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EXISTENCE AND UNIFORM ASYMPTOTIC STABILITY FOR
AN ABSTRACT DIFFERENTIAL EQUATION WITH INFINITE

DELAY

CUNG THE ANH, LE VAN HIEU

Abstract. Using the Contraction Mapping Principle, we study the existence,
uniqueness, and uniform asymptotic stability of solutions to an abstract dif-
ferential equation with infinite delay of the form du(t)/dt + Au(t) = B(t, ut),
where A is a positive sectorial operator and the nonlinear part B is Lipschitz
continuous with respect to a fractional power of A in the second variable and
the Lipschitz coefficient may depend on time t. Some special cases and exam-
ples are provided to illustrate the results obtained.

1. Introduction

The study of functional differential equations is motivated by the fact that when
one wants to model some evolution phenomena arising in physics, biology, engi-
neering, etc., some hereditary characteristics such as aftereffect, time lag and time
delay can appear in the variables. Typical examples arise from the researches of
materials with thermal memory, biochemical reactions, population models, etc (see
e.g. [14, 29]). One of the most important and interesting problem in the analysis of
functional differential equations is to study the stability of solutions. This theory
has been greatly developed over the previous years for both ordinary differential
equations (ODEs) with delay and partial differential equations (PDEs) with delay.

PDEs with delay are often considered in the model such as maturation time for
population dynamics in mathematical biology and other fields. Such equations are
naturally more difficult than ODEs with delay since they are infinite dimensional
both in time and space variables. As mentioned in [12], the stability analysis of
PDEs with delay is essentially complicated. In recent years, the existence and
stability of solutions to partial functional differential equations with delay has at-
tracted widespread attraction. The development was initiated for equations with
finite delay by Travis and Webb [25, 26], and later by many other authors (see the
monograph [29] and references therein). The problem for equations with infinite
delay was discussed recently by Henriquez, Adimy et. al. (see e.g. [15, 1, 2, 3]).
It is noticed that in these works, the delay term B(t, ut) is usually assumed to be
Lipschitz continuous with respect to ut, with the Lipschitz coefficient independent

2000 Mathematics Subject Classification. 35B35, 37L15.
Key words and phrases. Infinite delay; sectorial operator; mild solution;
uniform asymptotic stability; fixed point method.
c©2012 Texas State University - San Marcos.
Submitted June 3, 2011. Published March 29, 2012.

1



2 C. T. ANH, L. V. HIEU EJDE-2012/51

of time t. Moreover, when studying the stability of the zero solution in the case
of infinite delay, the authors required that B does not depend on t explicitly and
is differentiable with respect to ut. Then the stability of the origin equation is
deduced from the stability of the linearized equation du(t)/dt + Au(t) = B′(ut).
Another approach for the stability problem for PDEs with delay is using Lyapunov
functions, see for instance [7, 8, 9, 10, 12, 21, 27] for some recent works, but the
later approach seems to be difficult to use in the case of infinite delay.

In this article, we are concerned with the existence, uniqueness and uniform as-
ymptotic stability of global solutions for the partial functional differential equation
with infinite delay,

du(t)
dt

+Au(t) = B(t, ut), t > 0

u0(t) = φ(t), t ≤ 0.
(1.1)

We shall make the following assumptions on the operator A and the nonlinearity
B:

(H1) A is a positive sectorial operator on a Banach space (E, ‖.‖) with associated
analytic semigroup T (t) and a family of fractional power spaces D(Aα) (see
Sect. 2.1 for more details).

(H2) The nonlinear term B : R+ ×D(Aα) → E satisfies

‖B(t, φ)−B(t, ψ)‖ ≤ L(t)‖φ− ψ‖B, ∀φ, ψ ∈ B, t ≥ 0,

where L(·) : R+ → R+ is a nonnegative measurable function in Lp
loc(R+)

with p > 1
1−α , 0 ≤ α < 1.

Here φ is an element in a phase space B of functions from (−∞, 0] into D(Aα),
which will be specified later. For each u : (−∞, T ] → D(Aα), T > 0, and t ∈ [0, T ],
ut denotes, as usual, the element of B defined by ut(θ) = u(t+ θ) for θ ∈ (−∞, 0].

