τ) = f̂k+1(ξ, τ).

Now with these considerations, proving (2.26) is equivalent to proving∫
ξ1+ξ2+···+ξk+1=0

τ1+τ2+···+τk+1=0

m((ξ1, τ1), . . . (ξk+1, τk+1))

×
k+1∏
j=1

f̂j(ξj , τj)dξ1dτ1 . . . dξk+1dτk+1

.
k+1∏
j=1

‖fj‖L2
x,t
,

(2.27)

where

m((ξ1, τ1), . . . (ξk+1, τk+1)) =
〈ξk+1〉s∏k

j=1〈ξj〉s
∏k+1
j=1 〈τj − ξ3j 〉bj

, (2.28)

and b1 = · · · = bk = b, bk+1 = −b′. So, we need to prove that the [k + 1,R2]-
multiplier estimate is finite; i.e., ‖m‖[k+1;R2] <∞.
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We know from Proposition 2.10 that the [k + 1,R2]-multiplier estimate

m̃((ξ1, τ1), . . . (ξk+1, τk+1)) =
|ξk+1|〈ξk+1〉s∏k

j=1〈ξj〉s
∏k+1
j=1 〈τj − ξ3j 〉bj

, (2.29)

where b1 = · · · = bk = b, bk+1 = −b′; is finite.
Observe that we may restrict the multiplier (2.28) to the region |ξk+1| ≥ 1, (since

the general case then follows by an averaging over unit time scales). The |ξj | ≤ 1
behavior of m is usually identical to its |ξj | ∼ 1 behavior, see Section 4 on Xs,b

spaces in [20, page 17].
In the high frequencies, we have m ≤ m̃, and the Comparison principle implies

that ‖m‖[k+1;R2] <∞ as required. �

Remark 2.14. We note that the multilinear estimates without derivative hold in
the Xs,b spaces with low regularity than that with derivative. For example, in the
case k = 3 the inequality (2.26) holds true for s > −1/4, see [6], and with derivative
holds for s ≥ 1/4, see (2.24) in Proposition 2.10 above.

The following Lemma is an immediate consequence of Propositions 2.10 and 2.13
and will be used in the proof of Theorem 1.2.

Lemma 2.15. Let k = 1, 2, 3, 4. Under the hypothesis of Proposition 2.10, we have

‖(ux)k+1‖Xs,b′ ≤ c‖u‖k+1
Xs,b

, (2.30)

whenever,
k = 1, s > 1/4,

k = 2, s > 5/4,

k = 3, s > 5/6,
k = 4, s > 1.

(2.31)

Proof. Let k = 1, 2, 3, 4, and consider s satisfying (2.31). As 〈ξ〉s = 〈ξ〉s−1〈ξ〉, we
have

‖(ux)k+1‖Xs,b′ ≤ ‖Dx(ux)k+1‖Xs−1,b′ + ‖(ux)k+1‖Xs−1,b′ . (2.32)
For the first term we have

‖Dx(ux)k+1‖Xs−1,b′ ≤ c ‖ux‖k+1
Xs−1,b

≤ c‖u‖k+1
Xs,b

, (2.33)

where in the first inequality the bilinear estimate (2.24) has been used.
To estimate the second term in (2.32), we use (2.26) to obtain

‖(ux)k+1‖Xs−1,b′ ≤ c‖ux‖k+1
Xs−1,b

≤ c‖u‖k+1
Xs,b

, (2.34)

which completes the proof of (2.30). �

3. Proof of main results

Proof of Theorem 1.1. As discussed in the introduction, we will use Bourgain’s
space associated to the KdV group to prove well-posedness for the IVP (1.1), there-
fore we need to consider the IVP (1.13) that is defined for all t. Now consider the
IVP (1.13) in its equivalent integral form

v(t) = V (t)v0 −
∫ t

0

V (t− t′)(vk+1)x(t′)dt′, (3.1)

where V (t) is the semigroup associated with the linear part given by (1.16).
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Note that, if for all t ∈ R, v(t) satisfies

v(t) = ψ(t)V (t)v0 − ψT (t)
∫ t

0

V (t− t′)(vk+1)x(t′)dt′,

with T ∈ (0, 1], then v(t) satisfies (3.1) in [−T, T ]. We define an application

Ψ(v)(t) = ψ(t)V (t)v0 − ψT (t)
∫ t

0

V (t− t′)(vk+1)x(t′)dt′.

