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EXISTENCE OF GLOBAL SOLUTIONS FOR A
GIERER-MEINHARDT SYSTEM WITH THREE EQUATIONS

SALEM ABDELMALEK, HICHEM LOUAFI, AMAR YOUKANA

ABSTRACT. This articles shows the existence of global solutions for a Gierer-
Meinhardt model of three substances described by reaction-diffusion equations
with fractional reactions. Our technique is based on a suitable Lyapunov
functional.

1. INTRODUCTION

In recent years, systems of Reaction-Diffusion equations have received a great
deal of attention, motivated by their widespread occurrence in modeling chemi-
cal and biological phenomena. Among these systems, the Gierer-Meinhardt is an
important one. Meinhardt, Koch and Bernasconi [7] proposed activator-inhibitor
models (an example is given in section 4) to describe a theory of biological pattern
formation in plants (Phyllotazis).

We consider a reaction-diffusion system with three components:

uP1
Ut —alAu = f(u,v,w) =0 — b1U+ m
uP2
vy — agAv = g(u, v, w) = —bov + P (1.1)
ubPs
wy — azAw = h(u,v,w) = —bsw + T

with x € Q, ¢t > 0, and with Neummann boundary conditions

ou Ov  Ow

8777:87]:8777 0 on 90 x {t > 0}, (1.2)
and initial data
u(0,2) = p1(z) >0
v(0,2) = pa(x) >0 (1.3)
w(0,2) = @3(x) >0

on Q, and p; € C(Q) for all i = 1,2,3. Here Q is an open bounded domain of class
C' in RN, with boundary 9€Q; 9/0n denotes the outward normal derivative on 9f).
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We use the following assumptions: a;, b;, p;, ¢;, 7; are nonnegative for ¢ = 1,2, 3,
with o > 0, ¢ > 0:

: q 1 . 71 q1
0 <p; —1<max min ,—, 1), pgmin(———, —, 1) ;. 1.4
P1 {pz (q2+1 To ) b3 (r3+1 p )} ( )
We set A;; = 261/1157 for 7,5 = 1,2,3. Let a, 8 and v be positive constants such
that '
b+ 1
a > 2max {1, 2 21 = >24%, (1.5)
by B
1 1 a—1
— — A%)(— — A? Agg — A12A13)2. 1.
(Zﬁ 12)(2,y 13) > ( o 2 12413) (1.6)

The main result of the paper reads as follows.

Theorem 1.1. Suppose that the functions f,g and h satisfy condition (L.4]). Let
(u(t,-),v(t,),w(t,-)) be a solution of (L.1)-(1.3) and let
u®(t, )

L(t) = /Q T i (1.7)

Then the functional L is uniformly bounded on the interval [0,T*],T* < Tmax,
where Tmax (||tolloo, [|Vollco, [|[Wolleo) denotes the eventual blow-up time.

Corollary 1.2. Under the assumptions of Theorem all solutions of (1.1))-(1.3)
with positive initial data in C(Q) are global. If in addition by, b, b3, o > 0, then
u,v,w are uniformly bounded in Q x [0, 00).

2. PRELIMINARIES

The usual norms in spaces LP(Q2), L () and C(Q) are denoted respectively by:

1
Il = 7 / ()P,

[ufloc = esssup,eq u()], (2.1)

u o) — Mmax |(u(x
Il = maxu(z)

In 1972, following an ingenious idea of Turing [I0], Gierer and Meinhardt [6]
proposed a mathematical model for pattern formations of spatial tissue structures
of hydra in morphogenesis, a biological phenomenon discovered by Trembley in
1744 [9]. It is a system of reaction-diffusion equations of the form

uP
ut—alAu:o—uu—i——q
v (2.2)
vy — AV = —vv + —
vS
for z € Q and ¢t > 0, with Neummann boundary conditions
ou  Ov
—=—=0 0Q,t>0 2.3
oy~ on 0 TEINL>0, (2.3)

and initial conditions
w(z,0) = p1(z) >0, v(x,0)=pa(x) >0, =€, (2.4)

