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POSITIVE SOLUTIONS FOR A SYSTEM OF HIGHER ORDER
BOUNDARY-VALUE PROBLEMS INVOLVING ALL

DERIVATIVES OF ODD ORDERS

KUN WANG, ZHILIN YANG

Abstract. In this article we study the existence of positive solutions for the
system of higher order boundary-value problems involving all derivatives of
odd orders

(−1)mw(2m)

= f(t, w, w′,−w′′′, . . . , (−1)m−1w(2m−1), z, z′,−z′′′, . . . , (−1)n−1z(2n−1)),

(−1)nz(2n)

= g(t, w, w′,−w′′′, . . . , (−1)m−1w(2m−1), z, z′,−z′′′, . . . , (−1)n−1z(2n−1)),

w(2i)(0) = w(2i+1)(1) = 0 (i = 0, 1, . . . , m− 1),

z(2j)(0) = z(2j+1)(1) = 0 (j = 0, 1, . . . , n− 1).

Here f, g ∈ C([0, 1]×Rm+n+2
+ , R+) (R+ := [0, +∞)). Our hypotheses imposed

on the nonlinearities f and g are formulated in terms of two linear functions
h1(x) and h2(y). We use fixed point index theory to establish our main re-
sults based on a priori estimates of positive solutions achieved by utilizing
nonnegative matrices.

1. Introduction

In this article we study the existence and multiplicity of positive solutions for
the system of higher order boundary-value problems:

(−1)mw(2m) = f(t, w,w′, . . . , (−1)m−1w(2m−1), z, z′, . . . , (−1)n−1z(2n−1)),

(−1)nz(2n) = g(t, w,w′, . . . , (−1)m−1w(2m−1), z, z′, . . . , (−1)n−1z(2n−1)),

w(2i)(0) = w(2i+1)(1) = 0 (i = 0, 1, . . . ,m− 1),

z(2j)(0) = z(2j+1)(1) = 0 (j = 0, 1, . . . , n− 1),

(1.1)

where m,n ≥ 2, f ∈ C([0, 1]×Rm+n+2
+ ,R+) and g ∈ C([0, 1]×Rm+n+2

+ ,R+) (R+ :=
[0,+∞)). By a positive solution of (1.1), we mean a pair of functions (w, z) ∈
C2m[0, 1]×C2n[0, 1] that solve (1.1) and satisfy w(t) ≥ 0, z(t) ≥ 0 for all t ∈ [0, 1],
with at least one of them positive on (0, 1].
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The so-called Lidstone problem

(−1)nu(2n) = f(t, u,−u′′, . . . , (−1)n−1u(2n−2)),

u(2i)(0) = u(2i)(1) = 0, (i = 0, 1, . . . , n− 1),
(1.2)

has been extensively studied in recent years; see [17, 10, 13, 14, 15, 16] and the
references cited therein. The existence of positive solutions for systems of nonlinear
differential equations have been studied by many authors; see for instance, [3, 5, 9,
1], to cite a few. In [19], the author studied the existence of positive solutions of
the system

(−1)mu(2m) = f1(t, u,−u′′, . . . , (−1)m−1u(2m−2), v,−v′′, . . . , (−1)n−1v(2n−2)),

(−1)nv(2n) = f2(t, u,−u′′, . . . , (−1)m−1u(2m−2), v,−v′′, . . . , (−1)n−1v(2n−2)),

α0u
(2i)(0)− β0u

(2i+1)(0) = α1u
(2i)(1) + β1u

(2i+1)(1) = 0 (i = 0, 1, . . . ,m− 1),

α0v
(2j)(0)− β0v

(2j+1)(0) = α1v
(2j)(1) + β1v

(2j+1)(1) = 0 (j = 0, 1, . . . , n− 1),

where m,n ≥ 1 and f1, f2 ∈ C([0, 1]×Rm+n
+ ,R+). The main results obtained in [19]

are presented in terms of nonnegative matrices and the author used the method of
order reduction to overcome the difficulty arising from high order derivatives. Fur-
thermore, in [6], Kang et al., using the fixed point theorem of cone expansion and
compression type due to Krasnosel’skill, established some simple criteria for the ex-
istence, multiplicity and nonexistence of positive solutions of the following systems
of singular boundary value problems with integral boundary value conditions:

(−1)pu(2p) = λa1(t)f(t, u,−u′′, . . . , (−1)p−1u2p−2, v,−v′′, . . . , (−1)q−1v2q−2),

(−1)qv(2q) = µa2(t)g(t, u,−u′′, . . . , (−1)p−1u2p−2, v,−v′′, . . . , (−1)q−1v2q−2),

aiu
(2i)(0)− biu

(2i+1)(0) =
∫ 1

0

mi(s)u(2i)(s)ds, 0 ≤ i ≤ p− 1,

ciu
(2i)(1)− diu

(2i+1)(1) =
∫ 1

0

ni(s)u(2i)(s)ds, 0 ≤ i ≤ p− 1,

αjv
(2j)(0)− βjv

(2j+1)(0) =
∫ 1

0

ϕj(s)v(2j)(s)ds, 0 ≤ j ≤ q − 1,

γjv
(2j)(1)− δjv

(2j+1)(1) =
∫ 1

0

ψj(s)v(2j)(s)ds, 0 ≤ j ≤ q − 1,

where 0 < t < 1, ai ∈ ((0, 1), [0,+∞)), ai(t) are allowed to be singular at t = 0 or
t = 1, i = 1, 2.

