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WEAK SOLUTIONS FOR DEGENERATE SEMILINEAR
ELLIPTIC BVPS IN UNBOUNDED DOMAINS

RASMITA KAR

ABSTRACT. In this article, we prove the existence of a weak solution for the
degenerate semilinear elliptic Dirichlet boundary-value problem

Lu(@) + ) g(x)h(u(z)) Diu(z) = f(z) in
=1

u=0 on 99,

in a suitable weighted Sobolev space. Here 2 C R", 1 < n < 3, is not
necessarily bounded.

1. INTRODUCTION

For1 <n <3,let  C R", be a domain (ngt necessarily bounded) with boundary
0. We assume Q = U2, Q;, Q; € Q41 C Q41 C Q, each ; C R” is a bounded
domain with boundary 0€2;. Let L be an elliptic operator in divergence form

n
0
Lu(@) = = 3 Dj(ay(@)Diufa). D = 5=,
1,7=1
where the coeflicients a;; are measurable, real valued functions, the matrix A =
(a;j) is symmetric and satisfy the degenerate ellipticity condition
n
MNéPw(r) < Z aij(2)&€ < AlEJPw(x), ae. x € Q, (1.1)
ij=1
for all £ € R™ and w is an weight function (A > 0,A > 0). When w = 1 in
(1.1), the condition (1.1]) reduces to the usual ellipticity condition. However, such
an ellipticity condition may not hold if a;; are functions vanishing at some point
r € Q leading to the degeneracy of the ellipticity condition. Let f € L?(Q). In
this paper, we study the existence of weak solutions to the degenerate semilinear
elliptic BVP

Lu(z) + Y _ g(x)h(u(z)) Dyu(z) = f(z) inQ, 12)
=1 :
u=0 on 01,
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where g/y/w € L*®(Q) and h is bounded and Lipschitz continuous. The tools used
are pseudomonotone operators as introduced by of Brézis [6], the compact embed-
ding theorem in weighted Sobolev spaces in a domain of R”,n < 3 and a well-known
technique used for unbounded domain as in Noussair and Swanson[23]. Where as
the restriction on dimension of the domain has yields us a required compactness
condition. The study is inspired by a non-degenerate problem in bounded domain
given in the book by Zeidler [27].

In general, the Sobolev spaces W*P(Q)(without weights) occurs as spaces of solu-
tions for elliptic and parabolic PDEs. For degenerate problems with various types of
singularities in the coefficients it is natural to look for solutions in weighted Sobolev
spaces; see [9] [10, 1T}, [15] 16l 17]. Elliptic BVPs in unbounded domains present spe-
cific difficulties, primarily due to lack of compactness. Another difficulty in the
study of the elliptic BVPs is due to the non-availability of the Poincare-inequality
in the Sobolev spaces VVO1 P(Q) for a general unbounded domain say Q. One of the
classical technique employed is extracting a solution on unbounded domain 2 by so-
lutions on bounded subdomains of €2 under the assumption the suitable upper and
lower solutions exist. The related literature are found in Noussair and Swanson[23]
and Cac [§]. Secondly, the use of Sobolev spaces of highly symmetric functions,
which admit compact embeddings, as in Berestycki and Lions [2] [3]. Thirdly, the
use of weighted-norm Sobolev spaces which admit compact embeddings, as in Benci
[1], Bongers, Heinz and Kiipper [5].

In [], Berger and Schechter have shown that a substitute for such embedding
results can be obtained when (2 is unbounded, by introducing appropriate weighted
LP norms. These results are then applied by them to establish an existence theorem
for the Dirichlet problem for quasilinear elliptic equations in an unbounded domain.
A few references for nonlinear boundary value problems in unbounded domains with
aid of pseudomonotone operators are found in [7, 12} 14 22]. The equation
considered in the present study is not a subclass of the equations studied in [7, [12]
14, 22]. The compactness condition for weighted Sobolev spaces has been assumed
in [12], and it is shown how the assumption of monotonicity can be weakened still
guaranteeing the pseudo-monotonicity of certain nonlinear degenerated or singular
elliptic differential operators.

Section 2 deals with preliminaries. Section 3 deals with the existence of a solution
in an arbitrary bounded domain say G. In section 4, we obtain a uniform
bound for the solutions {u;} of in each bounded subdomains 2; and finally,
extraction of a solution for from the sequence {u;} has been shown.

