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EXISTENCE OF POSITIVE SOLUTIONS AND EIGENVALUES
INTERVALS FOR NONLINEAR STURM LIOUVILLE PROBLEMS

WITH A SINGULAR INTERFACE

D. K. K. VAMSI, PALLAV KUMAR BARUAH

Abstract. In this article, we define the Green’s matrix for a nonlinear Sturm
Liouville problem associated with a pair of dynamic equations on time scales
with a singularity at the point of interface. Then using iterative techniques,
we obtain eigenvalue intervals for which there exist positive solutions. Then
we present iterative schemes for approximating the solutions, and discus an
example that illustrates the the results obtained.

1. Introduction

Solving boundary-value problems with different types of singularities has re-
mained a challenge for mathematicians over the ages. While “regular” problems,
those over finite intervals with well-behaved coefficients pose no difficulties. There
are applications where either the domain of the problem is not well defined, or the
continuity and/or smoothness of the functions, coefficients involved are not guar-
anteed in some parts of the domain, sometimes in the boundary or parts of the
boundary. In all such cases the problem is considered to be a “singular” problem.
The definition of the problem and therefore the description of the solution becomes
a highly difficult task. Here are quite a number of different approaches that we come
across in the literature to tackle these singular problems [3, 17, 18, 19, 20, 22, 25].

In the literature we find a class of interface problems, termed as mixed pair of
equations, discussed in the papers [4, 5, 6, 10, 11, 12, 13, 14, 31, 32, 33, 34, 36, 35, 15]
where two different differential equations are defined on two adjacent intervals and
the solutions satisfy a matching condition at the point of interface. These problems
are called as matching interface problems. If the boundary is well defined then we
call the problem to be a regular interface problem. These interface problems with
singularities in the domain are always of great interest.

We see that these interface problems for regular case has been discussed in [4,
6, 32, 33, 34, 36, 35, 15] and the problem of having singularity at the boundary is
discussed in [5, 10, 11, 12, 13, 14, 31].
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From the above we see that the regular interface problems and interface problems
with singularity at the boundary are dealt in detail. But the problem of having
a singularity at the point of interface seems to be less explored. Study of these
problems using classical analytical tools is tedious. We term these problems as
singular interface problems.

The singularity at the point of interface in the domain of definition of the mixed
pair of equations could be of the following three types satisfying certain matching
conditions at the singular interface.

Interface 1: [a, c] ∪ [σ(c), b] a c σ(c) b

Interface 2: [a, ρ(c)] ∪ [c, b] a ρ(c) c b

Interface 3: [a, ρ(c)] ∪ [σ(c), b] a ρ(c) σ(c) b

To describe the singularities in the domain of definition we take help of the
terminology used on Time Scale [16]. The new framework of the dynamic equations
on time scale with facilities of the two jump operators with various definitions of
continuity and derivatives make one’s job simple to study the interface problems
with mixed operators along with a singular interface. Recently we have worked on
the linear singular interface problems as seen in [7, 8, 9], [28, 29]. Here we discuss
the corresponding nonlinear problem.

The method of lower and upper solutions is one of the commonly used methods
for dealing with the second order initial and boundary value problems. It has its
origin as early as 1893 [24]. Also this method of lower and upper solutions clubbed
with the monotone iterative technique is used in the existence theory for nonlinear
problems. A good introduction covering different aspects for the monotone iterative
methods is given by Lakshmikantham and others in [21].

Lower and upper solutions give bounds for solutions which are improved itera-
tively using monotone iterative process. This method of lower and upper solutions
for separated BVPs on time scales was developed recently by Akin in [1].

Off late iterative methods have been used to prove the existence of positive
solutions of nonlinear boundary value problems for ordinary differential equations
[23, 26, 27, 37]. By applying iterative methods, we not only obtain the existence
of positive solutions, but also establish iterative schemes for approximating the
solutions.