Anand et al. [11] addressed the question of the existence of at least three sym-
metric positive solutions for the system of dynamical equations on symmetric times
scales

(−1)ny
(∆∇)n

1 = f1(t, y1, y2), t ∈ [a, b]T ,

(−1)my
(∆∇)m

2 = f2(t, y1, y2), t ∈ [a, b]T ,

subject to the two-point boundary conditions

y
(∆∇)i

1 (a) = 0 = y
(∆∇)i

1 (b), i = 0, 1, 2, . . . , n− 1,

y
(∆∇)j

2 (a) = 0 = y
(∆∇)j

2 (b), j = 0, 1, 2, . . . ,m− 1,
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where fi : [a, b]T×R2 → [0,∞) are continuous and fi(t, y1, y2) = fi(a+ b− t, y1, y2)
for i = 1, 2, a ∈ Tk, b ∈ Tk for a time scale T, and σ(a) < ρ(b). The main tool
in [11] is the Avery fixed point theorem, a generalization of the Leggett-Williams
fixed point theorem.

Yang et al. [18] studied the existence, multiplicity, and uniqueness of positive
solutions for the boundary value problem

(−1)nu(2n) = f(t, u, u′, . . . , (−1)n−1u(2n−1)),

u(2i)(0) = u(2i+1)(1) = 0(j = 0, 1, . . . , n− 1),
(1.3)

where n ≥ 2, and f ∈ C([0, 1] × Rn+1
+ ,R+). The main results obtained in [18]

are presented in terms of a linear function associated with the nonlinearity f in
(1.3). They also apply their main results to establish the existence, multiplicity,
and uniqueness of positive symmetric solutions for a Lidstone problem involving an
open question posed by Eloe in 2000.

However, the existence problem of positive solutions for systems, like (1.1), has
not been extensively studied yet. Our main difficulty here arises from the presence
of all derivatives of all odd orders in the nonlinearities f and g in (1.1). To overcome
this difficulty, as in [19], we first use the method of order reduction to transform (1.1)
into an equivalent system of integro-differential equations, then prove the existence
and multiplicity of positive solutions for the resultant equivalent system, thereby
establishing our main results for (1.1). Our main features are threefold. Firstly,
the nonlinear functions f and g contain all derivatives of odd orders. Secondly,
nonnegative matrices are used to obtain the priori estimates of positive solutions.
Finally, the orders 2m and 2n in (1.1) may be different. Such problems can be
found in applied sciences; see [8].

This paper is organized as follows. Section 2 contains some preliminary results,
including some basic facts recalled from [18]. Our main results, namely Theorems
3.4–3.6, are stated and proved in Section 3. Finally, three examples that illustrate
our main results are presented in Section 4.

2. Preliminaries

Let
E := C1([0, 1],R), ‖u‖ := max{‖u‖0, ‖u′‖0},

where ‖u‖0 = max{|u(t)| : t ∈ [0, 1]}. Furthermore, put

P := {u ∈ E : u(t) ≥ 0, u′(t) ≥ 0,∀t ∈ [0, 1]}.

Clearly, (E, ‖ · ‖) is a real Banach space and P is a cone in E. Let

k(t, s) := min{t, s}, (Tu)(t) :=
∫ 1

0

k(t, s)u(s)ds.

Now let u := (−1)m−1w(2m−2), v := (−1)n−1z(2n−2). Then (1.1) is equivalent to
the system of integro-differential equations

−u′′ = f(t, Tm−1u, (Tm−1u)′, . . . , (Tu)′, u′, Tn−1v, (Tn−1v)′, . . . , (Tv)′, v′),

−v′′ = g(t, Tm−1u, (Tm−1u)′, . . . , (Tu)′, u′, Tn−1v, (Tn−1v)′, . . . , (Tv)′, v′),

u(0) = u′(1) = 0,

v(0) = v′(1) = 0.

(2.1)
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Furthermore, the above problem is equivalent to

u(t) =
∫ 1

0

k(t, s)f(s, (Tm−1u)(s), (Tm−1u)′(s), . . . , (Tu)′(s), u′(s),

(Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s))ds,

v(t) =
∫ 1

0

k(t, s)g(s, (Tm−1u)(s), (Tm−1u)′(s), . . . , (Tu)′(s), u′(s),

(Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s))ds,

(2.2)

Define the operators Ai : P × P → P (i = 1, 2) and A : P × P → P × P by

A1(u, v)(t) :=
∫ 1

0

k(t, s)f(s, (Tm−1u)(s), (Tm−1u)′(s), . . . , (Tu)′(s), u′(s),

(Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s))ds,

A2(u, v)(t) :=
∫ 1

0

k(t, s)g(s, (Tm−1u)(s), (Tm−1u)′(s), . . . , (Tu)′(s), u′(s),

(Tn−1v)(s), (Tn−1v)′(s), . . . , (Tv)′(s), v′(s))ds,

A(u, v)(t) := (A1(u, v), A2(u, v)).