It is known that there are numerous technical difficulties in dealing with partial
differential equations with infinite delay due to the unboundedness of the delay
involved. To overcome these difficulties, in this paper we exploit the fixed point
method to prove the existence and asymptotic stability of the solution. The idea
of using the fixed point method to study the stability problem for ordinary and
functional differential equations was initiated by Burton and Furumochi [5] and
developed later by other authors for many types of (functional) differential and
integro-differential equations (see, for example, [6, 16, 18, 22, 23, 30]). A new
feature in our paper is that we are able to use this method to prove the existence of
a mild solution when the Lipschitz coefficient depending on time t, and study the
stability of the zero solution of partial differential equations with infinite delay.

The article is organized as follows. In Section 2, for convenience of readers, we
recall axioms and some examples of the phase space B, and some properties of
fractional power spaces and fractional power operators generated by the operator
A. The existence and uniqueness of a mild solution to (1.1) are proved in Section
3, and the uniform asymptotic stability of the zero solution is studied in Section 4
by using the Contraction Mapping Principle. In the last section, we provide some
special cases and examples to illustrate the results obtained.

2. Preliminaries

2.1. Phase space. In the literature devoted to equations with finite delay, the
state space is the space of all continuous functions on [−r, 0], r > 0, endowed with
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the uniform norm topology. When the delay is infinite, the selection of the state
space plays an important role in the study of both qualitative and quantitative
theory. A usual choice is a seminormed space satisfying suitable axioms introduced
by Hale and Kato [13], and considered later by Kappel and Schappacher [19], and
Schumacher [24]. For a detailed discussion on this topic, we refer the reader to the
book by Hino et. al. [17]. In what follows we introduce Axioms and some examples
of the phase space B which will be used in the paper.

Assume that E is a real Banach space with a norm ‖ · ‖E . We will assume that
the phase space B is a linear space of maps from (−∞, 0] into E, endowed with a
seminorm ‖ · ‖B and satisfying the following fundamental axioms:

(A1) If x : (−∞, σ + a) → E, a > 0, such that xσ ∈ B and x(·) is continuous on
[σ, σ + a), then for all t in [σ, σ + a) the following conditions hold:
(1) xt ∈ B,
(2) ‖x(t)‖E ≤ H‖xt‖B,
(3) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖E : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,

where H is a constant, and the functions K(·), M(·) : [0,+∞) → [0,+∞),
with K continuous and M locally bounded, and they are independent of x.

(A2) For the function x(·) in (A1), t 7→ xt is a B-valued continuous function for
t in [σ, σ + a).

(B1) The space B is complete.

Remark 2.1 ([17]). From above Axioms, we note that
• Axiom (A1)(2) is equivalent to

|φ(0)| ≤ H‖φ‖B, for every φ ∈ B. (2.1)

• Since ‖ · ‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ− ψ‖B = 0
without necessarily φ(θ) = ψ(θ) for all θ ≤ 0. But, from (2.1), we see that
φ, ψ ∈ B and ‖φ− ψ‖B = 0 implies that φ(0) = ψ(0).

• Axiom (B1) is equivalent to saying that the space of equivalence classes

B̂ = B/‖ · ‖B = {φ̂ : φ ∈ B}

is a Banach space.

Let us give some examples of concrete functional spaces that verify Axioms (A1),
(A2), and (B1).

Example 2.2. For any continuous function g : (−∞, 0] → (0,+∞), let

C0
g :=

{
φ ∈ C((−∞, 0];E) : lim

θ→−∞

|φ(θ)|
g(θ)

= 0
}
,

endowed with the norm

‖φ‖g := sup
−∞<θ≤0

|φ(θ)|
g(θ)

.

It was proved in [17, Theorems 1.3.2 and 1.3.6] that if g is nonincreasing, then(
C0

g , ‖ · ‖g

)
satisfies Axioms (A1), (A2), and (B1).

In the special case g(θ) = e−γθ, γ > 0, we have the following example.

Example 2.3. The above axioms are satisfied by the space

C0
γ =

{
φ ∈ C((−∞, 0];E) : lim

θ→−∞
eγθφ(θ) = 0

}
, γ > 0,



4 C. T. ANH, L. V. HIEU EJDE-2012/51

with the norm ‖φ‖γ = supθ≤0 e
γθ|φ(θ)|, φ ∈ C0

γ . It is satisfied, in general, by the
space

Cγ =
{
φ ∈ C((−∞, 0];E) : lim

θ→−∞
eγθφ(θ) exists in E

}
, γ > 0,

and set
‖φ‖γ = sup

−∞<θ≤0
eγθ|φ(θ)|, for φ in Cγ .

