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DIFFERENTIABILITY, ANALYTICITY AND OPTIMAL RATES
OF DECAY FOR DAMPED WAVE EQUATIONS

LUCI HARUE FATORI, MARIA ZEGARRA GARAY, JAIME E. MUÑOZ RIVERA

Abstract. We give necessary and sufficient conditions on the damping term
of a wave equation for the corresponding semigroup to be analytic. We char-
acterize damped operators for which the corresponding semigroup is analytic,
differentiable, or exponentially stable. Also when the damping operator is not
strong enough to have the above properties, we show that the solution decays
polynomially, and that the polynomial rate of decay is optimal.

1. Introduction

This article is concerned with analyticity, differentiability and asymptotic sta-
bility of the C0 semigroups associated with the initial-value problem

utt + Au + But = 0 (1.1)

u(0) = u0, ut(0) = u1 (1.2)

where A, and B are a self-adjoint positive definite operators with domain D(Aα) =
D(B) dense in a Hilbert space H. We use the following hypotheses:

(H1) There exists positive constants C1 and C2 such that

C1A
α ≤ B ≤ C2A

α.

which means

C1(Aαu, u) ≤ (Bu, u) ≤ C2(Aαu, u)

for any u ∈ D(Aα).
(H2) The bilinear form b(u, w) = (B1/2u, B1/2w) is continuous on D(Aα/2) ×

D(Aα/2). By the Riesz representation theorem, assumption (H2) implies
that there exists an operator S ∈ L(D(Aα/2)) such that

(Bu, w) = (Aα/2Su, Aα/2w)

for any u, w ∈ D(Aα/2).
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There exists a large body of literature about the above problem dealing with
asymptotic behaviour of the solutions to the damped wave equation see for example
[10, 8, 4, 21, 22, 7, 13] and the references therein. In contrast to this results, there
exists only a few publications dealing with regularity properties of the damped
wave equation, like analyticity and differentiability of the corresponding semigroup.
Here we mention two references. First, in [5] the authors proved that the semigroup
associated to the damped wave equation is analytic if 1/2 ≤ α ≤ 1. This result
established a fortiori the conjectures by Chen and Russel on structural damping
for elastic systems, which referred to the case α = 1/2. Second, Liu and Liu [14]
proved also the analyticity of the corresponding semigroup when α ∈ [1/2, 1] and the
differentiability of the semigroup provides α ∈]0, 1/2]. Their proof is simpler than
the proof in [5], the method the authors used is based on contradiction arguments.

In the two above cited papers there is no information about the behaviour of
the semigroup for −1 ≤ α ≤ 1/2, which frequently appears in applications. We
also cite the book by Liu and Zheng [15], for questions related questions to this
problem.

In this article we show a class of operators A and B, for which the above equation
is analytic, differentiable and exponentially stable. Here we develop a proof simpler
than the one in [5, 14], without using contradiction arguments. In addition, we
show in case that the semigroup is not exponentially stable, that the solution of
(1.1) decays polynomially to zero as time appraoches infinity. We show the our rate
decay is optimal. To do so, we show for any contraction semigroup, a necessary
condition to get the polynomial rate of decay. That is to say, the main result of
this paper is to get a fully characterization of the damping term for −1 ≤ α ≤ 1.
We show as in [5, 14] that the semigroup is analytic if and only if 1/2 ≤ α ≤ 1,
it is differentiable when α ∈]0, 1[ and that it is exponentially stable if and only if
α ∈ [0, 1]. Finally, in case of α = −γ < 0 we show that the corresponding semigroup
decays polynomially to zero as t−1/γ and we show that this rate of decay is optimal
in D(A) in the sense that is not possible to improve the rate t−1/γ with initial data
over the domain of the operator A.

This paper is organized as follows. In sections 2 and 3 we show the analyticity and
differentiability of the semigroup respectively. In section 4 we show the polynomial
rate of decay of the semigroup when α < 0 and we prove the optimality of the rates
of decay. Finally, in section 5 we give some applications of the above results.