In this paper we define the Green’s matrix for a nonlinear non-homogenous Sturm
Liouville boundary value problem associated with singular interface problems(NN-
SL-BVP-SIP) on time scales. Using the Green’s matrix we obtain eigenvalue in-
tervals for which positive solutions exist for the NN-SL-BVP-SIP on time scales
using iterative methods. We also establish iterative schemes for approximating the
solutions. We present an example that illustrates the results obtained.

2. Preliminaries

An introduction on Time scale and Dynamic equations can be found in [16]. In
the following section we introduce few definitions for our usage.
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Definition 2.1. Let T be a time scale(an arbitrary closed subset of real numbers).
For t ∈ T we define the forward jump operator σ : T → T by

σ(t) := inf{s ∈ T : s > t},

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

If σ(t) > t, we say that t is right-scattered, while ρ(t) < t we say that t is left-
scattered. Points that are right-scattered and left-scattered at the same time are
called isolated.

Also, if t < sup T and σ(t) = t, then t is called right-dense, and if t > inf T
and ρ(t) = t, then t is called left-dense. Points that are right-dense and left-dense
at the same time are called dense.

Finally, the graininess function µ : T → [0,∞) is defined by µ(t) := σ(t)− t.

Definition 2.2.

Tκ =

{
T− {m} if sup T < ∞
T if sup T = ∞

where m is the left scattered maximum of T.

Definition 2.3. Let f be a function defined on T. We say that f is delta differ-
entiable at t ∈ Tκ provided there exists an α such that for all ε > 0 there is a
neighborhood N around t with

|f(σ(t)− f(s)− α(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ N .

Definition 2.4. For a function f : T → R we shall talk about the second derivative
f∆∆ provided f∆ is differentiable on Tκ2 = (Tκ)κ with derivative f∆∆ = (f∆)∆ :
Tκ2 → R. Similarly we define the higher order derivatives f∆n : Tκn → R.

Theorem 2.5 (Arzela-Ascoli Theorem). A subset M of C([a, b], Rn) is relatively
compact if and only if it is bounded and equicontinuous.

Theorem 2.6 ([2]). Let K be a normal cone of a Banach space E and v0 ≤ w0.
Let us suppose that

(A1) T : [v0, w0] → E is completely continuous;
(A2) T is monotone increasing on [v0, w0];
(A3) v0 is a lower solution of T, that is, v0 ≤ Tv0;
(A4) w0 is an upper solutions of T, that is, Tw0 ≤ w0.

Then the iterative sequences vn = Tvn−1 and wn = Twn−1 (n = 1, 2, 3 . . . ) satisfy

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ wn · · · ≤ w1 ≤ w0

and converge to v and w ∈ [v0, w0], respectively, which are fixed points of T .

3. Definition of Problem

Let T1 = [a, ρ(c)]T, T2 = [σ(c), b]T where −∞ < a, ρ(c), σ(c), b < +∞. Also let
(f1, f2) be nonlinear function tuple in C(T1 × T1, R) × C(T2 × T2, R). Let λ ∈ R.
The nonlinear nonhomogenous Sturm Liouville boundary-value problem associated
with singular interface problems (NN-SL-BVP-SIP) is defined by

y∆∆
1 (t) = λf1(t, yσ

1 ), t ∈ Tκ2

1 (3.1)



4 D. K. K. VAMSI, P. K. BARUAH EJDE-2012/53

y∆∆
2 (t) = λf2(t, yσ

2 ), t ∈ T2
κ2

(3.2)

with the boundary conditions

y1(a) = 0 = y2(b) (3.3)

followed by the matching interface conditions

y1(ρ(c)) = y2(σ(c)) (3.4)

y∆
1 (ρ(c)) = y∆

2 (σ(c)). (3.5)

4. Green’s Matrix associated with NN-SL-BVP-SIP

A proof for the following theorem can be found in [30].