2. PRELIMINARIES

Let Q C R™, 1 < n < 3 be an open connected set. Let w : R®™ — RT be a weight
function(i.e. locally integrable non negative function with 0 < w < oo a.e) in Q
satisfying the conditions

we Ll (Q), w Ve VeLl (), 1<p<oo. (2.1)

We denote by LP(€2) (1 < p < o0) the usual Banach space of measurable real valued
functions, u, defined in € for which

1/p
lullpe = (/Q\u|pda;> < . (2.2)
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For p > 1, the weighted Sobolev space W1P(,w) is defined by
WP(Q,w) :={u € LP(Q) : Dju € LP(Q,w),j =1,2...,n}

with the associated norm

1/p
fulle = ( [ uPdo+ [ (Dupwds)”", (23)
Q Q

where Du = (Dyu,...,Dyu). The space Wol’p(Q,w) is defined as the closure
of C§°(Q) with respect to the norm (2.3). We also note that W2(Q,w) and
Wy2(€,w), are Hilbert spaces.

Proposition 2.1. For abounded domain Q@ C R™, we have the compact embedding

Wy P(Q,w) e LPF(Q) for 0<n <pl—p (2.4)

provided

n 1
w e LYQ) and se (—,00)N[——, ), 2.5
() (20000 [-=.%0) (25)
where
ps * nps

s = d = . 2.
po= B and = (26)

For more details, we refer [I3]. It follows from the weighted Friedrichs inequality
[13, p.27] the norm

[[ul

1/p
0,1,p,Q = (/ |Du|pwdx) . (2.7)
Q

on the space W, P (2, w)(9 bounded) is equivalent to the norm |[ul|;,,.q defined by
provided holds. Hereafter, we assume the weight function w satisfies
conditions and . We note in the following remark that the Proposition
[2.7] restricts the dimension n given the weight w and the exponent p.

Remark 2.2. Let Q C R” be a bounded domain. From (2.6)), we note that

2ns

2= n(s+1)—2s
Let
w e LYQ) and se(ﬁ,oo)ﬁ[i, )
p p—1

For n = 2, from (2.4, we have
Wy (Qw) s L) for0<2 < 2F —2.

Then
2ns

n(s+1)—2s ”
Now, the inequality (2.8) holds, when n < 3.

Example 2.3. Let Q = {x € R",n < 3: |z| < 1} and p = 2. Then w(z) = |z|",
0 <n < 1is an admissible weight function.

25 -2>2= 4. (2.8)

For more details on weighted Sobolev spaces, we refer [13] 18] 20, [25]. At each
step, a generic constant is denoted by ¢ or 3y in order to avoid too many suffices.
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Definition 2.4. Let Q C R” be an open connected set. We say that u € W, (Q, w)
is a weak solution of (| if

/Za”Du Dol dx+/Zg ) Diud(a dx—/f

1,7=1
for every ¢ € Wol’Q(Q,w).

Definition 2.5 (Pseudomonotone operators). Let A : X — X* be an operator
on the real reflexive Banach space X. The operator A is called pseudomonotone if
Uy, — U as n — oo and

lim sup(Auy,, un, —u) <0

n—oo
implies
(Au, v — w) < liminf(Au,, u, —w) for all w e X.

n—oo
We consider the operator equation
Au=0b, wvelX. (2.9)
In section 3, we use the following result.

Proposition 2.6 (Brézis(1968)). Assume that the operator A : X — X™* is pseu-
domonotone, bounded and coercive on the real,separable reflexive Banach space X .
Then, for each b € X*, the equation (2.9) has a solution.

For a proof of the above Theorem, we refer the reader to [26], Theorem 27.A].

3. BOUNDED DOMAIN

Let G be a bounded domain in R™ with 1 < n < 3. We consider the degenerate
semilinear elliptic BVP

) + Zg(x)h(U(I))DiU(I) = f(z) inG,
) u(z) =0 on 0G.

(3.1)

We need the following hypotheses for further study.

(H1) Assume g/y/w € L°(G) and f € L*(G).
(H2) Let h : R — R is a bounded (|h(t)] < u,Vt € R, p > 0), and Lipschitz
continuous with Lipschitz constant A > 0 (e.g., h(t) = sin(t), V¢ € R).