2. Analyticity

Let us denote H = D(A1/2)×H. Denoting by U = (u, v) we define the norm in
H as

‖U‖2H = ‖A1/2u‖2 + ‖v‖2.
Putting v = ut, (1.1) can be written as the initial-value problem

dU

dt
= ABU

U(0) = U0

(2.1)

with U = (u, v)t, U0 = (u0, u1)t. Let us define

D(AB) =
{

(u, v) ∈ D(A)×D(A1/2) : Au + Bv ∈ H
}

(2.2)
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and

AB =
(

0 I
−A −B

)
, ABU =

(
v

−(Au + Bv)

)
. (2.3)

Clearly, for U ∈ D(AB),

(ABU,U) = (A1/2v,A1/2u)− (Au + Bv, v) = −‖B1/2v‖ ≤ 0.

Thus AB is a dissipative operator. Therefore we have the following result; see Pazy
[18].

Theorem 2.1. Let us assume that A and B are self adjoint operators positive
definite and also a bijection operator from D(AB) to H. Then the operator AB is
the infinitesimal generator of a C0-semigroup SB(t) of contraction in H.

In this section we will show that the semigroup is analytic. Our main tool is the
following theorem whose proof is found in [15].

Theorem 2.2. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space.
Then S(t) is analytic if and only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR
and

lim sup
|β|→∞

|β| ‖(iβI −A)−1‖ < ∞,

where ρ(A) is the resolvent set of A.

The main result of this section is to show that the semigroup is analytic if and
only if 1/2 ≤ α ≤ 1.

Theorem 2.3. The semigroup SB(t) = eABt is analytic if and only if 1/2 ≤ α ≤ 1.

Proof. For 1/2 ≤ α ≤ 1, the domain of the operator AB is

D(AB) = {(u, v) ∈ D(A1/2)×D(A1/2) : Au + Bv ∈ H}. (2.4)

Note that in general it is not possible to conclude that u ∈ D(A). Using the spectral
equation we obtain

iβu− v = f in D(A1/2) (2.5)

iβv + Au + Bv = g in H. (2.6)

As in the above section we obtain

‖Aα/2v‖2 ≤ C‖F‖H‖U‖H. (2.7)

Multiplying (2.6) by Aγu and using (2.5) we obtain

‖A(1+γ)/2u‖2 + (Bv, Aγu) = ‖Aγ/2v‖2 + (Aγv, f) + (g,Aγu);

that is,

‖A(1+γ)/2u‖2 + (Aα/2Sv, Aγ+α/2u)

= ‖Aγ/2v‖2 + (Aγ−1/2v,A1/2f) + (g,Aγu).
(2.8)

Taking γ = 1− α in the above identity we obtain

‖A(2−α)/2u‖2 ≤ ‖A(1−α)/2v‖2 + C‖F‖H‖U‖H.

From where we have that there exists a positive constants C such that

‖A(2−α)/2u‖2 ≤ C‖Aα/2v‖2 + C‖F‖H‖U‖H ≤ C0‖F‖H‖U‖H. (2.9)
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Multiplying (2.5) by Au we obtain

iβ‖A1/2u‖2 = (A1/2f,A1/2u) + (Aα/2v,A1−α/2u).

Then using (2.7) and (2.9) we obtain

β‖A1/2u‖2 ≤ C‖U‖H‖F‖H.

Let us decompose v as v = v1 + v2 such that

iβv1 + Bv1 = g in H (2.10)

iβv2 + Au + Bv2 = 0 in H. (2.11)

Multiplying (2.10) by v1 and taking imaginary and real part we obtain

|β|‖v1‖ ≤ ‖F‖H, ‖B1/2v1‖ ≤ ‖F‖H. (2.12)

Note that ‖v1‖ ≤ ‖v‖+ ‖v2‖ and

‖Aα/2v2‖ ≤ ‖Aα/2v‖+ ‖A−α/2Bv1‖

≤ c1‖U‖1/2
H ‖F‖1/2

H + c2‖v1‖1/2‖F‖1/2
H

≤ c‖U‖1/2
H ‖F‖1/2

H + c2‖v2‖1/2‖F‖1/2
H .