For this space, as shown in [17, Theorem 3.7, p. 23], we can take H = 1, K(t) = 1,
and M(t) = e−γt.

Remark 2.4. For the space Cγ , instead of Axiom (A1)(3), we have

‖xt‖B ≤ max
{
K(t) sup

0≤s≤t
‖x(s)‖E ,M(t)‖x0‖B

}
for all t ≥ 0,

where K(t) = 1 and M(t) = e−γt. Indeed, for all t ≥ 0,

‖xt‖γ = sup
θ≤0

eγθ‖x(t+ θ)‖ = e−γt sup
θ≤t

eγθ‖x(θ)‖

= e−γt max
{

sup
θ≤0

eγθ‖x(θ)‖, sup
0≤θ≤t

eγθ‖x(θ)‖
}

= max
{

sup
0≤θ≤t

e−γ(t−θ)‖x(θ)‖, e−γt‖x0‖B
}

≤ max
{

sup
0≤θ≤t

‖x(θ)‖, e−γt‖x0‖B
}
.

2.2. Operator. Let A be a positive sectorial operator on a Banach space E. We
now recall some results in [20].

Let T (t) be the analytic semigroup generated by −A. It is known that there
exists a positive number λ > 0 such that

‖T (t)x‖ ≤ Ce−λt‖x‖, for t ≥ 0, x ∈ E. (2.2)

For α > 0, we define

A−α =
1

Γ(α)

∫ ∞

0

tα−1T (t)dt.

We have, A−α is one-to-one, hence, we can define Aα = (A−α)−1. For α = 0, we
also define A0 = I, where I is the identity of E.

Proposition 2.5. We have
(1) The operator Aα is a densely defined closed linear operator with the domain

D(Aα) = R(A−α), the range of the operator A−α;
(2) D(Aα) is a Banach space with the norm ‖x‖α := ‖Aαx‖, x ∈ D(Aα);
(3) For α ≥ β, one has D(Aα) ⊂ D(Aβ) and D(Aα) is dense in D(Aβ). If

in addition, A has compact resolvent, then one has D(Aα) ⊂⊂ D(Aβ),
whenever α > β;

(4) One has
AαAβx = AβAαx = Aα+βx,

for every x ∈ D(Aγ), where γ = max(α, β, α+ β);
(5) T (t) : E → D(Aα) for every t > 0 and α ≥ 0;
(6) For any α ≥ 0, we have

‖AαT (t)x‖ ≤ Cαe
−λtt−α‖x‖, for all t > 0, x ∈ E.
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We now give a typical example of the operator A (see, e.g., [11]). Assume A is a
densely-defined self-adjoint positive linear operator and with compact resolvent in a
separable Hilbert space E (for example, A = −∆D with the homogeneous Dirichlet
condition).

It is known that A has a discrete spectrum that only contains positive eigenvalues
{λk}∞k=1 satisfying

0 < λ1 ≤ λ2 ≤ . . . ., λk →∞, as k →∞,

and the corresponding eigenfunctions {ek}∞k=1 compose an orthonormal basis of the
Hilbert space E such that

(ej , ek) = δjk and Aek = λkek, k = 1, 2, . . .

Hence we can define the fractional power spaces and operators as

D(Aα) = {u =
∞∑

k=1

ckek ∈ E :
∞∑

k=1

c2kλ
2α
k <∞},

Aαu =
∞∑

k=1

ckλ
α
k ek, where u =

∞∑
k=1

ckek.

It is known that if α > β then the space D(Aα) is compactly embedded into D(Aβ).
We have, −A is the infinitesimal generator of an analytic semigroup {T (t)}t≥0.
Furthermore, we have the following estimates for all t > 0 (see [11]),

‖T (t)x‖ ≤ e−λ1t‖x‖,

‖AαT (t)x‖ ≤
[(α
t

)α + λα
1

]
e−λ1t‖x‖,

‖AαT (t)x‖ ≤ ααe−αt−α‖x‖.

3. Existence of solutions

Definition 3.1. We say that a function u : (−∞, T ] → D(Aα), T > 0, is a mild
solution (in D(Aα)) of the Cauchy problem (1.1) on the interval [0, T ] if u0 = φ and
the restriction u : [0, T ] → D(Aα) is continuous and satisfies the integral equation:

u(t) = T (t)φ(0) +
∫ t

0

T (t− s)B(s, us)ds, 0 ≤ t ≤ T.