We define the functionals By, By : Wy (G, w) x Wy*(G,w) — R by

/Z% ) Dsu(w) Dy () da

BQ(uv ¢) = T(u’u7 ¢)7 r(u, v, ¢) = /GZg(m)h(u(m))Dm(m)d)(x)dm

Also, define the functional T : W01’2(G, w) — R by

6) = /G F(@)¢(x)da
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A function u € W, *(G,w) is a weak solution of if
Bi(u, ) + Ba(u, ¢) = T(¢), forall ¢ € Wy?(G,w). (3.2)
Theorem 3.1. Assume (H1) and (H2). In addition, let the condition
1Cellg/vVwllco,a < A,

where Cq is a constant (depending on G) arising out of weighted Fredrichs inequal-
ity. Then the BVP (3.1) has a weak solution.

Proof. First we write the BVP (3.1]) as operator equation
ue Wy?(Qw): Bu+ Nu=T in [Wy?(Q,w)]", (3.3)

where T € [W&’Q(Q,w)]*, B: W&’Q(Q,w) — [W01’2(Q,w)]* is linear, uniformly mono-
tone and continuous, N : Wy*(Q,w) — [Wy?(Q,w)]* is strongly continuous and
B+ N is coercive. Further we put Propositions [2.6] to this operator equation. The
realization of this idea is split into 5 steps for convenience.

Step 1: Since |a;;j(x)] < cw(z), we have by Hélder’s inequality

(u,v) /Za” )Diu(x)Djv(z)dx

i,j=1
/ Z |Diu(x)||Djo(z)|wda
ij=1
< dlullor2.clvlorzae forall u,ve Wy?(G,w).
We define the operator B : W, (G, w) — [Wy (G, w)]* as
(Bu|¢) = B1(u,¢), foru,¢ € WOI’Q(G,w).

Hence, the operator B is well defined, linear, and continuous. It follows from (|1.1))
that

(Bu — Bolu —v) = By(u—v,u —v)

/Za” (u—v)D;(u —v)dz

1,j=1
> )\/ |D(u — v)|2wdz
€]

= A|u— v||(2)7172,G for all u,v € X.

Consequently, B is uniformly monotone(and hence coercive). For more details on
monotone operators, we refer[27].
Step 2: By (H1) and (H2), it follows from Holder’s inequality,

| / 2)) Dyul)o(x)da|

< /G 9/l lh(u(@))] | Dit() Vel lo(@)lda
< 19/ v/l /G |Diww!/?||oldz
< oVl [ 1DaPud) ([ par) "
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and hence, by the weighted Friedrichs inequality [I3] p.27],
|Ba(u,v)| < Collullo2.cllvloea  forall u,v € Wy(G,w).

where C¢ > 0 is a constant(depending on domain G). Since Bs(u,.) is linear and
bounded, there exists an operator N : Wy (G, w) — [W)*(G,w)]* such that

(Nu|v) = By(u,v) for all u,v € Wy (G,w).
Then, problem is equivalent to operator equation
Bu+ Nu=T, uec Wy*(G,w).
Step 3: (I) By (2.4), the embedding Wy?(G,w) < L*Q) is compact. (II)

Let u, — u in W, *(G,w) as n — oo. Then, the sequence {u,} is bounded in
Wy (G, w). By (I), up — u in L*(G) as n — co. We claim that

Nu, — Nu in [W,*(G,w)]* asn — occ.
or

[Nun — Nul| WG = Sup |(Nuy — Nul|v)] = 0 asn — oo.
[lvllo,1,2,6<1

Otherwise, there exists an ¢y > 0 and a sequence {v/,}, which we denote briefly by
{vn}, such that ||v,]l0,1,2,¢ <1 for all n, with

(Nup, — Nulv,) > ¢y for all n.

Passing to a subsequence, if necessary, we assume that v, — v in VVO1 ’Z(G,w) and
it follows that v,, — v in L*(G) as n — co. We note that

h(un)(Diun ) vy — h(uw)(Dju)v,
= (h(un) — h(u))(Dsun) vy + h(u)(Diun) vy — v) (3.4)
+ h(u)(Diuyn — Diu)v + h(uw)(Diu) (v — vy).
Since h is Lipschitz, we have
[h(un) = h(u)] < Alup — ul,

by (I) and by the generalized Hélder’s inequality, we obtain

v (

‘/ h(u))(Dzun)vndx’

< o/ vl /G 1) — )| Dy ?