From (2.11) and the above inequality, we obtain

|β|‖A−α/2v2‖ ≤ ‖A(2−α)/2u‖+ ‖Aα/2v2‖ ≤ c‖U‖1/2
H ‖F‖1/2

H + c2‖v2‖1/2‖F‖1/2
H .

Using interpolation we obtain

‖v2‖2 ≤ c‖A−α/2v2‖‖Aα/2v2‖

≤ c

β
(‖U‖1/2

H ‖F‖1/2
H + c2‖v2‖1/2‖F‖1/2

H )2

≤ c

β
(‖U‖H‖F‖H + ‖v2‖‖F‖H).

From where we have

β2‖v2‖2 ≤ cβ‖U‖H‖F‖H + c0‖F‖2H.

From the above inequality and (2.12) we obtain

β2‖v‖2 ≤ 2β2(‖v1‖2 + ‖v2‖2) ≤ cβ‖U‖H‖F‖H + c0‖F‖2H.

Using relation (2), we obtain

β2(‖v‖2 + ‖A1/2u‖2) ≤ cβ‖U‖H‖F‖H + c0‖F‖2H
which is equivalent to

β2‖U‖2H ≤ cβ‖U‖H‖F‖H + c0‖F‖2H
which implies

β2‖U‖2H ≤ c1‖F‖2H.

From where the analyticity follows.
Now we show that the corresponding semigroup is not analytic for 0 ≤ α < 1/2.

Here, we consider that the operator A and B have infinite eigenvector in common.
Let us construct a sequence Fν such that the solutions of

iβνUν −AUν = Fν
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satisfies |βν |‖Uν‖H →∞, which in particular implies

‖βν(iβνI −A)−1‖H →∞

which means that the corresponding semigroup is not analytic. To see this, let us
consider the spectral system

iβuν − vν = 0 (2.13)

iβvν + Auν + Bvν = wν (2.14)

where wν is an unitary eigenvector of A and B. Let us denote by λν and λBν the
eigenvalues of A and B respectively. So we have

−β2uν + Auν + iβBuν = wν .

Therefore, we can assume that uν = Kwν , with K ∈ C. Substitution of uν yields

(−β2 + λν + iβλBν)Kwν = wν .

Taking β2 = λν we obtain that

iβλBνK = 1 ⇒ K := Kν = −iλ−1/2
ν λ−1

Bν ,

since
vν = iβuν = iβKνwν = −iλ−1

Bνwν .

Therefore,

‖Uν‖2H = ‖A1/2uν‖2 + ‖vν‖2 = 2λ−2
Bν ⇒ βν‖Uν‖H =

√
2λ1/2

ν λ−1
Bν . (2.15)

From (H1) we conclude that

C0λ
α
ν ≤ λBν ≤ C1λ

α
ν . (2.16)

Therefore, if α < 1/2 we obtain

βν‖Uν‖H ≥ c0λ
1/2−α
ν ⇒ βν‖Uν‖H →∞

From where our conclusion follows. �

3. Differentiability

Our main tool to show differentiability is the following theorem, Pazy [18, The-
orem 4.9].

Theorem 3.1. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space.
Then S(t) is differentiable if iR ⊂ ρ(A) and

lim sup
|β|→∞

(ln |β|)‖(iβI −A)−1‖ < ∞.

We use the above result to show that the semigroup SB is differentiable when
0 < α < 1/2. The differentiability for 1/2 ≤ α ≤ 1 is an immediate consequence of
the analyticity.

Theorem 3.2. Suppose that 0 < α < 1/2. Then the semigroup SB(t) is differen-
tiable.
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Proof. To show the above relation, let us consider the spectral equation

iβU −ABU = F.