Now f ∈ C([0, 1] × Rm+n+2
+ ,R+) and g ∈ C([0, 1] × Rm+n+2

+ ,R+) imply that Ai

and A are completely continuous operators. In our setting, the existence of positive
solutions for (1.1) is equivalent to that of positive fixed points of A : P×P → P×P .
Let

G1(u, v)(t) := f(t, (Tm−1u)(t), (Tm−1u)′(t), . . . , (Tu)′(t), u′(t), (Tn−1v)(t),

(Tn−1v)′(t), . . . , (Tv)′(t), v′(t))
(2.3)

G2(u, v)(t) := g(t, (Tm−1u)(t), (Tm−1u)′(t), . . . , (Tu)′(t), u′(t), (Tn−1v)(t),

(Tn−1v)′(t), . . . , (Tv)′(t), v′(t))
(2.4)

Then Gi : P × P → P (i = 1, 2) is a continuous, bounded operator, and

Ai(u, v)(t) =
∫ 1

0

k(t, s)Gi(u, v)(s)ds, i = 1, 2.

Lemma 2.1 ([18, Lemma 2.2]). Let q ∈ P . then∫ 1

0

((Tn−1q)(t) + 2
n−1∑
i=0

(Tn−1−iq)′(t))tetdt =
∫ 1

0

(q(t) + 2q′(t))tetdt.

Lemma 2.2 ([18, Lemma 2.3]). If q ∈ P
⋂
C2[0, 1], q(0) = q′(1) = 0, then∫ 1

0

(−q′′(t))tetdt =
∫ 1

0

(q(t) + 2q′(t))tet dt .

Lemma 2.3 ([18, Lemma 2.4]). If q ∈ P , q(0) = 0, then

q(1) ≤
∫ 1

0

(q(t) + 2q′(t))tet dt .
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Lemma 2.4 ([4]). Let E be a real Banach space and P a cone on E. Suppose that
Ω ⊂ E is a bounded open set and that T : Ω

⋂
P → P is a completely continuous

operator. If there exists ω0 ∈ P\{0} such that

ω − Tω 6= λω0,∀λ ≥ 0, ω ∈ ∂Ω ∩ P,

then i(T,Ω
⋂
P, P ) = 0, where i indicates the fixed point index on P .

Lemma 2.5 ([4]). Let E be a real Banach space and P a cone on E. Suppose that
Ω ⊂ E is a bounded open set with 0 ∈ Ω and that T : Ω ∩ P → P is a completely
continuous operator. If

ω − λTω 6= 0,∀λ ∈ [0, 1], ω ∈ ∂Ω ∩ P,

then i(T,Ω ∩ P, P ) = 1.

3. Existence of positive solutions for (1.1)

A real matrix B is said to be nonnegative if all elements of B are nonnegative.
For the sake of simplicity, we denote by x := (x1, . . . , xm+1) ∈ Rm+1

+ , y :=
(y1, . . . , yn+1) ∈ Rn+1

+ . Let

h1(x) := x1 + 2
m+1∑
i=2

xi, h2(y) := y1 + 2
n+1∑
i=2

yi, x ∈ Rm+1
+ , y ∈ Rn+1

+ .

We now list our hypotheses on f and g.
(F1) f, g ∈ C([0, 1]× Rm+n+2

+ ,R+).
(F2) There are four nonnegative constants a1, a2, b1, b2, and a real number c > 0

such that

f(t, x, y) ≥ a1h1(x) + b1h2(y)− c, g(t, x, y) ≥ a2h1(x) + b2h2(y)− c,

for all (t, x, y) ∈ [0, 1] × Rm+n+2
+ and the matrix B1 :=

(
a1 − 1 b1
a2 b2 − 1

)
is invertible with B−1

1 nonnegative.
(F3) For every N > 0, there exist two functions ΦN ,ΨN ∈ C(R+,R+) such that

f(t, x, y) ≤ ΦN (xm+1 + yn+1), g(t, x, y) ≤ ΨN (xm+1 + yn+1)

for all (x1, . . . , xm) ∈ [0, N ]× · · · × [0, N ]︸ ︷︷ ︸
m

, (y1, . . . , yn) ∈ [0, N ]× · · · × [0, N ]︸ ︷︷ ︸
n

and xm+1, yn+1 ≥ 0, and∫ ∞

0

τdτ

ΦN (τ) + ΨN (τ) + δ
= ∞

for all δ > 0.
(F4) There are four nonnegative constants c1, c2, d1, d2 and a positive constant