Theorem 4.1. Let Y = (y1, y2), F = (f1, f2). Then the NN-SL-BVP-SIP has a
unique solution Y (t) for which the formula

Y (t) = λ

∫ b

a

G(t, s)F (s, yσ)∆s

holds, where G(t, s) is the Green’s matrix associated with NN-SL-BVP-SIP given

by
(

G11(t, s) G12(t, s)
G21(t, s) G22(t, s)

)
where

G11(t, s) =

{
u1 = a− t, a ≤ t ≤ s ≤ ρ(c)
v1 = a− s, a ≤ s ≤ t ≤ ρ(c)

G22(t, s) =

{
u2 = s− b, σ(c) ≤ t ≤ s ≤ b

v2 = t− b, σ(c) ≤ s ≤ t ≤ b

G12(t, s) =
{

(a− t)(b− s), a ≤ t ≤ ρ(c), σ(c) ≤ s ≤ b

G21(t, s) =
{

(a− s)(b− t), a ≤ s ≤ ρ(c), σ(c) ≤ t ≤ b

provided f1 and f2 satisfy the following conditions:∫ ρ(c)

a

((a + 1)− s)f1(s, yσ
1 )∆s =

∫ b

σ(c)

(s− (b + 1))f2(s, yσ
2 )∆s (4.1)

[(σ(c) + 1)− b]
∫ ρ(c)

a

(a− s)f1(s, yσ
1 )∆s = [(a + 1)− ρ(c)]

∫ b

σ(c)

(s− b)f2(s, yσ
2 )∆s.

(4.2)

By Y (t) = λ
∫ b

a
G(t, s)F (s, yσ)∆s, we mean

y1(t) = λ
[ ∫ b

a

G11(t, s)f1(s, yσ
1 )∆s +

∫ b

a

G12(t, s)f2(s, yσ
2 )∆s

]
= λ

∫ ρ(c)

a

G11(t, s)f1(s, yσ
1 )∆s + λ

∫ b

σ(c)

G12(t, s)f2(s, yσ
2 )∆s,

for t ∈ T1; and

y2(t) = λ
[ ∫ b

a

G21(t, s)f1(s, yσ
1 )∆s +

∫ b

a

G22(t, s)f2(s, yσ
2 )∆s

]
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= λ

∫ ρ(c)

a

G21(t, s)f1(s, yσ
1 )∆s + λ

∫ b

σ(c)

G22(t, s)f2(s, yσ
2 )∆s,

for t ∈ T2.

5. Preliminary Results

We define the integral operator T : C(T1 ∪ T2, R) → C(T1 ∪ T2, R) by

(Ty)(t)

=

{
(Ty1)(t) = λ

[ ∫ b

a
G11(t, s)f1(s, yσ

1 )∆s +
∫ b

a
G12(t, s)f2(s, yσ

2 )∆s
]
, t ∈ T1

(Ty2)(t) = λ
[ ∫ b

a
G21(t, s)f1(s, yσ

1 )∆s +
∫ b

a
G22(t, s)f2(s, yσ

2 )∆s
]
, t ∈ T2.

We define the Banach space E = C(T1 ∪ T2, R) with the supremum norm

‖y‖ = supt∈T1
|y1(t)|+ supt∈T2

|y2(t)|

and the cone K ⊂ E as
K = {y ≥ 0 : y ∈ E}.

Lemma 5.1. Let f1 be positive on T1 and f2 be positive on T2. Also let λ ∈ R−.
Then the operator T : K → K is completely continuous.

Proof. We first show that T is continuous. We prove it by showing that T preserves
convergence. Indeed let yn(= (yn1, yn2)) be a sequence of functions in C(T1∪T2, R)
such that they converge to y(= (y1, y2)). In other words

lim
n→∞

‖yn − y‖ → 0

i.e., limn→∞ ‖(yn1, yn2)− (y1, y2)‖ → 0. The above equation implies

lim
n→∞

‖(yn1 − y1, yn2 − y2)‖ → 0;