In terms of the coefficients we have (2.5)–(2.6). Multiplying (2.6) by v we obtain

iβ‖v‖2 + (A1/2u, A1/2v) + ‖B1/2v‖2 = (g, v).

Multiplying (2.5) by Au we obtain

iβ‖A1/2u‖2 − (A1/2v,A1/2u) = (A1/2f,A1/2u).

Adding the above equations and taking the real part we obtain

‖B1/2v‖2 ≤ C‖F‖H‖U‖H. (3.1)

From (H1) we obtain
‖Aα/2v‖2 ≤ C‖F‖H‖U‖H. (3.2)

In particular,
‖v‖2 ≤ C‖F‖H‖U‖H. (3.3)

Multiplying (2.6) by u we obtain

(iβv, u) + ‖A1/2u‖2 + (Bv, u) = (g, u).

Using (2.5), we obtain

‖A1/2u‖2 ≤ ‖v‖2 − (B1/2v,B1/2u) + C‖F‖H‖U‖H.

Since α ≤ 1/2, using (3.1), hypothesis (H1) and (3.3), we obtain

‖A1/2u‖2 ≤ c‖v‖2 + C‖F‖H‖U‖H ≤ C‖F‖H‖U‖H. (3.4)

From (3.3) and (3.4) we conclude that

‖U‖H ≤ C‖F‖H. (3.5)

From (2.5), (3.2) and (3.5) we obtain that

|β|‖Aα/2u‖ ≤ ‖Aα/2v‖+ ‖F‖H ≤ C‖F‖H. (3.6)

This because α ≤ 1/2. Multiplying (2.6) by Aγu we obtain

(iβv,Aγu) + ‖A(γ+1)/2u‖2 + (Bv, Aγu) = (g,Aγu)

or equivalent

−(Aγv, iβu) + ‖A(γ+1)/2u‖2 + (Bv, Aγu) = (g,Aγu).

From (H2) we obtain

−(Aγv, iβu) + ‖A(γ+1)/2u‖2 + (Aα/2Sv, Aγ+α/2u) = (g,Aγu).

Using (2.5) we obtain

‖A(γ+1)/2u‖2 ≤ ‖Aγ/2v‖2 + (Aα/2Sv, Aγ+α/2u) + C‖F‖H‖U‖H
≤ ‖Aγ/2v‖2 + (Aα/2Sv, Aγ+α/2u) + C‖F‖2H.

(3.7)

From the above relation we conclude that our best choice for γ is γ = α, then we
obtain

‖A(α+1)/2u‖2 ≤ ‖Aα/2v‖2 + (Aα/2Sv, A3α/2u) + C‖F‖2H.

Since α ≤ 1/2 we obtain

‖A3α/2u‖ ≤ ‖A(α+1)/2u‖
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which implies

‖A(α+1)/2u‖2 ≤ c‖Aα/2v‖2 + C‖F‖2H.

From (3.2) and (3.5) we obtain that there exists a positive constant C such that

‖A(α+1)/2u‖2 ≤ C‖F‖2H. (3.8)

Now we use interpolation

1/2 = θ(α + 1)/2 + (1− θ)α/2 ⇒ θ = 1− α.

Therefore,

‖A1/2u‖ ≤ c‖A(α+1)/2u‖θ‖Aα/2u‖1−θ.

Then

|β|1−θ‖A1/2u‖ ≤ c‖A(α+1)/2u‖θ(|β|‖Aα/2u‖)1−θ.

So from (3.6)–(3.8) we have

|β|α‖A1/2u‖ ≤ C‖F‖θ
H‖F‖1−θ

H ≤ C‖F‖H. (3.9)

Applying A(α−1)/2 in (2.6) we obtain

iβA(α−1)/2v + A(α+1)/2u + A(α−1)/2Bv = A(α−1)/2g.

From hypothesis (H2) the operator B can be written as Bv = AαSv, so we have

|β|‖A(α−1)/2v‖ ≤ ‖A(α+1)/2u‖+ ‖A(3α−1)/2Sv‖+ c‖F‖H.