r such that

f(t, x, y) ≤ c1h1(x) + d1h2(y), g(t, x, y) ≤ c2h1(x) + d2h2(y)

for all (t, x, y) ∈ [0, 1] × ([0, r])m+n+2 and B2 :=
(

1− c1 −d1

−c2 1− d2

)
is in-

vertible with B−1
2 nonnegative.
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(F5) There are four nonnegative constants l1, l2,m1,m2 and a postive constant
c such that

f(t, x, y) ≤ l1h1(x) +m1h2(y) + c, g(t, x, y) ≤ l2h1(x) +m2h2(y) + c,

for all (t, x, y) ∈ [0, 1]×Rm+n+2
+ and B3 :=

(
1− l1 −m1

−l2 1−m2

)
is invertible

with B−1
3 nonnegative.

(F6) There are four nonnegative constants p1, p2, q1, q2 and a positive constant
r such that

f(t, x, y) ≥ p1h1(x) + q1h2(y), g(t, x, y) ≥ p2h1(x) + q2h2(y),

for all (t, x, y) ∈ [0, 1] × ([0, r])m+n+2 and B4 :=
(
p1 − 1 q1
p2 q2 − 1

)
is in-

vertible with B−1
4 nonnegative.

(F7) f(t, x, y) and g(t, x, y) are increasing in x and y,and there is a constant
Λ > 0 such that∫ 1

0

f(s,Λ, . . . ,Λ︸ ︷︷ ︸
m+n+2

)ds < Λ,
∫ 1

0

g(s,Λ, . . . ,Λ︸ ︷︷ ︸
m+n+2

)ds < Λ.

Remark 3.1 ([19, Remark 2]). Let lij(i, j = 1, 2) be four nonnegative constants.

Then it is easy to see that the matrix B :=
(
l11 − 1 l12
l21 l22 − 1

)
is invertible with

B−1 nonnegative if and only if one of the following two conditions is satisfied:
(1) l11 > 1, l22 > 1, l12 = l21 = 0.
(2) l11 ≤ 1, l22 ≤ 1, detB = (1− l11)(1− l22)− l12l21 < 0.

Remark 3.2 ([19, Remark 3]). Let lij(i, j = 1, 2) be four nonnegative constants.

Then it is easy to see that the matrix D :=
(

1− l11 −l12
−l21 1− l22

)
is invertible with

D−1 nonnegative if and only if l11 < 1, l22 < 1,detD = (1−l11)(1−l22)−l12l21 > 0.

Remark 3.3. f(t, x, y) is said to be increasing in x and y if f(t, x, y) ≤ f(t, x′, y′)
holds for every pair (x, y), (x′, y′) ∈ Rm+n+2

+ with (x, y) ≤ (x′, y′), where the partial
ordering ≤ in Rm+n+2

+ is understood componentwise.

We have the following comments about the functions f and g.
(1) Condition (F3) is of Berstein-Nagumo type;
(2) f and g grow superlinearly both at +∞ and at 0 if (F2) and (F4) hold;
(3) f and g grow sublinearly both at +∞ and at 0 if (F5) and (F6) hold.

We adopt the convention in the sequel that n1, n2, . . . stand for different positive
constants. G1 and G2 are defined by (2.3) and (2.4).

Theorem 3.4. If (F1)–(F4) hold, then (1.1) has at least one positive solution.

Proof. It suffices to prove that (2.2) has at least one positive solution. We claim
that the set

M1 := {(u, v) ∈ P × P : (u, v) = A(u, v) + λ(ϕ,ϕ), λ ≥ 0}
is bounded, where ϕ(t) := te−t. Indeed, if (u0, v0) ∈ M1, then there exist a
constant λ0 ≥ 0 such that (u0, v0) = A(u0, v0) + λ0(ϕ,ϕ), which can be written in
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the form

−u′′0(t) = G1(u0, v0)(t) + λ0(2− t)e−t,−v′′0 (t) = G2(u0, v0)(t) + λ0(2− t)e−t.

By (F2), we have

−u′′0(t) ≥ a1((Tm−1u0)(t) + 2
m−1∑
i=0

(Tm−i−1u0)′(t)) + b1((Tn−1v0)(t)

+ 2
n−1∑
i=0

(Tn−i−1v0)′(t))− c,

−v′′0 (t) ≥ a2((Tm−1u0)(t) + 2
m−1∑
i=0

(Tm−i−1u0)′(t)) + b2((Tn−1v0)(t)

+ 2
n−1∑
i=0

(Tn−i−1v0)′(t))− c.

Multiply by ψ(t) := tet on both sides of the last two inequalities and integrate over
[0, 1], and use Lemmas 2.1 and 2.2 to obtain∫ 1

0

(u0(t)+2u′0(t))te
tdt ≥ a1

∫ 1

0

(u0(t)+2u′0(t))te
tdt+b1

∫ 1

0

(v0(t)+2v′0(t))te
tdt−c

and∫ 1

0

(v0(t)+2v′0(t))te
tdt ≥ a2

∫ 1

0

(u0(t)+2u′0(t))te
tdt+b2

∫ 1

0

(v0(t)+2v′0(t))te
tdt−c.