In the rest of this work we will abbreviate our terminology calling solutions to
the mild solutions.

Theorem 3.2. Suppose (H1)–(H2) hold. Then for each φ ∈ B and T > 0 given,
there is a unique mild solution of (1.1) on the interval [0, T ].

The proof of the above theorem is based on the following lemma, whose proof is
straightforward so we omit it.

Lemma 3.3. For L(·) and p as in (H2), K(·) as in (A1)(3). Let

η(t) = [L(t)K(t)]p, t ≥ 0.

For each real number 0 < κ < 1, set

gκ(t) = exp
{ 1
κ

∫ t

0

η(s)ds
}
, t ≥ 0. (3.1)

Then the following statements hold:
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(1) The function η is a non-negative function in L1
loc(R+);

(2) The function gκ(·) is monotonically increasing and greater than or equal to
1 on interval [0,+∞);

(3) For all t ≥ 0, we have∫ t

0

η(s)[gκ(s)]pds ≤ κ

p
[gκ(t)]p;

(4) For all T > 0, C = C([0, T ];E) is a Banach space with the norm

|||x||| = sup
0≤t≤T

{‖x(t)‖E

gκ(t)
}
, for all x ∈ C, (3.2)

and this norm is equivalent to the usual supremum norm.

Remark 3.4. The introduction of the function gκ for global existence problems
was due to Bielecki [4]. It plays the same role as Gronwall’s inequality.

Proof of Theorem 3.2. Define

Cφ = {x ∈ C([0, T ];E) : x(0) = Aαφ(0)},

then Cφ is a closed subset of the Banach space C = C([0, T ];E) with the norm ||| · |||.
For x ∈ Cφ, define the map

(Fx)(t) = AαT (t)φ(0) +
∫ t

0

AαT (t− s)B(s,A−αxs)ds, 0 ≤ t ≤ T.

Clearly, Fx ∈ Cφ. We now prove that F is a contracting map on Cφ. Given x and
y in Cφ, we have for all t ∈ [0, T ],

‖(Fx)(t)− (Fy)(t)‖

≤
∫ t

0

‖AαT (t− s)‖.‖B(s,A−αxs)−B(s,A−αys)‖ds

≤
∫ t

0

Cα(t− s)−αe−λ(t−s)L(s)‖A−αxs −A−αys‖Bds

≤ Cα

∫ t

0

(t− s)−αe−λ(t−s)L(s)K(s) sup
0≤τ≤s

‖A−αx(τ)−A−αy(τ)‖αds

= Cα

∫ t

0

(t− s)−αe−λ(t−s)L(s)K(s) sup
0≤τ≤s

‖x(τ)− y(τ)‖ds

= Cα

∫ t

0

(t− s)−αe−λ(t−s)L(s)K(s)gκ(s) sup
0≤τ≤s

‖x(τ)− y(τ)‖
gκ(s)

ds

≤ Cα sup
0≤t≤T

‖x(t)− y(t)‖
gκ(t)

∫ t

0

(t− s)−αe−λ(t−s)L(s)K(s)gκ(s)ds

≤ Cα|||x− y|||
( ∫ t

0

(t− s)−qαe−λq(t−s)ds
)1/q( ∫ t

0

η(s)[gκ(s)]pds
)1/p

, (3.3)

where 1
p + 1

q = 1. We use the Gamma function formula

Γ(1− α)kα−1 =
∫ ∞

0

e−kss−αds
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to see that∫ t

0

(t− s)−qαe−λq(t−s)ds =
∫ t

0

s−qαe−qλsds ≤
∫ ∞

0

s−qαe−qλsds

= Γ(1− qα)(qλ)qα−1

and ∫ t

0

η(s)[gκ(s)]pds ≤ κ

p
[gκ(t)]p.

Plug them into (3.3), we obtain

‖(Fx)(t)− (Fy)(t)‖ ≤ CαΓ(1− qα)1/q(qλ)
qα−1

q p−1/pκ1/pgκ(t)|||x− y|||.
So, we can choose κ small enough so that

CαΓ(1− qα)1/q(qλ)
qα−1

q p−1/pκ1/p = k < 1

to obtain
|||Fx− Fy||| ≤ k|||x− y|||.