i.e., limn→∞ supt1∈T1
|(yn1− y1)(t1)| → 0 and limn→∞ supt2∈T2

|(yn2− y2)(t2)| → 0.
Now with ‖T (yn) − T (y)‖ = supt∈T1

|T (yn1 − y1)(t)| + supt∈T2
|T (yn2 − y2)(t)|, we

see that

supt∈T1
|T (yn1 − y1)(t)|

≤ supt∈T1
λ|

∫ b

a

G11(t, s)f1(s, yn1)∆s−
∫ b

a

G11(t, s)f1(s, y1)∆s|

+ supt∈T1
λ|

∫ b

a

G12(t, s)f2(s, yn2)∆s−
∫ b

a

G12(t, s)f2(s, y2)|

≤ supt∈T1
λ

∫ b

a

G11(t, s)|f1(s, yn1)− f1(s, yσ
1 )|∆s

+ supt∈T1
λ

∫ b

a

G12(t, s)|f2(s, yn2)− f2(s, yσ
2 )|∆s.

Similarly it can be sown that

supt∈T2
|T (yn2 − y2)(t)| ≤ supt∈T2

λ

∫ b

a

G21(t, s)|f1(s, yn1)− f1(s, yσ
1 )|∆s

+ supt∈T2
λ

∫ b

a

G22(t, s)|f2(s, yn2)− f2(s, yσ
2 )|∆s.
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Since (f1, f2) is continuous on C(T1 × T1, R)× C(T2 × T2, R) we have

lim
n→∞

|f1(s, yn1)− f1(s, yσ
1 )| → 0,

lim
n→∞

|f2(s, yn2)− f1(s, y2)| → 0.

Hence, limn→∞ ‖T (yn)− T (y)‖ → 0 proving that T is continuous. Let

f1(s, yσ
1 ) ≤ M1, for some M1 > 0,∀s ∈ T1,

f2(s, yσ
2 ) ≤ M2, for some M2 > 0,∀s ∈ T2.

We now show that T (C(T1∪T2, R)) is bounded and equicontinuous subset of C(T1∪
T2, R). Let us assume that y(= (y1, y2)) ∈ C(T1 ∪T2, R) and ‖y(= (y1, y2))‖ ≤ M ′.
Then

‖Ty‖ ≤ sup
t1∈T1

λ
[ ∫ b

a

|G11(t, s)||f1(s, yσ
1 )|∆s +

∫ b

a

|G12(t, s)||f2(s, yσ
2 )|∆s

]
+ sup

t2∈T2

λ
[ ∫ b

a

|G21(t, s)||f1(s, yσ
1 )|∆s +

∫ b

a

|G22(t, s)||f2(s, yσ
2 )|∆s

]
Since (f1, f2) is bounded we can conclude that there exists a K ′ > 0 independent
of choice of y(= (y1, y2)) such that ‖Ty(= (y1, y2))‖ ≤ K ′. Hence, T (C(T1∪T2, R))
is bounded. We next show that T (C(T1∪T2, R)) is equicontinuous subset of C(T1∪
T2, R). We need to show that for all ε > 0 there exists δ > 0 such that whenever
‖t− t′‖ < δ we have ‖Ty(t)− Ty(t′)‖ < ε.

Now

‖Ty(t)− Ty(t′)‖ = sup
t∈T1

|Ty1(t)− Ty1(t′)|+ sup
t2∈T2

|Ty2(t)− Ty2(t′)|

≤ sup
t1∈T1

[
|λ

∫ b

a

(G11(t, s)−G11(t′, s))f1(s, yσ
1 )∆s|

]
+ sup

t∈T1

[
|λ

∫ b

a

(G12(t, s)−G12(t′, s)f2(s, yσ
2 ))∆s|

]
+ sup

t∈T2

[
|λ

∫ b

a

(G21(t, s)−G21(t′, s)f1(s, yσ
1 ))∆s|

]
+ sup

t∈T2

[
|λ

∫ b

a

(G22(t, s)−G22(t′, s)f2(s, yσ
2 ))∆s|

]
Let M = max{M1,M2}. Then we have

‖Ty(t)− Ty(t′)‖ ≤ M sup
t∈T1

[
|λ

∫ b

a

(G11(t, s)−G11(t′, s))∆s|
]