Since α− 1 < 0 and (3α− 1)/2 ≤ α/2, provided 0 < α < 1/2, we obtain that

|β|‖A(α−1)/2v‖ ≤ c‖A(α+1)/2u‖+ c‖Aα/2v‖+ c‖F‖H

for β > 1. From (3.2), (3.5) and (3.8) we obtain

|β|‖A(α−1)/2v‖ ≤ C‖U‖1/2
H ‖F‖1/2

H + c‖F‖H ≤ C‖F‖H. (3.10)

Using interpolation once more,

0 = θ(α− 1)/2 + (1− θ)α/2 ⇒ θ = α,

we obtain

‖v‖ ≤ c‖A(α−1)/2v‖θ‖Aα/2v‖1−θ.

So we have that

|β|α‖v‖ ≤ c(|β|‖A(α−1)/2v‖)α‖Aα/2v‖1−α.

From (3.2), (3.5) and (3.10) it follows that

|β|α‖v‖ ≤ c(‖F‖H)α‖F‖1−α
H = C‖F‖H. (3.11)

From relation (3.9) and (3.11) we obtain,for β large,

|β|2α‖U‖2H ≤ C‖F‖2H.

Therefore our conclusion follows. �
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4. Polynomial rate of decay and optimality

In this section we prove that the solution of (1.1) for α = −γ < 0 decays poly-
nomially to zero as time approaches infinity. We will show that the corresponding
energy decays to zero as t−1/γ . Moreover we show that this rate of decay is optimal.
This result improves the rates established in [17]. Our result is based on [3]. See
also also [2, 1].

Theorem 4.1. Let S(t) be a bounded C0-semigroup on a Hilbert space H with
generator A such that iR ⊂ %(A). Then

1
|η|α

‖(iηI −A)1‖ ≤ C, ∀η ∈ R ⇔ ‖S(t)A−1‖ ≤ c

t1/α

To prove polynomial rate of decay we should show that there exist positive
constant C > 0 independent of β, l or f such that

sup
‖f‖≤1

1
βl
‖U‖ = sup

‖f‖≤1

1
βl
‖(iβI −A)−1f‖ ≤ C.

Remark 4.2. Note that we can improve the polynomial rate of decay by improving
the regularity of the initial data, that is

‖S(t)A−k‖ ≤ ck

tk/α

for the proof see [20]. In that sense it is important to remark what optimality
means. The optimality of course will depend on the domain. So fixing the domain
taking k = 1, we prove that the rate 1/γ can not be improved.

Under the above conditions we can establish the main result of this section.

Theorem 4.3. Let α = −γ < 0 be a negative real number where 0 < γ ≤ 1. Then
the semigroup SB(t) decays polynomially to zero as

‖SB(t)U0‖ ≤ C(
1
t
)1/γ‖U0‖D(A).

Moreover, when B and A−γ have infinite common eigenvectors the rate 1/γ can
not be improved over D(A).

Proof. We consider spectral (2.5) and (2.6) when α ∈]− 1, 0[ or equivalently

iβu− v = f ∈ D(A) (4.1)

iβv + Au + Bv = g ∈ H. (4.2)

Multiplying (4.2) by v and (4.1) by Au summing the product result and taking real
part we obtain

‖A−γ/2v‖2 ≤ C‖F‖H‖U‖H. (4.3)
Multiplying (4.2) by A−γu and using (4.1), we obtain

‖A(1−γ)/2u‖2 = ‖A−γ/2v‖2 − (Bv, A−γu) + (A−γv, f) + (g,A−γu).