By the Contraction Mapping Theorem, the map F has a unique fixed point x ∈ Cφ.
This fixed point satisfies the integral equation

x(t) = AαT (t)φ(0) +
∫ t

0

AαT (t− s)B(s,A−αxs)ds, for 0 ≤ t ≤ T.

Define

u(t) =

{
A−αx(t), 0 ≤ t ≤ T

φ(t), t ≤ 0.

Obviously, u(t) ∈ D(Aα) for all t ∈ (−∞, T ], and u ∈ C([0, T ];D(Aα)). Further-
more, since A−α ∈ B(E,E), u(t) is the unique solution of (1.1). �

4. Uniform asymptotic stability of solutions

In this section we assume B(t, 0) = 0 for all t ≥ 0, so that u(t) ≡ 0 is a solution
of problem (1.1) with zero initial condition.

Theorem 4.1. Assume that conditions (H1)–(H2) and the following conditions
hold:

(H3)

sup
t≥0

∫ t

0

Cαe
−λ(t−s)(t− s)−αL(s)[K(s) +

M(s)
H

]ds ≤ κ < 1;

(H4) for all ε > 0 and t1 ≥ 0, there exists a t2 > t1 such that

‖B(t, ut)‖ ≤ L(t)
(
ε+ sup

s∈[t1,t]

‖u(s)‖α

)
, for all t ≥ t2.

Then the zero solution of (1.1) is uniformly asymptotically stable.

Proof. Let ` > 0, ε > 0 be given, we can find δ > 0 such that δ + κ` ≤ ` and δ < ε.
Let φ ∈ B be a given function with ‖φ‖B < min{ δ

CH ,
δ
H } (C is the constant in

(2.2)) and let

S`,φ = {u : R → D(Aα) : u ∈ C(`), u(t) = φ(t) if t ≤ 0, u(t) → 0 as t→ +∞},
where

C(`) = {u : R+ → D(Aα) is continuous and ‖u(t)‖α ≤ `}.
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Define P : S`,φ → S`,φ by

(Pu)(t) =

{
T (t)φ(0) +

∫ t

0
T (t− s)B(s, us)ds if t ≥ 0

φ(t) if t ≤ 0.

Clearly, (Pu) : R+ → D(Aα) is continuous and (Pu)(t) = φ(t) for all t ≤ 0. We
now show that ‖(Pu)(t)‖α ≤ ` for all t ≥ 0 and (Pu)(t) → 0 as t → ∞. First,
noting that for all t ≥ 0,

‖(Pu)(t)‖α

≤ ‖T (t)φ(0)‖α +
∫ t

0

‖T (t− s)B(s, us)‖αds

≤ Ce−λt‖φ(0)‖α +
∫ t

0

Cαe
−λ(t−s)(t− s)−α‖B(s, us)‖ds

≤ CHe−λt‖φ‖B +
∫ t

0

Cαe
−λ(t−s)(t− s)−αL(s)‖us‖Bds

≤ CH‖φ‖B +
∫ t

0

Cα
e−λ(t−s)

(t− s)α
L(s)

[
K(s) sup

0≤τ≤s
‖u(s)‖α +M(s)‖u0‖B

]
ds

≤ δ +
∫ t

0

Cα
e−λ(t−s)

(t− s)α
L(s)[K(s)`+M(s)

δ

H
]ds (since u0 = φ on (−∞, 0])

≤ δ + `

∫ t

0

Cα
e−λ(t−s)

(t− s)α
L(s)[K(s) +

M(s)
H

]ds (since δ ≤ `)

≤ δ + `κ ≤ `.

Next, we show that (Pu)(t) → 0 as t → +∞. Since u(t) → 0 as t → +∞, there
exists t1 > 0 such that ‖u(t)‖α < ε for all t ≥ t1. Since ‖u(t)‖α ≤ ` for all t ∈ R+,
by (H4), there is a t2 > t1 such that for all t ≥ t2,

‖B(t, ut)‖ ≤ L(t)
(
ε+ sup

s∈[t1,t]

‖u(s)‖α

)
≤ L(t)(ε+ ε) = 2εL(t).