+ M sup
t∈T1

[
|λ

∫ b

a

(G12(t, s)−G12(t′, s))∆s|
]

+ M sup
t∈T2

[
|λ

∫ b

a

(G21(t, s)−G21(t′, s))∆s|
]

+ M sup
t∈T2

[
|λ

∫ b

a

(G22(t, s)−G22(t′, s))∆s|
]
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We see that

M sup
t∈T1

[
|λ

∫ b

a

(G11(t, s)−G11(t′, s))∆s|
]

= M sup
t∈T1

[
|λ

∫ t

a

(a− s)∆s− λ

∫ t′

a

(a− s)∆s +
∫ ρ(c)

t

(a− t)∆s

− λ

∫ ρ(c)

t′
(a− t′)∆s|

]
= M sup

t∈T1

(
|λ(t− t′)

[
a− 1

2
(t + t′)

]
+ λ(t− t′)[(t + t′)− (a + ρ(c))]|

)
≤ M sup

t∈T1

(
|t− t′||λ

[1
2
(t + t′)− ρ(c)

]
|
)

Also

M sup
t∈T1

[
|λ

∫ b

a

(G12(t, s)−G12(t′, s))∆s|
]

= M sup
t∈T1

[
|λ

∫ b

σ(c)

(a− t)(b− s)∆s− λ

∫ b

σ(c)

(a− t′)(b− s)∆s|
]

≤ M |λ| sup
t∈T1

[ ∫ b

σ(c)

|t− t′|(b− s)∆s
]

= M |λ| sup
t∈T1

|t− t′|
∫ b

σ(c)

∆s

We observe that

M sup
t∈T2

[
|λ

∫ b

a

(G21(t, s)−G21(t′, s))∆s|
]

= M sup
t∈T2

[
|λ

∫ ρ(c)

a

(a− s)(b− t)∆s− λ

∫ ρ(c)

a

(a− s)(b− t′)∆s

≤ M |λ| sup
t∈T2

|t− t′|
∫ ρ(c)

a

(a− s)∆s

Finally we have

M sup
t∈T2

[
|λ

∫ b

a

(G22(t, s)−G22(t′, s))∆s|
]

≤ M |λ| sup
t∈T2

[
|λ

∫ b

a

(G22(t, s)−G22(t′, s))∆s|
]

= M |λ| sup
t∈T2

[
|
∫ t

σ(c)

(t− b)∆s−
∫ t′

σ(c)

(t′ − b)∆s

+
∫ b

t

(s− b)∆s−
∫ b

t′
(s− b)∆s|

]
≤ M |λ| sup

t∈T2

[
|t− t′|[t + t′ − (b + σ(c))] +

∫ t′

t

|s− b|∆s
]
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≤ M |λ| sup
t∈T2

[
|t− t′|[t + t′ − (b + σ(c))] + |t′ − t|b

]
= M |λ| sup

t∈T2

[
|t− t′|((t + t′)− σ(c))

]
.

From the above it is clear that ‖Ty(t)− Ty(t′)‖ < ε whenever ‖t− t′‖ < δ. Hence
T (C(T1∪T2, R)) is equi-continuous subset of C(T1∪T2, R). Hence from the Arzela-
Ascoli theorem we see that T is completely continuous. �

6. Eigenvalue Intervals

Theorem 6.1. Let f1 be positive on T1 and f2 be positive on T2. Also let λ ∈ R−.
Let us assume that there exists Ω,K > 0 such that for u = (u1, u2), v = (v1, v2) we
have

f1(t, uσ
1 ) ≤ f1(t, vσ

1 ) ≤ ΩK, t ∈ T1,

f2(t, uσ
2 ) ≤ f2(t, uσ

2 ) ≤ ΩK, t ∈ T2,

whenever 0 ≤ uσ ≤ vσ ≤ ΩK; i.e.,

0 ≤ uσ
1 ≤ vσ

1 < ΩK, 0 ≤ uσ
2 ≤ vσ

2 < ΩK.