The above two inequalities can be written as(
a1 − 1 b1
a2 b2 − 1

)(∫ 1

0
(u0(t) + 2u′0(t))te

tdt∫ 1

0
(v0(t) + 2v′0(t))te

tdt

)
= B1

(∫ 1

0
(u0(t) + 2u′0(t))te

tdt∫ 1

0
(v0(t) + 2v′0(t))te

tdt

)

≤
(
c
c

)
.

Now (F2) implies(∫ 1

0
(u0(t) + 2u′0(t))te

tdt∫ 1

0
(v0(t) + 2v′0(t))te

tdt

)
≤ B−1

1

(
c
c

)
:=
(
N1

N2

)
.

Let N := max{N1, N2} > 0. Then we have∫ 1

0

(u0(t) + 2u′0(t))te
tdt ≤ N,

∫ 1

0

(v0(t) + 2v′0(t))te
tdt ≤ N, ∀(u0, v0) ∈M1.

Now Lemma 2.3 implies

‖u0‖0 = u0(1) ≤ N, ‖v0‖0 = v0(1) ≤ N, ∀(u0, v0) ∈M1. (3.1)

Furthermore, this estimate leads to

‖Tm−1u0‖0 = (Tm−1u0)(1) ≤ N, ‖Tn−1v0‖0 = (Tn−1v0)(1) ≤ N,

for all (u0, v0) ∈M1 and

‖(Tm−i−1u0)′‖0 = (Tm−i−1u0)′(0) =
∫ 1

0

(Tm−i−2u0)(t)dt ≤ N,
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‖(Tn−j−1v0)′‖0 = (Tn−j−1v0)′(0) =
∫ 1

0

(Tn−j−2v0)(t)dt ≤ N,∀(u0, v0) ∈M1,

i = 0, . . . ,m− 2, j = 0, . . . , n− 2. Let

H := {µ ≥ 0 : there exists (u, v) ∈ P × P, such that (u, v) = A(u, v) + µ(ϕ,ϕ)}.

Now (3.1) implies that µ0 := sup H < +∞. By (F3), there are two functions
ΦN ,ΨN ∈ C(R+,R+) such that

G1(u, v)(t) ≤ ΦN (u′(t) + v′(t)), G2(u, v)(t) ≤ ΨN (u′(t) + v′(t)),

for all (u, v) ∈M1. Hence we obtain

−u′′(t) = G1(u, v)(t) + µ(2− t)e−t

≤ ΦN (u′(t) + v′(t)) + µ(2− t)e−t

≤ ΦN (u′(t) + v′(t)) + µ(2− t)e−t

≤ ΦN (u′(t) + v′(t)) + 2µ0,

−v′′(t) = G2(u, v)(t) + µ(2− t)e−t

≤ ΨN (u′(t) + v′(t)) + µ(2− t)e−t

≤ ΨN (u′(t) + v′(t)) + µ(2− t)e−t

≤ ΨN (u′(t) + v′(t)) + 2µ0,

so that

−u′′(t)− v′′(t) ≤ ΦN (u′(t) + v′(t)) + ΨN (u′(t) + v′(t)) + 4µ0

for all (u, v) ∈M1, µ ∈ H, and∫ u′(0)+v′(0)

0

τdτ

ΦN (τ) + ΨN (τ) + 4µ0
≤
∫ 1

0

u′(t) + v′(t)dt = u(1) + v(1) ≤ 2N

for all (u, v) ∈M1. By (F3) again, there exists a constant N1 > 0 such that

‖u′ + v′‖0 = u′(0) + v′(0) ≤ N1, ∀(u, v) ∈M1.

This means that M1 is bounded. Taking R > sup{‖(u, v)‖ : (u, v) ∈M1}, we have

(u, v) 6= A(u, v) + λ(ϕ,ϕ), ∀(u, v) ∈ ∂ΩR ∩ (P × P ), λ ≥ 0.

Now Lemma 2.4 yields

i(A,ΩR ∩ (P × P ), P × P ) = 0. (3.2)

Let
M2 := {(u, v) ∈ Ωr ∩ (P × P ) : (u, v) = λA(u, v), λ ∈ [0, 1]}.

Now we want to prove that M2 = {0}. Indeed, if (u, v) ∈ M2, then there is
λ ∈ [0, 1] such that

(u(t), v(t)) = (λ
∫ 1

0

k(t, s)G1(u, v)(s)ds, λ
∫ 1

0

k(t, s)G2(u, v)(s)ds)

which can be written in the form

−u′′(t) = λG1(u, v)(t), −v′′(t) = λG2(u, v)(t).
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By (F4), we have

−u′′(t) ≤ c1((Tm−1u)(t) + 2
m−1∑
i=0

(Tm−i−1u)′(t)) + d1((Tn−1v)(t)

+ 2
n−1∑
i=0

(Tn−i−1v)′(t)),

−v′′(t) ≤ c2((Tm−1u)(t) + 2
m−1∑
i=0

(Tm−i−1u)′(t)) + d2((Tn−1v)(t)

+ 2
n−1∑
i=0

(Tn−i−1v)′(t)).