Therefore, for t ≥ t2, we have∫ t

0

‖T (t− s)B(s, us)‖αds

≤
∫ t

0

Cα
e−λ(t−s)

(t− s)α
‖B(s, us)‖ds

≤
∫ t2

0

Cα
e−λ(t−s)

(t− s)α
‖B(s, us)‖ds+

∫ t

t2

Cα
e−λ(t−s)

(t− s)α
‖B(s, us)‖ds

≤
∫ t2

0

Cα
e−λ(t−s)

(t− s)α
L(s)‖us‖Bds+ 2ε

∫ t

t2

Cα
e−λ(t−s)

(t− s)α
L(s)ds

≤ `

∫ t2

0

Cα
e−λ(t2−s)e−λ(t−t2)

(t2 − s)α
L(s)

(
K(s) +

M(s)
H

)
ds+ 2εκ

≤ `e−λ(t−t2)

∫ t2

0

Cα
e−λ(t2−s)

(t2 − s)α
L(s)

(
K(s) +

M(s)
H

)
ds+ 2εκ

≤ κ`e−λ(t−t2) + 2εκ,
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where we have used the fact that∫ t

t2

Cα
e−λ(t−s)

(t− s)α
L(s)ds ≤ κ.

There exists t3 > t2 such that for all t ≥ t3, we have

δe−λt + κ`e−λ(t−t2) < ε.

Thus, for t ≥ t3, we have

‖(Pu)(t)‖α ≤ ε(1 + 2κ).

This implies that (Pu)(t) → 0 as t→ +∞, and hence (Pu) ∈ S`,φ.
To prove that P is a contraction mapping, observe for t ≥ 0,

‖(Pu)(t)− (Pv)(t)‖α

≤
∫ t

0

‖T (t− s)B(s, us)‖αds

≤
∫ t

0

Cα
e−λ(t−s)

(t− s)α
‖B(s, us)‖ds

≤
∫ t

0

Cα
e−λ(t−s)

(t− s)α
L(s)‖us − vs‖Bds

≤
∫ t

0

Cα
e−λ(t−s)

(t− s)α
L(s)K(s) sup

0≤τ≤s
‖u(τ)− v(τ)‖αds

≤ sup
0≤τ≤T

‖u(τ)− v(τ)‖α

∫ t

0

Cα
e−λ(t−s)

(t− s)α
L(s)

[
K(s) +

M(s)
H

]
ds

≤ κ sup
0≤τ≤T

‖u(τ)− v(τ)‖α,

or
sup

0≤s≤T
‖(Pu)(s)− (Pv)(s)‖α ≤ κ sup

0≤s≤T
‖u(s)− v(s)‖α.

By the Contraction Mapping Principle, P has a unique fixed point u in S`,φ which
is a solution of (1.1) with φ ∈ B, ‖φ‖B ≤ min{ δ

CH ,
δ
H }, and u(t) = u(t, φ) → 0 as

t→ +∞.
To obtain the uniform asymptotic stability, we need to show that the zero solu-

tion of (1.1) is uniformly stable. Let ε > 0 (with ε < `) be given. Choose δ > 0 such
that δ + κε < ε. If u(t) = u(t, φ) is a solution of (1.1) with ‖φ‖B < min{ δ

CH ,
δ
H },

then

u(t) = T (t)φ(0) +
∫ t

0

T (t− s)B(s, us)ds.

We claim that ‖u(t)‖α < ε for all t > 0. Notice that

‖u(0)‖α = ‖φ(0)‖α ≤ H‖φ‖B < H.
δ

H
= δ < ε.

If there exists t∗ > 0 such that ‖u(t∗)‖α = ε and ‖u(s)‖α < ε for 0 ≤ s < t∗, then

‖u(t∗)‖α ≤ Ce−λt∗‖φ(0)‖α +
∫ t∗

0

Cα
e−λ(t∗−s)

(t∗ − s)α
L(s)‖us‖Bds

≤ δ + κε < ε,
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which contradicts the definition of t∗. Thus, ‖u(t)‖α < ε for all t > 0. This shows
that the zero solution of (1.1) is uniformly asymptotically stable. �

Remark 4.2. In the case B = Cγ with γ > 0, by using Remark 2.4, condition (H3)
becomes
(H3b) supt≥0

∫ t

0
Cαe

−λ(t−s)(t− s)−αL(s)ds ≤ κ < 1.