Since (1− γ)/2 > −γ and using (4.3) we obtain that

‖A(1−γ)/2u‖2 ≤ C‖U‖H‖F‖H. (4.4)

Applying A−(1+γ)/2 on (4.2), we obtain

iβA−(1+γ)/2v + A(1−γ)/2u + A−(γ+1)/2Bv = A−(γ+1)/2g.
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Since −(3γ + 1)/2 < −γ/2 and using (4.3)-(4.4) in the above identities, it follows
that

|β|‖A−(1+γ)/2v‖ ≤ C‖U‖1/2
H ‖F‖1/2

H + c‖F‖H. (4.5)
Multiplying (4.1) by Asu where s = (1− 2γ)/2 we obtain

iβ‖As/2u‖2 = (A−γ/2v,Aγ/2+su) + (f,Asu).

That is,
|β|‖A(1−2γ)/4u‖2 ≤ C‖U‖H‖F‖H + C‖F‖2H. (4.6)

Applying Aγ/2 on (4.1) and (4.3), we obtain

|β| ‖A−γ/2u‖ ≤ C‖U‖1/2
H ‖F‖1/2

H + c‖F‖H. (4.7)

Using interpolation,

0 = θ(1− 2γ)/4− γ/2(1− θ) ⇒ θ = 2γ,

we have
‖u‖ ≤ c‖A−γ/2u‖1−θ‖A(1−2γ)/4u‖θ.

Now using (4.6) and (4.7), we obtain

‖u‖ ≤ C

|β|1−θ/2
(‖U‖1/2

H ‖F‖1/2
H + ‖F‖2H)

=
C

|β|1−γ
(‖U‖1/2

H ‖F‖1/2
H + ‖F‖2H).

From this,

‖v‖ ≤ |β|‖u‖+ ‖f‖ ≤ C

|β|−γ
(‖U‖1/2

H ‖F‖1/2
H + ‖F‖H) + ‖F‖H ,

and so
|β|−γ‖v‖ ≤ C(‖U‖1/2

H ‖F‖1/2
H + ‖F‖H). (4.8)

Multiplying (4.2) by u and using (4.1) we obtain

‖A1/2u‖2 = (Bv, u)− (iβv, u) + (g, u) = (Bv, u) + ‖v‖2 − (f, u) + (g, u).

From (4.3) we conclude that

|β|−2γ‖A1/2u‖2 ≤ |β|−2γ‖v‖2 + C|β|−2γ(‖U‖3/2
H ‖F‖1/2

H + ‖F‖‖U‖). (4.9)

Adding (4.8) and (4.9), we have

|β|−2γ‖U‖2H ≤ β−2γ‖v‖2 + Cβ−2γ‖U‖H‖F‖H + C‖F‖2H.

Applying Young’s inequality in the last term,
1
2
|β|−2γ‖U‖2H ≤ C|β|−2γ‖F‖2 ≤ C‖F‖2.

Therefore, the semigroup is polinomially stable and decay as t−1/γ over D(A).
Finally, to show the optimality. We suppose that the operators A and B have an
infinite eigenvector in common. As in section 2, we can assume that uν = Kwν ,
with K ∈ C. Substitution of uν yields

(−β2 + λν + iβλBν)Kwν = wν .

Taking β2 = λν − λ
(1−γ)/2
ν we obtain that β ≈ λ

1/2
ν and

(λ(1−γ)/2
ν + iβλBν)K = 1 ⇒ uν = Kνwν =

1
1 + iβλBν

wν ,
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since

uν = Kνwν =
1

λ
(1−γ)/2
ν + iβλBν

wν .

Then we have

‖Uν‖H ≥ ‖A1/2uν‖ =
λ

1/2
ν√

λ1−γ
ν + β2λ2

Bν

≥ λ
1/2
ν√

λ1−γ
ν + c0λ

1−2γ
ν

≥ λ
γ/2
ν√

1 + c0λ
−γ
ν

.

Note that β ≈ λ
1/2
ν as ν →∞. From where we obtain

β−γ+ε‖Uν‖H ≥
λε

ν√
1 + c0λ

−1
ν

→∞

as ν →∞. Therefore is not possible to improve the polynomial rate of decay. �

5. Applications

Here we apply our result to several models.