Assume k ∈ {1, 2, 3, 4} and s > ak, where ak is given by (2.25). Let v0 ∈ Hs

and let us define b := 1/2 + ε, b′ := −1/2 + 4ε, with 0 < ε� 1 satisfying

0 < ε < min
{s− ak

p
,
1
4
(
γ − 1

2
)
,
r(s)
4

}
, (3.2)

where γ and r(s) are as in Proposition 2.10. With these choices of b and b′ it is
easy to verify that all the conditions of Propositions 2.9 and 2.10, and Lemma 2.8
are satisfied. For M > 0, let us define a ball

XM
s−p(b− 1

2 ),b = {f ∈ Xs−p(b− 1
2 ),b : ‖f‖X

s−p(b− 1
2 ),b

≤M}.

We will prove that there exists M such that the application Ψ maps XM
s−p(b− 1

2 ),b

into XM
s−p(b− 1

2 ),b
and is a contraction. Let v ∈ XM

s−p(b− 1
2 ),b

. By using Proposition
2.9, we obtain

‖Ψ(v)‖X
s−p(b− 1

2 ),b
≤ c‖v0‖Hs + c Tα‖(vk+1)x‖X

s−p(b− 1
2 ),b′

, (3.3)

where α := 1 + b′

2 −
3b
2 = ε

2 > 0. The use of Proposition 2.10 in (3.3) yields

‖Ψ(v)‖X
s−p(b− 1

2 ),b
≤ c‖v0‖Hs + c Tα‖v‖k+1

X
s−p(b− 1

2 ),b
, (3.4)

whenever
s− p(b− 1

2
) > −3/4, for k = 1,

s− p(b− 1
2
) > 1/4, for k = 2,

s− p(b− 1
2
) > −1/6, for k = 3,

s− p(b− 1
2
) > 0, for k = 4,

(3.5)

holds, which is true because of the choice of b and arbitrarily small ε satisfying
(3.2). Now, using the definition of XM

s−p(b− 1
2 ),b

, one obtains

‖Ψ(v)‖X
s−p(b− 1

2 ),b
≤ M

4
+ cTαMk+1 ≤ M

2
, (3.6)

where we have chosen M = 4c‖v0‖Hs and cTαMk = 1/4. Therefore, from (3.6) we
see that the application Ψ maps Xs−p(b− 1

2 ),b into itself. A similar argument proves
that Ψ is a contraction. Hence Ψ has a fixed point v which is a solution of the IVP
(1.1) such that u ∈ C([−T, T ],Hs−p(b− 1

2 )).
Since ε > 0 is arbitrarily small satisfying (3.2) and b = 1

2 + ε, this concludes the
proof of the theorem. �

Proof of Theorem 1.2. This proof is analogous to that of Theorem 1.1. The only
difference is that, in this case, we use Lemma 2.15 instead of Proposition 2.10. �
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4. A priori estimate: global solutions

In this section we find an a priori estimate that leads to conclude global well-
posedness of the IVPs (1.1) and (1.2).

Lemma 4.1. Let v0 ∈ H3(R) and v ∈ C([0, T ],H3(R)) be the solution of (1.1)
with initial data v(x, 0) = v0. Then the following a priori estimate

‖v(t)‖L2 ≤ C‖v0‖L2eCηT , (4.1)

holds.

Proof. We multiply (1.1) by v and integrate by parts to obtain

1
2
d

dt

∫
v2(x)dx+ η

∫
v(x)Lv(x)dx = 0. (4.2)

Now using our assumption on the Fourier symbol Φ of L from (1.3), Plancherel’s
identity we obtain from (4.2) that

1
2
d

dt
‖v(t)‖2L2 = η

∫
v̂(ξ)Φ(ξ)¯̂v(ξ)dξ ≤ Cη

∫ ∫
v̂(ξ)¯̂v(ξ)dξ = Cη‖v(t)‖2L2 . (4.3)

Now, integrating (4.3) in [0, t] for t ∈ [0, T ], and applying Gronwall’s inequality, we
obtain the required an a priori estimate (4.1). �

Remark 4.2. As in Lemma 4.1, differentiating equation (1.2) with respect to x,
multiplying the resulting equation by ux and the integrating by parts and using
Plancherel’s identity and Gronwall’s inequality, we obtain the following an a priori
estimate

‖∂xu(t)‖L2 ≤ C‖∂xu0‖L2eCηT . (4.4)

Now, with the a priori estimates (4.1) and (4.4) at hand, one can prove the
following global results for the IVPs (1.1) and (1.2) for some particular values of k.

Theorem 4.3. Let k = 1, 3, and v0 ∈ Hs(R), s ≥ 0, then the local solution of
(1.1) obtained in Theorem 1.1 can be extended globally in time.

Theorem 4.4. Let k = 1, 3, and u0 ∈ Hs(R), s ≥ 1, then the local solution of
(1.2) obtained in Theorem 1.2 can be extended globally in time.
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