5. Some special cases and examples

5.1. An abstract differential equation without delay. Consider the abstract
semilinear differential equation in a Banach space E,

du

dt
+Au = f(t, u), t > 0

u(0) = x ∈ D(Aα),
(5.1)

where A is a positive sectorial operator on E (see Sect. 2.1), and f(·, ·) : R+ ×
D(Aα) → E, 0 ≤ α < 1, satisfies

‖f(t, u1)− f(t, u2)‖ ≤ L(t)‖Aα(u1 − u2)‖ and f(t, 0) = 0

for all u1 and u2 from the domain D(Aα), where L(·) ∈ Lp
loc(R+) with p > 1

1−α .
Consider the phase space Cγ with the norm ‖.‖γ . Since

f(t, u(t)) = f(t, u(t+ 0)) = f(t, ut(0)),

we set
B(t, φ) = f(t, φ(0)) and φ(t) = x for all t ≤ 0.

Then, (5.1) can be rewritten as follows

du(t)
dt

+Au(t) = B(t, ut), t ≥ 0

u0 = φ ∈ Cγ .
(5.2)

Noting that for all φ, ψ ∈ Cγ , we have

‖B(t, φ)−B(t, ψ)‖ = ‖f(t, φ(0))− f(t, ψ(0))‖
≤ L(t)‖φ(0)− ψ(0)‖α ≤ L(t)‖φ− ψ‖γ .

Thus, Theorem 3.2 ensures the existence of a unique mild solution of (5.1) on the
interval [0,+∞).

Moreover, using Theorem 4.1 and Remark 4.2, one can see that if

sup
t≥0

Cα

∫ t

0

e−λ(t−s)(t− s)−αL(s)ds = κ < 1, (5.3)

then the zero solution of (5.1) is uniformly asymptotically stable. In particular, if
L(t) ≡ L, then condition (5.3) holds provided that

sup
t≥0

Cα

∫ t

0

e−λ(t−s)(t− s)−αL(s)ds ≤ CαL

∫ +∞

0

e−λ(t−s)(t− s)−αds

= CαLΓ(1− α)λα−1 < 1,

that is,

0 < L <
λ1−α

CαΓ(1− α)
.

This is exactly the result derived by Webb in [28].
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5.2. An ordinary differential equation with infinite delay. In this section,
we consider the following Volterra equation with infinite delay

x′(t) + ax(t) =
∫ t

−∞
g(t, s, x(s))ds, (5.4)

where a is a positive number, g : Ω × R → R is a continuous function, where
Ω = {(t, s) ∈ R2 : t ≥ s}. Suppose there exists a continuous function m : Ω → R+

such that

|g(t, s, x)− g(t, s, y| ≤ m(t, s)|x− y| and g(t, s, 0) = 0 for all (t, s) ∈ Ω,

and for all ε > 0, t1 ≥ 0, there exists a t2 > t1 such that t ≥ t2 implies∫ t1

−∞
m(t, s)ds ≤ ε

∫ t

−∞
m(t, s)ds. (5.5)

We will prove that if

sup
t≥0

∫ t

0

e−a(t−s)

∫ 0

−∞
e−γτm(s, s+ τ)dτds < 1, (5.6)

for some γ > 0, then the zero solution of (5.4), considered as an equation on
[0,∞) × Cγ , is uniformly asymptotically stable. Indeed, we only need to verify
conditions (H2), (H3b) and (H4). Put

B(t, xt) =
∫ t

−∞
g(t, s, x(s))ds =

∫ 0

−∞
g(t, t+ s, x(t+ s))ds

=
∫ 0

−∞
g(t, t+ s, xt(s))ds,

we have

|B(t, xt)−B(t, yt)| ≤
∫ 0

−∞
|g(t, t+ s, xt(s))− g(t, t+ s, yt(s))|ds

≤
∫ 0

−∞
m(t, t+ s)|xt(s)− yt(s)|ds

=
∫ 0

−∞
e−γsm(t, t+ s)eγs|xt(s)− yt(s)|ds

= sup
s≤0

eγs|xt(s)− yt(s)|
∫ 0

−∞
e−γsm(t, t+ s)ds

= L(t)‖xt − yt‖Cγ ,

where L(t) =
∫ 0

−∞ e−γsm(t, t+ s)ds. This implies (H2). By Remark 4.2 and noting
that α = 0 and λ = a, condition (H3b) follows directly from assumption (5.6).
Next, let ε > 0 and t1 ≥ 0 be given. By (5.5), there exists a t2 > t1 such that

sup
s≤t1

|x(s)|
∫ t1

−∞
m(t, s)ds < ε

∫ t

−∞
m(t, s)ds

for all t ≥ t2. Then

|B(t, xt)| ≤
∫ t1

−∞
|g(t, s, x(s))|ds+

∫ t

t1

|g(t, s, x(s))|ds
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≤ sup
s≤t1

|x(s)|
∫ t1

−∞
m(t, s)ds+ sup

s∈[t1,t]

|x(s)|
∫ t

t1

m(t, s)ds

≤ ε

∫ t

−∞
m(t, s)ds+ sup

s∈[t1,t]

|x(s)|
∫ t

−∞
m(t, s)ds

≤ L(t)(ε+ sup
s∈[t1,t]

|x(s)|).