Multiply by ψ(t) := tet on both sides of the above and integrate over [0, 1], and use
Lemmas 2.1 and 2.2 to obtain(

1− c1 −d1

−c2 1− d2

)(∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)
= B2

(∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)

≤
(

0
0

)
.

(F4) again implies(∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)
≤ B−1

2

(
0
0

)
=
(

0
0

)
.

Consequently, ∫ 1

0

(u(t) + 2u′(t))tetdt =
∫ 1

0

(v(t) + 2v′(t))tetdt = 0

and whence u ≡ 0, v ≡ 0, as required. Thus we have

(u, v) 6= λA(u, v), ∀(u, v) ∈ ∂Ωr ∩ (P × P ), λ ∈ [0, 1].

Now Lemma 2.5 yields

i(A,Ωr ∩ (P × P ), P × P ) = 1.

This together with (3.2) implies

i(A, (ΩR\Ωr) ∩ (P × P ), P × P ) = 0− 1 = −1.

Therefore, A has at least one fixed point on (ΩR\Ωr) ∩ (P × P ) and (2.2) has at
least one positive solution (u, v), and thus (1.1) has at least one positive solution
(w, z) = (Tm−1u, Tn−1v). This completes the proof. �

Theorem 3.5. If (F1), (F5), (F6) hold, then (1.1) has at least one positive solution.

Proof. Let

M3 := {(u, v) ∈ P × P : (u, v) = λA(u, v), λ ∈ [0, 1]}.
We now assert that M3 is bounded. Indeed, if (u, v) ∈M3, then there is λ ∈ [0, 1]
such that

u(t) = λ

∫ 1

0

k(t, s)G1(u, v)(s)ds, v(t) = λ

∫ 1

0

k(t, s)G2(u, v)(s)ds,
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which can be written in the form

−u′′(t) = λG1(u, v)(t), −v′′(t) = λG2(u, v)(t).

By (F5), we have

−u′′(t) ≤ l1((Tm−1u)(t) + 2
m−1∑
i=0

(Tm−i−1u)′(t)) +m1((Tn−1v)(t)

+ 2
n−1∑
i=0

(Tn−i−1v)′(t)) + c

(3.3)

and

−v′′(t) ≤ l2((Tm−1u)(t) + 2
m−1∑
i=0

(Tm−i−1u)′(t)) +m2((Tn−1v)(t)

+ 2
n−1∑
i=0

(Tn−i−1v)′(t)) + c.

(3.4)

Multiply by ψ(t) := tet on both sides of the above two inequalities and integrate
over [0, 1], and then use Lemmas 2.1 and 2.2 to obtain∫ 1

0

(u(t) + 2u′(t))tetdt ≤ l1

∫ 1

0

(u(t) + 2u′(t))tetdt+m1

∫ 1

0

(v(t) + 2v′(t))tetdt+ c

and∫ 1

0

(v(t) + 2v′(t))tetdt ≤ l2

∫ 1

0

(u(t) + 2u′(t))tetdt+m2

∫ 1

0

(v(t) + 2v′(t))tetdt+ c,

which can be written in the form(
1− l1 −m1

−l2 1−m2

)(∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)
= B3

(∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)

≤
(
c
c

)
.

(F5) again implies(∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)
≤ B−1

3

(
c
c

)
:=
(
n3

n4

)
.

Let N = max{n3, n4} > 0. Then we have∫ 1

0

(u(t) + 2u′(t))tetdt ≤ N,

∫ 1

0

(v(t) + 2v′(t))tetdt ≤ N,∀(u, v) ∈M3.

By Lemma 2.3, we obtain

‖u‖0 = u(1) ≤
∫ 1

0

(u(t) + 2u′(t))tetdt ≤ N,

‖v‖0 = v(1) ≤
∫ 1

0

(v(t) + 2u′(t))tetdt ≤ N,

for all (u, v) ∈M3. Furthermore, those estimates lead to

‖Tm−1u‖0 = (Tm−1)(1) ≤ N, ‖Tn−1u‖0 = (Tn−1)(1) ≤ N,
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for all (u, v) ∈M3 and

‖(Tm−i−1u)′‖0 = (Tm−i−1u)′(0) =
∫ 1

0

(Tm−i−2u)(t)dt ≤ N,

‖(Tn−j−1v)′‖0 = (Tn−j−1v)′(0) =
∫ 1

0

(Tn−j−2v)(t)dt ≤ N

for all (u, v) ∈ M3 and i = 0, . . . ,m − 2, j = 0, . . . , n − 2. By (3.3) and (3.4), we
have

−u′′(t) ≤ (l1(2m− 1) +m1(2n− 1))N + 2l1u′(t) + 2m1v
′(t) + c,

−v′′(t) ≤ (l2(2m− 1) +m2(2n− 1))N + 2l2u′(t) + 2m2v
′(t) + c,

for all (u, v) ∈M3. So we have

−(u′′(t) + v′′(t)) ≤ (l1(2m− 1) +m1(2n− 1) + l2(2m− 1) +m2(2n− 1))N

+ 2(l1 + l2)u′(t) + 2(m1 +m2)v′(t) + 2c.