where Q ¢ RY is a bounded domain with smooth boundary 02, a1,as > 0, p, v, >
0, the indexes p, q,r and s are non negative with p > 1.
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Existence of solutions in (0, 00) is proved by Rothe in 1984 [12] in a particular
situation when p = 2, g =1, r = 2, s = 0 and N = 3. Rothe’s method cannot
be applied (at least directly) to the general case. Wu and Li [5] obtained the same
results for — so long as u,v~! and o are suitably small. Mingde, Shaohua
and Yuchun [§] show that solutions of this problem are bounded all the time for
any initial values if

p—1 R 1
T s+1 r

Masuda and Takahashi [I1] considered a more general system for (u,v),

<1 (2.5)

Up

Ea
T

v — apAv = o3(z) — Vv + pz(f&ﬂ);,

up — a1Au = o1(x) — pu + p1(z,u)
(2.6)

with 01,00 € C1(Q), 01 > 0,09 > 0, p1, p2 € CH(Q x Ei) N L>®(Q x Ei) satisfying
p1 > 0,p2 > 0 and p, q,r, s are nonnegative constants satisfying (2.5)). Obviously,

system is a special case of system .

In 1987, Masuda and Takahashi [I1] extended the result to 2+ < Niﬁ under
the sole condition o1 > 0. In 2006, Jiang [4], under the conditions , V1,92 €
W2HQ), I > max{N,2}, % 8‘01 = 8“’2 =0 on 00 and @1 > 0,p2 > 0 in Q showed
that . has a unique nonnegatlve global solution (u,v) satisfying | i l

It is well-known that to prove existence of global solutions to , it
suffices to derive a uniform estimate of || f (u, v, w)||p, ||g(u, v, w)||, and Hh (u,v,w)||p
on [0; Tiax) in the space LP(2) for some p > N/2 (see Henry [3]). Our aim is to
construct a polynomial Lyapunov functional allowing us to obtain LP— bounds
on u,v and w that lead to global existence. Since the functions f,g and h are
continuously differentiable on Rﬁ_, then for any initial data in C(Q), it is easy to
check directly their Lipschitz continuity on bounded subsets of the domain of a
fractional power of the operator

alA 0 0
A=—[ 0 awar o |. (2.7)
0 0 G,gA

Under these assumptions, the following local existence result is well known (see
Henry [3]).

Proposition 2.1. System (1.1)-(1.3) admits a local unique, classical solution (u,v,w)
on (0, Tmax) X Q. If Tinax < 00 then

me (fJudt, )l + [0, )llee + [[w(t, )leo) = oo (2.8)
/" Trmax
3. PROOFS OF MAIN RESULTS

For the proof of Theorem we need some preparatory Lemmas.

Lemma 3.1. Assume that p, q, v, s, m, and n satisfy

-1
P min(—L
T s+1'n

1)
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For all h, 1, o, B, v > 0, there exist C = C(h,l,,3,7v) >0 and 0 = 0(«) € (0,1),
such that
xp—l-i—a xr+a o

0
ayq+ﬁzm+w < ’Bys+1+ﬁzn+’v + C(yﬁzw) » 220, y2h 221 (3.1)
Proof. For all x > 0,y > h,z > [, from the inequality (3.1)), we have
xpfl T & 01
Oéyqzm < ﬂy”lz” C(W) . (3.2)

We can write

Pt x”

A (p=1)r pol (=) neol o,
ayqzm - Oéﬁ (ﬁySJrlz") y N
For each € such that 0 < e < min(;f5, 7, 1) — %, we have
Pt " pea x” D=1 _, nm=1)
— o3—(=1)/r VBt (g2 e Ty
ayqzm - Oéﬁ (6ys+lzn) (ﬁys+lzn) v z .
Then
xP~! p=1_, " pii 1 ke, | GHDG-Y
— - - SV (y) T —ate(s+1)
0t = ald) ) T ) E )
> Z”(pfl)—m—i-en
_p=1l_ x" 10—1+6 1 re (S+1)(P*1)7q+6(5+1)
< ()T (B) T ) F ()
x 1 e (3.3)
_p—1_ " -1 1 e, G+D@-D _ 1
<a(B)" T f(ﬁm) - +6(:Ta) = (h) - qte(s+1)
n(p—1) Y. Bre Z are
o [ —mepen (Y Bre (2 o
&)%)
x" p=l_.. yﬁz’y re/o
< C'l(ﬁysﬂzn) v <x7a) )
where .
s+1 — TE
Cy = a(ﬁ)_pzl_fh( (e )_q+e(s+1)—BTlLf*1>_m+en_%
Using Young’s inequality for (3.3)) by taking
4+ e re
C=0C PO =1 — — T
a(l - = —¢)
where € is sufficiently small, we obtain inequality (3.2]). O