This implies that (H4) is satisfied.

5.3. A partial differential equation with infinite delay. In this section, we
apply our abstract results to the reaction-diffusion equation with infinite delay,

∂

∂t
w(t, x) = a

∂2

∂x2
w(t, x) + bw(t, x) + c

∫ 0

−∞
G(t+ s)w(t+ s, x)ds,

t ≥ 0, 0 < x < π,

w(t, 0) = w(t, π) = 0, t ≥ 0,

w(t, x) = w0(t, x), −∞ < t ≤ 0, 0 < x < π,

(5.7)

where a, b and c are positive constants, for each t ≥ 0, G(t+·) is a positive integrable
function on (−∞, 0] and w0 : (−∞, 0] × [0, π] → R is an appropriate continuous
function.

We choose E = L2(0, π), A = −a ∂2

∂x2 with the Dirichlet boundary condition is a
positive linear operator with discrete spectrum consisting of the simple eigenvalues
λn = an2. Its domain is D(A) = H2(0, π) ∩H1

0 (0, π).
Set

u(t)(x) = w(t, x), t ≥ 0, x ∈ [0, π],

φ(s)(x) = w0(s, x), s ≤ 0, x ∈ [0, π],

B(t, φ)(x) = bφ(0)(x) + c

∫ 0

−∞
G(t+ s)φ(s)(x)ds, x ∈ [0, π], φ ∈ Cγ .

Then problem (5.7) can be transformed as follows
du

dt
+Au(t) = B(t, ut), t ≥ 0

u0 = φ ∈ Cγ .

We assume that
(1) For all t ≥ 0, s 7→ G(t+ s)e−γs is integrable on (−∞, 0],
(2) limθ→−∞

(
eγθ‖w0(θ, ·)‖

)
exists, and w0(0, 0) = w0(0, π) = 0.

We have, for every φ, ψ ∈ Cγ ,∫ 0

−∞
G(t+ θ)‖φ(θ)(·)− ψ(θ)(·)‖dθ

=
∫ 0

−∞
e−γθG(t+ θ)

(
eγθ‖φ(θ)(·)− ψ(θ)(·)‖

)
dθ

≤
( ∫ 0

−∞
e−γθG(t+ θ)dθ

)
sup
θ≤0

eγθ‖φ(θ)(·)− ψ(θ)(·)‖

=
( ∫ 0

−∞
e−γθG(t+ θ)dθ

)
‖φ− ψ‖γ .
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Hence, we obtain
‖B(t, ut)−B(t, vt)‖ ≤ L(t)‖φ− ψ‖γ ,

where

L(t) =
(
b+ c

∫ 0

−∞
e−γθG(t+ θ)dθ

)
.

Therefore, assumptions (1) and (2) imply that B is Lipschitz continuous. Conse-
quently, Theorem 3.2 ensures the existence and uniqueness of an integral solution
w(t, x) on R× [0, π].

To obtain the uniform asymptotic stability, we further suppose that

(3) supt≥0

∫ t

0
e−a(t−s)

(
c
∫ 0

−∞ e−γθG(s+ θ)dθ + b
)
ds < 1,

and for all ε > 0, t1 ≥ 0, there exists a t2 > t1 such that for all t ≥ t2,∫ t1

−∞
G(s)ds ≤ ε

∫ t

−∞
G(s)ds.

This condition implies that condition (H3b) and (H4) hold (with α = 0). Thus, by
Theorem 4.1 we conclude that the zero solution of (5.7) is uniformly asymptotically
stable.

In the case G(t, s) ≡ G(s) is independent of t, L(t) ≡
(
b + c

∫ 0

−∞ e−γθG(θ)dθ
)
,

and the stability condition (3) becomes

(3’) c
∫ 0

−∞ e−γθG(θ)dθ + b < a.
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