Then for all λ satisfying

λ ≤ 1

Ω
[ ∫ b

a
G11(t, s)∆s +

∫ b

a
G12(t, s)∆s

]
λ ≤ 1

Ω
[ ∫ b

a
G11(t, s)∆s +

∫ b

a
G12(t, s)∆s

] ,

there exists positive solutions for NN-SL-BVP-SIP.

Proof. Let v0(t) = 0 and w0(t) = K for all t ∈ T1 ∪ T2. Then from Lemma 5.1 it
is clear that T : [v0, w0] → K is completely continuous.
• We claim that T is monotone increasing on [v0, w0]. Let us suppose that

u = (u1, u2), v = (v1, v2) ∈ [v0, w0] such that uσ ≤ vσ. Then clearly 0 ≤ uσ(t) ≤
vσ(t) ≤ ΩK, for all t ∈ T1 ∪ T2. We have

(Tu)(t)

=

{
(Tu1)(t) = λ

[ ∫ b

a
G11(t, s)f1(s, uσ

1 )∆s +
∫ b

a
G12(t, s)f2(s, uσ

2 )∆s
]
, t ∈ T1

(Tu2)(t) = λ
[ ∫ b

a
G21(t, s)f1(s, uσ

1 )∆s +
∫ b

a
G22(t, s)f2(s, uσ

2 )∆s
]
, t ∈ T2.

From the hypothesis it is clear that (Tu)(t) ≤ (Tv)(t) where

(Tv)(t)

=

{
(Tv1)(t) = λ

[ ∫ b

a
G11(t, s)f1(s, vσ

1 )∆s +
∫ b

a
G12(t, s)f2(s, vσ

2 )∆s
]
, t ∈ T1

(Tv2)(t) = λ
[ ∫ b

a
G21(t, s)f1(s, vσ

1 )∆s +
∫ b

a
G22(t, s)f2(s, vσ

2 )∆s
]
, t ∈ T2.

Hence T is monotone increasing on [v0, w0].
• We claim that v0 is an lower solution of T . We see that

(Tv0)(t)

=

{
(Tv01)(t) = λ

[ ∫ b

a
G11(t, s)f1(s, 0)∆s +

∫ b

a
G12(t, s)f2(s, 0)∆s

]
≥ 0, t ∈ T1

(Tv02)(t) = λ
[ ∫ b

a
G21(t, s)f1(s, 0)∆s +

∫ b

a
G22(t, s)f2(s, 0)∆s

]
≥ 0, t ∈ T2.

which implies that v0 ≤ Tv0.
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• We claim that w0 is an upper solution of T . We see that

(Tw0)(t)

=

{
(Tw01)(t) = λ

[ ∫ b

a
G11(t, s)f1(s, w0)∆s +

∫ b

a
G12(t, s)f2(s, w0)∆s

]
, t ∈ T1

(Tw02)(t) = λ
[ ∫ b

a
G21(t, s)f1(s, w0)∆s +

∫ b

a
G22(t, s)f2(s, w0)∆s

]
, t ∈ T2.

Let t ∈ T1. Then

(Tw01)(t)

≤ ΩKλ
[ ∫ b

a

G11(t, s)∆s
]

+ ΩKλ
[ ∫ b

a

G12(t, s)∆s
]

= KΩλ
[ ∫ b

a

G11(t, s)∆s
]

+ KΩλ
[ ∫ b

a

G12(t, s)∆s
]

≤ KΩ
[ ∫ b

a

G11(t, s)∆s +
∫ b

a

G12(t, s)∆s
] 1

Ω
[ ∫ b

a
G11(t, s)∆s +

∫ b

a
G12(t, s)∆s

]
= K = w0.

