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SELF-SIMILAR DECAY TO THE MARGINALLY STABLE
GROUND STATE IN A MODEL FOR FILM FLOW OVER
INCLINED WAVY BOTTOMS

TOBIAS HACKER, GUIDO SCHNEIDER, HANNES UECKER

ABSTRACT. The integral boundary layer system (IBL) with spatially periodic
coefficients arises as a long wave approximation for the flow of a viscous in-
compressible fluid down a wavy inclined plane. The Nusselt-like stationary
solution of the IBL is linearly at best marginally stable; i.e., it has essential
spectrum at least up to the imaginary axis. Nevertheless, in this stable case
we show that localized perturbations of the ground state decay in a self-similar
way. The proof uses the renormalization group method in Bloch variables and
the fact that in the stable case the Burgers equation is the amplitude equation
for long waves of small amplitude in the IBL. It is the first time that such a
proof is given for a quasilinear PDE with spatially periodic coefficients.

1. INTRODUCTION

The gravity driven free surface flow of a viscous incompressible fluid down an
inclined plate plays an important role in heat exchanging devices. Numerous ap-
plications are found in coating processes ranging from the production of compact
discs to photographic industries. For a flat bottom, the inclined film problem has
been extensively studied experimentally, numerically, and analytically; see [7] for a
review. In particular, it is well known that for a given film height the underlying
Navier-Stokes equations possess a stationary solution with a parabolic velocity pro-
file and a flat surface. Denoting the inclination angle by «, this so-called Nusselt
solution is spectrally stable if the Reynolds number R is below the critical value
Reit = 5/6 cot o, and unstable to long waves for R > R, cf. [2, 24]. Nonlinear
diffusive stability in the sense of the present paper in the spectrally stable case was
shown in [21], while for R > R, surface waves are generated, which pass through a
number of secondary instabilities until turbulence occurs at high Reynolds numbers;
see [0], for instance.

In many applications the bottom is not perfectly flat but rather has a wavy
profile. This may be due to natural irregularities or by design, for example in
cooling processes. Thus, it is of interest to study the impact of an undulated
bottom on the film flow. However, to study the stability of stationary solutions, the
Navier-Stokes equations in combination with the free surface are hard to handle and
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thus there has been much effort to derive simpler model equations. Starting from
the 2D Navier-Stokes equations in curvilinear coordinates, in [I2] we derived a 2-
dimensional system with periodic coefficients for the film thickness F' = F'(¢,z) € R
and the local flow rate Q = Q(¢,x) := fOF(t’m) U(t,x,z)dz, where U is the velocity
in direction parallel to the bottom. In [I2] this system is called weighted residual
integral boundary layer system, here IBL in short, and may be written as

OF — —ﬁax@ (1.1)
0= g (B~ - P - o )
+ gwng — 0pk)F — L:%@Q + g%ﬁmF—%oR(axQ)QQ (1.2)
re (gaicz F it a @ rp 6 2o2r - 10,0 f%F) -

Here t > 0 denotes time, z € R corresponds to arclength along the bottom, and
we simplified notation of the IBL used in [12] (31),(32)] by redefining the spatial
variable X, the temporal variable T, and the curvature K used in [12, (31),(32)]
via 1 1

T = SX, t:= ST’ k= 0CK, (1.3)

where § > 0 is a dimensionless wave number, ( > 0 describes the bottom waviness,
and k = k(x) is the curvature of the bottom which is periodic with period v > 0.
For the surface tension effects here we replaced the inverse Bond number B; from
[12] by the Weber number W, defined by W := 36 ?B;R~!. Finally, a > 0 is
the mean inclination angle such that o — 0, with 8 = 0(x) is the y-periodic local
inclination angle, and R is the Reynolds number which measures the ratio between
inertia and viscous forces.

Remark 1.1. (a) From the non-dimensionalization and derivation in [12] we have
that FF~ 1 and 1+ xF = 1 and thus the denominators in , are bounded
from below by, e.g., 1/2.

(b) In [12] we also considered a regularized version (rIBL) of (L.1)), (1.2), mainly
to correct some unphysical behaviour of , (1.2) for R > Ret. Here we are
interested in R < Rt where the difference between ([1.1)), and the rIBL is very
small. In particular, the two versions only differ by terms which for R < R, are
asymptotically irrelevant. Therefore we stick to the slightly simpler version ,

(1.2), but nevertheless (1.1), (1.2 is a quasilinear parabolic system with spatially
periodic coefficients.

Numerical simulations for , showed very good agreement with data
available from experiment and full Navier-Stokes simulations. In particular, ,
can be used to approximate stationary solutions of the original Navier-Stokes
systems, even with eddies, see [I2]. Moreover, from linear stability analysis one
can again find a critical Reynolds number R,y beyond which the free surface of
stationary solutions undergoes a long wave instability [23], and again the numerical
stability results from [I2] for the IBL agree very well with [23].

Thus, here we use the IBL as a model problem to study nonlinear stability of
Nusselt-like stationary y-periodic solutions (fs, ¢s) in the spectrally stable case. For
stationary solutions ¢, is constant, and it turns out that we always have families of
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stationary solutions which can be parametrized by ¢s;. Therefore, the stability of
any spectrally stable (fs,¢s) is nontrivial since linearizations around such (fs, gs)
always have essential spectrum up to the imaginary axis. Thus, we cannot conclude
stability from the linearization alone but have to take into account the nonlinearity.