< AoVl [ fn = ultan) ([ D Pde) ([ i)

< Cgllun — ullsllunl

0,1,2,G||’Un||0,1,2,G7

where C¢ is a constant (depending on G) arising out of weighted Fredrichs inequal-
ity. We have u, — u and v, — v in L*(G) as n — oo; i.e., |u, — uls,g — 0
and ||v, — v|ls,c — 0. Moreover, the sequences {u,} and {v,} are bounded in
WOI’Q(G,w). Again, we have u,, — u in Wol’z(G,w) and

r(u,w,v)| = ’/GZg(x)h(u(m))Dzw(x)v(x)dﬂ

< Collwlorzcllvlorze forall u,v,w e Wy?(G,w),
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due to the Holder’s inequality, and hence, the linear functional w +— r(u,w,v) is
continuous on Wy*(G,w). Finally, we have

r(u,up, —u,v) -0 asn — oo. (3.6)

By (3.4),(3.6) and by similar arguments as in(3.5)), we have

|(Nu,, — Nulv,)| = Z | /Gg(a:){h(un)(Dlun)vn — h(u)(D;u)v, |

=1

< ; /G |9/ Ve [P(un)(Ditin v — A(u)(Dite)vn|w? da o

< g/ V@lloo,aCalAllun — ullallunllo,,2.cllvnl
+ pllvn = vlla.cllunllon2.c + pllvn —v

+ |r(u, up —u,v)] — 0 asn — oo.

0,1,2,G

a,6llullo,1,2,6}

Relation (3.7) contradicts and hence, N is strongly continuous.
Step 4: For all u € Wg’2(G,w),

Batww] <] [ 39 hw)(Drujuds]
Gi=1
gwwwwmcL§jwmﬁﬂmwx
=1

< ullg/\/ﬁlloo,gzn: (/G|Diu|2wdx)1/2</G|u|2dx)1/2
i=1

< puCcllg/Vwls,cllu

2
0,1,2,G»

where Cg is a constant(depending on G) arising out of weighted Fredrichs inequal-
ity. By (1.1]), there exists a constant A > 0 such that

By (u,u) > >‘H“||g,1,2,G for all u € Wy 2(G, w).
This implies

(Bu+ Nulu) = By (u,u) + Ba(u, u)

> (A = pCcllg/Vwlls)lulld 1 0c  for all u € Wy (G,w);

sLydy

i.e., B+ N is coercive if pCq|lg/v/wlloo < A

Step 5: Since B is uniformly monotone and continuous, N is strongly contin-
uous and B + N is coercive, by [27, Proposition 26.16, p.576], we note that the
operator B + N is pseudomonotone. Also, we have B + N is continuous, and
bounded. Now, for uCqllg/vw|w < A, by Proposition problem has a
weak solution in Wy (G, w). O
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4. UNBOUNDED DOMAIN

Let © be a domain (not necessarily bounded) in R” with 1 < n < 3. We consider
the degenerate semilinear elliptic BVP

Lu(z) + ) _ g(x)h(u(z)) Diu(z) = f(z) in €,
i=1
u(x) =0 on 0,
(H1) Assume g/v/w € L>(Q) and f € L*(Q).
Lemma 4.1. Assume (H1’) and (H2). If pCq,|g/v/wlls,0 < A, then the BVP

(4.1)

Lu+ Zg hu)Dyuw = f in Yy,
= (4.2)

u=0 on oy

has a weak solution u = u; € W&’2(Ql,w) forl=1,2,3,.... In addition, for k >,
lukllo1,2.0, < Bo, where By is independent of k.

Proof. We use arguments similar to those in Theorem Let u, € WO1 ’Q(Qk7w)
be the solutions of in each bounded subdomains Q. Also By, By and T are
defined in a similar way as in section-3. Then, from the hypotheses and relation
, we note that for k& > [,

| B (ur, ur)| < cllurllg 1 2.0,
g
| Ba (ug, u )| < MCQL||ﬁ\|oo,ﬂz||uk||(2),1,2,nl

T (ur)| < Coy || fll2,0 1wk

where Cq, (is the constant depending on the domain ;) independent of k. Also,
we have for k > [

|O,1,2,Ql7

Ba(us,u) 2 X [ |DunPads = Ml 0,
Q

We obtain )
12,0 < XBl(UkaUk) (4.3)