We now let t ∈ T2. Then

(Tw02)(t)

≤ ΩKλ
[ ∫ b

a

G21(t, s)∆s
]

+ ΩKλ
[ ∫ b

a

G22(t, s)∆s
]

= KΩλ
[ ∫ b

a

G21(t, s)∆s
]

+ KΩλ
[ ∫ b

a

G22(t, s)∆s
]

≤ KΩ
[ ∫ b

a

G21(t, s)∆s +
∫ b

a

G22(t, s)∆s
] 1

Ω
[ ∫ b

a
G21(t, s)∆s +

∫ b

a
G22(t, s)∆s

]
= K = w0.

Hence Tw0 ≤ wo proving that w0 is an upper solution of T . We now construct
sequences {vn}∞n=1 and {un}∞n=1 as follows:

vn = Tvn−1, wn = Twn−1, for n = 1, 2, 3, . . .

Then from theorem 2.6 we have that

v0 ≤ v1 ≤ · · · ≤ vn ≤ . . . wn ≤ · · · ≤ w1 ≤ w0,

and {vn}∞n=1 and {un}∞n=1 converge to, v and w in [v0, w0], which are the fixed
points of the operator T . In other words v and w are the positive solutions of the
NN-SL-BVP-SIP. �

7. An example

In this section, an example is given to illustrate the main result of this paper.
Let T1 = [1, 5]T, T2 = [6, 10]T. Let us consider the NN-SL-BVP-SIP-A

y∆∆
1 (t) = λ

1
4
y∆2

1 (σ(t)), t ∈ T1
κ2

,

y∆∆
2 (t) = λ

(1
2
y∆2

2 (σ(t)) +
1
4
y2
2(t)

)
, t ∈ T2

κ2
,
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along with the boundary and matching interface conditions

y1(1) = 0 = y2(10)

y1(5) = y2(6)

y∆
1 (5) = y∆

2 (6).

Let Ω = 100, K = 10. Also let (u1, u2) = (t, t), (v1, v2) = (t2, t2). We have

u∆
1 (σ(t)) = 1, u∆

2 (σ(t)) = 1,

v∆
1 (σ(t)) = 2σ(t), v∆

2 (σ(t)) = 2σ(t).

Clearly

u1(σ(t)) = σ(t) ≤ σ(t)2 = v1(σ(t)) < ΩK,

u2(σ(t)) = σ(t) ≤ σ(t)2 = v2(σ(t)) < ΩK.

Also

f1(t, uσ
1 ) =

1
4
≤ σ2(t) = f1(t, vσ

1 ),

f2(t, uσ
2 ) =

1
2

+
1
4
σ2(t) ≤ 2σ2(t) +

1
4
σ4(t) = f2(t, vσ

2 ).

Hence from theorem (6.1), for all λ satisfying

λ ≤ 1

Ω
[ ∫ b

a
G11(t, s)∆s +

∫ b

a
G12(t, s)∆s

]
λ ≤ 1

Ω
[ ∫ b

a
G21(t, s)∆s +

∫ b

a
G22(t, s)∆s

] ,

there exists positive solutions for NN-SL-BVP-SIP-A. That is, for all λ satisfying

λ ≤ 1

Ω
[ ∫ t

1
(1− t)∆s +

∫ 5

t
(1− s)∆s

+
∫ 5

1

(1− t)(10− s)∆s +
∫ 10

6

(1− t)(10− s)∆s
]

and

λ ≤ 1

Ω
[ ∫ 5

1
(1− s)(10− t)∆s +

∫ 10

6
(1− s)(10− t)∆s

+
∫ t

6

(t− 10)∆s +
∫ 10

t

(s− 10)∆s
]
.

λ ≤ 1
100

(
− t2

2
− 35t +

55
2

)
, t ∈ T1

λ ≤ 1
100

( t2

2
+ 30t− 350

)
, t ∈ T2.

So for all λ ≤ −1/800 there exists positive solutions for the NN-SL-BVP-SIP-A.

Remark 7.1. We also note that the type of results embodied in [4, 5, 6, 10, 11,
12, 13, 14, 31, 32, 33, 34, 36, 35, 15] when worked for second order are special cases
of this work whenever ρ(c) = c = σ(c). Also the interfaces I and II explained in
introduction can be studied as special cases of the results presented in this work.
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