Noticing u′(1) = v′(1) = 0 and letting

N2 := (l1(2m− 1) +m1(2n− 1) + l2(2m− 1) +m2(2n− 1))N + 2c

and L := 2(l1 + l2 +m1 +m2) + 1, we obtain

u′(t) + v′(t) ≤ N2

L
(eL−Lt − 1),

so that

‖u′ + v′‖0 = u′(0) + v′(0) ≤ N2

L
(eL − 1).

This proves the boundedness of M3. Taking R > sup{‖(u, v)‖ : (u, v) ∈ M3}, we
have

(u, v) 6= λA(u, v), ∀(u, v) ∈ ∂ΩR ∩ (P × P ), λ ∈ [0, 1].

Now Lemma 2.5 yields

i(A,ΩR ∩ (P × P ), P × P ) = 1. (3.5)

Let
M4 := {(u, v) ∈ Ωr ∩ (P × P ) : (u, v) = A(u, v) + λ(ϕ,ϕ), λ ≥ 0}

where ϕ(t) := te−t. We want to prove that M4 ⊂ {0}. Indeed, if (u, v) ∈M4, then
there is λ ≥ 0 such that

u(t) =
∫ 1

0

k(t, s)G1(u, v)(s)ds+ λϕ(t), v(t) =
∫ 1

0

k(t, s)G2(u, v)(s)ds+ λϕ(t),

which can be written in the form

−u′′(t) = G1(u, v)(t) + λ(2− t)e−t, −v′′(t) = G2(u, v)(t) + λ(2− t)e−t.

By (F6), we have

− u′′(t)

≥ p1

(
(Tm−1u)(t) + 2

m−1∑
i=0

(Tm−i−1u)′(t)
)

+ q1
(
(Tn−1v)(t) + 2

n−1∑
i=0

(Tn−i−1v)′(t)
)
,

− v′′(t)
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≥ p2

(
(Tm−1u)(t) + 2

m−1∑
i=0

(Tm−i−1u)′(t)
)

+ q2
(
(Tn−1v)(t) + 2

n−1∑
i=0

(Tn−i−1v)′(t)
)
.

Multiply by ψ(t) := tet on both sides of the above two inequalities and integrate
over [0, 1] and use Lemmas 2.1 and 2.2 to obtain∫ 1

0

(u(t) + 2u′(t))tetdt ≥ p1

∫ 1

0

(u(t) + 2u′(t))tetdt+ q1

∫ 1

0

(v(t) + 2v′(t))tetdt

and∫ 1

0

(v(t) + 2v′(t))tetdt ≥ p2

∫ 1

0

(u(t) + 2u′(t))tetdt+ q2

∫ 1

0

(v(t) + 2v′(t))tetdt,

which can be written in the form(
p1 − 1 q1
p2 q2 − 1

)(∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)
= B4

(∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)

≤
(

0
0

)
.

Now (F6) implies (∫ 1

0
(u(t) + 2u′(t))tetdt∫ 1

0
(v(t) + 2v′(t))tetdt

)
≤ B−1

4

(
0
0

)
=
(

0
0

)
.

Therefore,
∫ 1

0
(u(t) + 2u′(t))tetdt =

∫ 1

0
(v(t) + 2v′(t))tetdt = 0 and u ≡ 0, v ≡ 0.

This implies M4 ⊂ {0}, as required. As a result of this, we obtain

(u, v) 6= A(u, v) + λ(ϕ,ϕ), ∀(u, v) ∈ ∂Ωr ∩ (P × P ), λ ≥ 0.

Now Lemma 2.4 yields

i(A,Ωr ∩ (P × P ), P × P ) = 0. (3.6)

Combining (3.5) and (3.6) gives

i(A, (ΩR\Ωr) ∩ (P × P ), P × P ) = 1.

Hence A has at least one fixed point on (ΩR\Ωr)∩ (P ×P ). Thus (1.1) has at least
one positive solution (w, z) = (Tm−1u, Tn−1v). This complete the proof. �

Theorem 3.6. If (F1)–(F3), (F6), (F7) hold, then (1.1) has at least two positive
solutions.