Viscoelastic plates. Let Ω be a bounded subset of Rn with smooth boundary
∂Ω, and consider the model

%utt + κ∆2u− γ∆ut = 0 in Ω

u(x, 0) = u0(x), ut(x, 0) = u1(x), in ∂Ω
u = ∆u = 0 on ∂Ω.

Here A = k/ρ∆2 and B = γρ/k(−∆).
From Theorem 2.3 we conclude that the semigroup that defines the solution of the

above system is analytic. So, in particular we have that the solution decays expo-
nentially to zero and there exists smoothing effect on the initial data, that is no mat-
ter where the initial data u0 and u1 is, the solution satisfies u ∈ C∞(]0, T [;C∞(Ω)).

On the other hand, if we consider the inertial term on the plate we obtain the
model

%utt − h∆utt + κ∆2u− γ∆ut = 0 in Ω

u(x, 0) = u0(x), ut(x, 0) = u1(x), in ∂Ω
u = ∆u = 0 on ∂Ω.

Here A = k(ρI−h∆)−1∆2, B = −γ(ρI−h∆)−1∆. So there exists positive constants
c1 and c0 such that

c1(A0w,w) ≤ (Bw,w) ≤ c0(A0w,w).

We conclude that the model is neither analytic nor differentiable. But is exponen-
tially stable.
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Mixtures. We consider a beam composed by a mixture of two viscoelastic inter-
acting continually that occupies the interval (0, L). The displacement of typical
particles at time t are u and w, where u = u(x, t) and w = w(y, t), x, y ∈ (0, L).
We assume that the particles under consideration occupy the same position at time
t = 0, so that x = y. We denote by ρi the mass density of each constituent at
time t = 0, T, S the partial stresses associated with the constituents, P the internal
diffusive force. In the absent of body forces the system of equations consists of the
equations of motion

ρ1utt = Tx − P, ρ2wtt = Sx + P, (5.1)

and the constitutive equations
T = a11ux + a12wx + b11uxt + b12wxt

S = a12ux + a22wx + b21uxt + b22wxt

P = α(u− w).
(5.2)

If we substitute the constitutive equations into the motion equations and the energy
equation, we obtain the system of field equations

ρ1utt − a11uxx − a12wxx + α(u− w)− b11uxxt − b12wxxt = 0 in (0,∞)× (0, L),

ρ2wtt − a12uxx − a22wxx − α(u− w)− b21uxxt − b22wxxt = 0 in (0,∞)× (0, L),

We assume that the constants ρ1, ρ2 , c, and α are positive, and that the matrix
A = (aij), B = (bij) are symmetric and positive definite.

u(0) = u0, ut(0) = u1, w(0) = w0, wt(0) = w1,

u(t, 0) = u(t, L) = w(t, 0) = w(t, L) = 0.

In vectorial notation, the above system can be written as

Utt + AUxx + BUxxt = 0,

where U = (u, w)t. Note that

c1(Aw,w) ≤ (Bw,w) ≤ c0(Aw,w).

Therefore, by Theorem 2.3 we conclude that the solution of the mixture model is
defined by an analytic semigroup.

Elasticity. Let us denote by Ω ⊂ R2 an open bounded set with smooth boundary.
Let us consider the plate equation

utt −∆utt + ∆2u + γut = 0, in Ω×]0,∞[
u = ∆u = 0 on ∂Ω

u(0) = u0, ut(0) = u1 in ∂Ω.

Letting A = [I −∆]−1∆2 and B = [I −∆]−1, with H and D(∆) being L2(Ω) and
H1

0 (Ω) ∩H2(Ω) respectively, the above model may be written as (1.1). Note that

c1(A−1w,w) ≤ (Bw,w) ≤ c0(A−1w,w).

Using Theorem 4.3 we conclude that the corresponding semigroup decays polyno-
mial as

‖SB(t)U0‖H ≤
C

t
‖U0‖D(A).

Where the rate 1/t can not be improved over domain of D(A). This result improves
the rate of decay given in [17].
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