[k
Also, we note that

(Buk =+ Nuk|uk) = Bl(uk,uk) + Bg(uk,uk)
g
> (A= pCq, H\ﬁ||oo,nz)||uk||g,1,z,gl

As, T(ug) = By (ug, ug) + Ba(ug, ug), we have

g
(A = uCq, ||\ﬁ\\oo,ﬂl)||uk||g,1,z,nl < Ca,llfllz,0 llukllo1,2,0:- (4.4)
Since A > uCgq, H%H%QL, By (4.3) and (4.4)), we have
Ca, | fll2.0
lurllo,1,2,0, < - —
' ()‘_MCQL”%HOO;QJ
Callflon o

= 0= wCa, [ L)
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where [y is independent of k. Hence,
||'U/k||071’27§2[ é ﬁo, for all k& 2 l (45)

(]

Theorem 4.2. Let ) = U2y, ) C Q C Q1 C ﬁl+1 be bounded domains in €2,
forl>1 and let the condition uCgq, ||%||OOQ < A be fulfilled. Under the hypotheses

(H1’) and (H2), (1)) has a weak solution u € Wy"* (€, w).

Proof. A part of this proof follows from [19] 23] 24]. Let {ux} be the sequence of
solutions of (&2) in Wy (Q,w), (k > 1). Let iy, for k > 1, denote the extension
of uy by zero outside €, which we continue to denote it by wu. From (4.5)), we
have

llukllo,2,0, < Bo, fork>1.

Then, {uy} has a subsequence {u1 } which converges weakly to ul, as m — oo,
in W,?(Qy,w). Since {ug: } is bounded in W2 (2, w), it has a convergent sub-
sequence {ugz } converging weakly to u? in WO1 ’Q(Qg,w). By induction, we have
{uyi-1} has a subsequence {uy: } which weakly converges to ul in WS’Z(Ql,w); ie.,
in short, we have up — u! in Wol’z(Ql,w), [ > 1. Define u: Q — R by

u(z) == ul(z), forxze Q.
(Here, there is no confusion since u!(x) = u™(z), x € Q, for any m > ).

Let M be any fixed (but arbitrary) bounded domain such that M C Q. Then,
there exists an integer [ such that M C ;. We note that, the diagonal sequence
{upm;m > 1} converges weakly to u = u' in Wy 2(M,w), as m — oc.

We still need to show that w is the required weak solution. It is sufficient to

show that w is a weak solution of (4.1) for an arbitrary bounded domain M in Q.
Since ugm — ul in W,y (M,w), we have

/ D(upm —u).Dpwdr — 0, asm — oo,
M
implies
/ Dj(upm —u)Djpwdr — 0, as m — oo.
M

From (1.1), for a constant ¢, we have |a;;| < cw. We observe that

/ Z a;j Di(upm —u)Dj¢pdr < c Z / D;(ugm —u)Djpwdr — 0,  (4.6)
M M

i,5=1 ,j=1
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as m — oo. Also, by (2.4), ugm — w in L*(M). We have, by the generalized
Hoélder’s inequality

| /Mgm(ukm) ~ h(w)Di(ury; — u)dda
<A / 9/l (s — )| Dot — )l
M

m

< ALl | Vi, =)Dy =)ol

< A||%\|OO,M(/M (g — )| 1/4(/M Dy (s — u)\dem)l/z
([ Jotax)”
M

< ACMH\%Hoo,MHukm — ulla,arllurm — ullor,2,a |l — 0,

(4.7)

as m — oo. Since M is an arbitrary bounded domain in €, it follows from (4.6)
and ,

|3 as@Dada) Dyota)da + | > slehu(e)) Dutz)olelds

i,j=1
- [ ot
for every ¢ € VVO1 ’Q(Q, w), which completes the proof. a

Remark 4.3. The above results still hold if A is a bounded and continuous (not
necessarily Lipschitz). We have to slightly modify the argument used in the in-
equalities and and the rest of the proof remains same. For a bounded
domain G and bounded function h, if u € L?(G), we have h(u) € L*(G). Define
the Nemytskii operator h, : L?(G) — L*(G) by hy,(z) = h(u(z)); we have h, is
continuous [21, Theorem 2.1]. Let u,, — u in W, *(G,w), then

| ) btn) = ) Dy

< IIQ/@IIOO,G/ |A(un) = h(w)|| Dt 2| v, | d
G

< Callg/vVwlloo.allh(un) = h(w)lla.cllunllon2cllvnllorze — 0, asm — oo.

Similar argument can be use to prove the inequality (4.7 in section 4.
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