Lemma 3.2. Let T > 0 and f = f(t) be a non-negative integrable function on
[0,T). Let 0 < 8 <1 and W = W (t) be a positive function on [0,T) satisfying the
differential inequality
aw
<
dt —
Then W (t) < k, where k is the positive root of the algebraic equation

—W )+ fFOWO (), 0<t<T.

T — ( sup /t e_(t_g)f(f)dg)xo = W(0).

0<t<T Jo
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Lemma 3.3. Let (u(t,-),v(t,-),w(t,-)) be a solution of (L.1)-(1.3). Then for any
(tVT) in (Oaﬂnax) X Q, we have

u(t,z) > mln(gpl(ac)) >0,
v(t, @) > e " min(pa(x)) > 0, (3.4)
w(t,z) > e " min(ps(z)) > 0.

The proof of the above lemma follows immediately from the maximum principle,
and it is omitted.

Proof of Theorem[I.. Differentiating L(t) with respect to ¢ yields

L'() :/ 4 g

q dt vBw

ua—l u® u®
= /Q (avﬁuﬂ Oyu — ﬁmaﬂj - ’YW@UJ)UZ%-
Replacing 0yu, 0;v and d;w by their values in , we obtain
L't)y=1+J,

where I contains the Laplacian terms and J contains the other terms,

Ot

a—1
I:ala/“ Audr —asf) | s Avda - aw/ 7 Awdr,

and
ub1ta— 1

J = (=bio+ 23+ bsy)L(t) + O‘/Q 0B8] (W + c) =

yp2te uPste w1
B —————der—y | ——————dr+ o« dx.
UQQ+B+1U}T2+V Q UQB"FﬁwTS"F’Y'i‘l Q Uﬁw’)’

Estimation of I. Using Green’s formula, we obtain

I— /Q(—aloz(a -y

a—2 al a—l

|Vu| +a1af e ,quVv—&—alom o S vuVw

a—1 [eY

u
+ asfa pCT ,YVqu—agﬂ(ﬁ—l—l) [3+2 ,Y|Vv| agﬁ'yWVva
a—1 u® u® 9
+ ag’}/O[ VuV’w ag’yﬁWVUVw — ag’y('y + ].)W‘VU}‘ )dx
u® 2
= —/Q[W(QT) 'T] dzx,
where
amala—1) —apfufez —qyutes

Q — —aﬁa1+“2 agﬂ(ﬂ + 1) 5’7a2+a3
—04’Ya1+a3 57‘12;“3 azy(y+1)
The matrix @Q is positive definite if, and only if, all its principal successive deter-
minants Aq, Ay, Az are positive. To see this, we have:
Ay =aja(a —1) > 0 by (L.5). Note that

mala—1) —apuie a—18+1
—apget app(a-4 )| T e

which is positive by (1.5]).

Ag = - A%Z)
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Using [I, Theorem 1], we obtain

(@ —=1)As = (a - 1)[Q]

a—18+1 9 1y+1

= o) oneas (=75 — AR (= 4R

- (¢ Az A1s)”).

Then using (1.5))-(1.6]), we obtain Az > 0.
Consequently, I <0 for all (¢,z) € [0,T7*] x Q.