Proof. By (F7), the following inequalities

f(t, x, y) ≤ f(t,Λ, . . . ,Λ︸ ︷︷ ︸
m+n+2

) < Λ, g(t, x, y) ≤ g(t,Λ, . . . ,Λ︸ ︷︷ ︸
m+n+2

) < Λ,

hold for all t ∈ [0, 1] and all (x, y) ∈ [0,Λ]× · · · × [0,Λ]︸ ︷︷ ︸
m+n+2

. Consequently, we have for

all (u, v) ∈ ∂ΩΛ ∩ (P × P ),

‖A1(u, v)‖0 = A1(u, v)(1) =
∫ 1

0

sG1(u, v)(s)ds ≤
∫ 1

0

G1(u, v)(s)ds

≤
∫ 1

0

f(s,Λ, . . . ,Λ)ds < Λ = ‖(u, v)‖,
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‖A2(u, v)‖0 = A2(u, v)(1) =
∫ 1

0

sG2(u, v)(s)ds ≤
∫ 1

0

G2(u, v)(s)ds

≤
∫ 1

0

g(s,Λ, . . . ,Λ)ds < Λ = ‖(u, v)‖,

‖(A1(u, v))′‖0 = (A1(u, v))′(0) =
∫ 1

0

G1(u, v)(s)ds

≤
∫ 1

0

f(s,Λ, . . . ,Λ)ds < Λ = ‖(u, v)‖,

‖(A2(u, v))′‖0 = (A2(u, v))′(0) =
∫ 1

0

G2(u, v)(s)ds

≤
∫ 1

0

g(s,Λ, . . . ,Λ)ds < Λ = ‖(u, v)‖.

The preceding inequalities imply ‖A(u, v)‖ = ‖(A1(u, v), A2(u, v))‖ < Λ = ‖(u, v)‖,
and thus

(u, v) 6= λA(u, v), ∀(u, v) ∈ ∂ΩΛ ∩ (P × P ), 0 ≤ λ ≤ 1.

Now Lemma 2.5 yields

i(A,ΩΛ ∩ (P × P ), P × P ) = 1. (3.7)

By (F2), (F3) and (F6), we know that (3.2) and (3.6) hold. Note we can choose
R > Λ > r in (3.2) and (3.6) (see the proofs of Theorems 3.4 and 3.5). Combining
(3.2), (3.6) and (3.7), we obtain

i(A, (ΩR\ΩΛ) ∩ (P × P ), P × P ) = 0− 1 = −1,

and

i(A, (ΩΛ\Ωr) ∩ (P × P ), P × P ) = 1− 0 = 1.

Therefore, A has at least two fixed points, with one on (ΩR\ΩΛ)∩ (P ×P ) and the
other on (ΩΛ\Ωr) ∩ (P × P ). Hence (1.1) has at least two positive solutions. �

4. Examples

In this section we present three examples that illustrate our main results.

Example 4.1. Suppose (ξij)2×(m+1) and (ηij)2×(n+1) be two positive matrices and
1 < αi ≤ 2(i = 1, 2.). Let

f(t, x, y) :=
(m+1∑

j=1

ξ1jxj +
n+1∑
j=1

η1jyj

)α1

t ∈ [0, 1], x ∈ Rm+1
+ , y ∈ Rn+1

+ ,

g(t, x, y) :=
(m+1∑

j=1

ξ2jxj +
n+1∑
j=1

η2jyj

)α2

t ∈ [0, 1], x ∈ Rm+1
+ , y ∈ Rn+1

+ .

Now (F1)–(F4) hold. By Theorem 3.4, (1.1) has at least one positive solution.
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Example 4.2. Suppose (ξ′ij)2×(m+1) and (η′ij)2×(n+1) be two positive matrices and
0 < αi < 1(i = 3, 4.). Let

f(t, x, y) :=
(m+1∑

j=1

ξ′1jxj +
n+1∑
j=1

η′1jyj

)α3

t ∈ [0, 1], x ∈ Rm+1
+ , y ∈ Rn+1

+ ,

g(t, x, y) :=
(m+1∑

j=1

ξ′2jxj +
n+1∑
j=1

η′2jyj

)α4

t ∈ [0, 1], x ∈ Rm+1
+ , y ∈ Rn+1

+ .

Now (F1), (F5) and (F6) are satisfied. By Theorem 3.5, (1.1) has at least one
positive solution.

Example 4.3. Suppose (ξij)2×(m+1), (ξ′ij)2×(m+1), (ηij)2×(n+1) and (η′ij)2×(n+1)

be four positive matrices, 1 < βi ≤ 2(i = 1, 2), 0 < γi < 1 (i = 1, 2). Let

f(t, x, y) :=
(m+1∑

j=1

ξ1jxj +
n+1∑
j=1

η1jyj

)β1

+
(m+1∑

j=1

ξ′1jxj +
n+1∑
j=1

η′1jyj

)γ1

t ∈ [0, 1], x ∈ Rm+1
+ , y ∈ Rn+1

+ ,

g(t, x, y) :=
(m+1∑

j=1

ξ2jxj +
n+1∑
j=1

η2jyj

)β2

+
(m+1∑

j=1

ξ′2jxj +
n+1∑
j=1

η′2jyj

)γ2

t ∈ [0, 1], x ∈ Rm+1
+ , y ∈ Rn+1

+ .

Now (F1)-(F3), (F6) and (F7) are satisfied. By Theorem 3.6, (1.1) has at least two
positive solutions.
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