Estimation of J. According to the maximum principle, there exists Cy depending
on [|¢1]lcos [¢2]l0os [|¥3]loe such that v,w > Cy > 0. We then have

a—1 et a
L:(L)(wl)/a( )ﬁ/a( yrle < (2 ”T’l(i)(ﬁﬂ)/a.

vhw vPwY v w vPwY Co
So .
u*r" u® 1
(a—1)/a — (— Bt/
B _CQ(z)ﬁuﬂ) where C’g—(CO) )
Using Lemma [3.1] for all (¢,z) € [0,T*] x ©Q, we obtain
yPrta—1 yP1ta—1 ub2te u® g
av(h-‘rﬂw"/(w?“l + C) < avih-l-ﬂw’)"i'ﬁ < BUQ2+5+1wT2+’Y + C(W) ’ (35)
or o N
yPita— uPste u® g
av‘ll‘f‘ﬁw’)’"ﬂ"l S ’YwT3+1+’YUQS+BO(U/Bw’Y) ’ (36)
We have
yb1ta—1
I = (Zhiat baB+byy) () + a/gl v By (W' + ) de

upP2te yp3to uafl
/6/ pa2+B+1qyra+y prrewcrs pel PY/Q ve3+Bra+r+1 dz + O—Ol/Q vBwY dz.
Using (3 ,
J < (=bya+ by + by L(2) + / el
Q

“ e u® | (a—1)/a
vﬁuﬂ) dx—l—aa/QCg(vﬁw,y) dx .

Applying Hélder’s inequality, for all ¢ € [0, 7], we obtain
« e} 0 1-6
/C( ) da < (/(L)dx) (/cﬁdx) .
q vPwy q vlw? Q

/ C(vgm)edx < C3LP(t), where C5 = C|Q|' 7.
Q

Then

We have

u® \(a-1)/a u® (a=1)/x a1/
/QCQ(WW) dx < (/Q(rawv)dx) (/Q(cg) dz)'*.

Whereupon

/ Ca( g 7)(a*1)/adaz < Oy L@ V/2()  where Cy = Cy|Q|M.
Q vPw

‘We have »
J < (=bya + by + bsy)L(t) + C3LO(t) + acC4 L5 (2).
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Whereupon
J < (=bra+baf + bsy)L(t) + C5(L(t) + ac L5 (1)).
Thus under conditions (1.5)) and , we obtain the differential inequality
L'(t) < (=bya + bo 8 + byy) L(t) + C5 (LY (t) + ac LD/ (1)).
Since —bya + by + b3y < 0, we obtain

L'(t) < C5L°(t) 4+ Csao L@~/ (1), (3.7)
Using Lemma we deduce that L(t) is bounded on (0, Tiax); i-e, L(t) < 71,
where v, dependents on the L°°-norm of ¢1, s and 3. O
Proof of Corollary[1.34 Since L(t) is bounded on (0, Tiax) and the functions
ubP1 ubP2 ubPs

)

p41 (wrl + C) ’ v92qT2 4373

are in L>((0, Tyax), L™(€2)) for all m > &, as a consequence of the arguments in

Henry [3] and Haraux and Kirane [2], we conclude that the solution of the system
(1.1)-(L.6) is global and uniformly bounded on € x (0, +00). O

4. EXAMPLE

In this section we present a particular activator-inhibitor model that illustrates
the applicability of Theorem and Corollary We assume that all reactions
take place in bounded region §2 with smooth boundary 9f2.

Example 4.1. The model proposed by Meinhrdt, Koch and Bernasconi [7] to
describe a theory of biological pattern formation in plants (Phyllotaxis) is

@ — @ =) + CL2 +
ot Mog2 T v(w + ky) 7
0 0?
ait} —azaimz = —bov + u?, (4.1)
ow 0w
E —agﬁ = —b3w+u,

for x € Q and t > 0, where u, v, w are the concentrations of the three substances;
called activator (u) and inhibitors (v and w).

We claim that (4.1]) with boundary conditions and non-negative uniformly
bounded initial data (|1.3)) has a global solution. This claim follows from this model
being a special case of (1.1)), with p;1 =2, g1 =1,r1 =1, pa =2,q2 =0, r5 =0,
ps = 1, g3 = 0, r3 = 0. Since these indexes satisfy the conditions for global
existence: 2 ;;1 < min (qzqil , :—;7 1), we have a global solution.

We remark that system exhibits all the essential features of phyllotaxis.
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