If we restrict to spatially localized perturbations, dissipative systems often show
dynamics which are similar to those of linear diffusion equations. To be more
precise, denoting the solution by v(t, x), the rescaled solution v/tv(t, v/tx) converges
towards a Gaussian limit. In this case, the nonlinearity is called asymptotically
irrelevant. However, if the nonlinearity has an advection term ,(v?), then it
becomes relevant and the resulting non-Gaussian limit of the rescaled solution is
determined by the Burgers equation, see [5], for instance.

Here we show a similar result for the IBL, namely that localized perturbations of
spectrally stable stationary solutions (fs,qs)' decay in a universal manner, which
is determined by the Burgers equation. The proof relies on renormalization group
(RG) methods [B] for nonlinear parabolic PDEs, which have been used for systems
like the Ginzburg-Landau equation, see [3l, [8 [ @], or pattern forming systems, see
[16], [17, 19] 10, [18]. Also for film flow over flat inclines RG methods were used to
show nonlinear stability of spectrally stable stationary solutions, namely in [20] for
an IBL and in [21] for the full Navier-Stokes system.

Mathematically, , can be classified as a quasilinear second order par-
abolic system. Besides the quasilinearity, which makes the local existence theory
difficult, we have the following issues. First, in contrast to the Nusselt solution
over flat bottoms, over wavy bottoms the stationary solutions are not known in
closed form. Second, Fourier analysis, which is an essential tool in the stability
proofs for flat inclines, has to be replaced by Bloch wave analysis. This was used in
[22] to prove nonlinear stability for a semilinear model problem, namely a spatially
periodic Kuramoto-Shivashinsky equation.

Notation. For m,r € R the weighted Sobolev spaces H”(m) are defined as
H"(m) :={v:R = C|||v|grm) = l|0"v][gr < oo} with o(x) = (142212, (1.4)
Fourier transform F is defined by

1

T or

Fu(k) /U(x)e_ikxdx, v(z) = F1o(z) = / o(k)e**dk, (1.5)
R R
and is an isomorphism between H"(m) and H™(r).
Our main result now reads as follows, where for notational convenience we take
initial conditions for (1.1f), (1.2]) at ¢ = 1, and where the spectral stability assump-
tions will be discussed below in Assumption 2.3

Theorem 1.2. Let p € (0,1/2), 3 <r < 4, and let (fs,qs)" be a spectrally stable

stationary solution of the IBL (1.1), , cf. Assumption below. Then there
exist constants Cy,Co > 0 such that the following holds. If || foll g (2)+ ol r—1(2) <

C1, then there exists a unique global solution (F,Q)" = (fs,qs)" + (f,q)" of the

IBL (L), with (f,q)"|,_, = (fo,q0) " and

sup (£.0)T — 72 £y (172 + )@ (0.)| < Ot T2 (L)
e
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for t € [1,00). Here, ®1(0,-) = (dfs/dqs,1)T is the critical eigenfunction of the
linearization of (1.1), (1.2) around (fs,qs)", and

VG mel(y/2y@)
d 4+ 2z (1+erf(y/(2y/c2)))’
denotes the non-Gaussian profile determined by the Burgers equation, where ¢y < 0,

ca > 0 and d < 0 are likewise determined by the linearization around (fs,qs) ", while
zg > —1 can be given explicitly in terms of the excess mass fR fodx, see (4.31]).

fao(y) = (1.7)

The behaviour of the function v, (t,z) := t~1/2f,(t~1/?z) is shown in Fig.

L S i S

FIGURE 1. Sketch of self-similar decay of the amplitude in a co-

moving frame in (|1.6))

Figure [2] shows numerical simulations of (L.I)), in the stable case (a)-(c)
and the unstable case (d), with periodic boundary conditions. This is also intended
to relate (L.I]), to the underlying physics. In (a)-(c) we used a sinusoidal
bottom with amplitude & = 0.4mm and wavelength A=10mm (bottom profile b() =
acos(%”fc)). The mean film thickness is h~0.06mm, inclination angle o = 60°,
and the fluid parameters correspond to water, which yields § ~ 0.037, { = 0.25,
B; ~ 3.25 and R = 0.6. The initial condition is F = f; 4+ 2/ cosh((z — 50)/5),
@ = gs = 1. Although R is larger than the critical Reynolds number over flat
bottom, which is R,y & 0.48, the stationary solution is stable and the perturbation
decays in the self-similar way predicted by . (a) shows F' at times as indicated,
while (b) shows the evolution of (. In the latter we directly see the envelope

t=V2f, (t7Y%(x + c1t)) since ®3(0,-) = 1, while ®1(0,z) = ggs (x) is y-periodic.

s

To illustrate the physical situation, panel (c¢) shows the bottom contour and the free
surface at initial time ¢ = 1 in dimensional (mm) cartesian coordinates, between
the 4™ and 6 bottom wave. Finally, panel (d) shows Q (for large time) after we
increased a to 90°. Here (fs, qs)—r has become unstable: the perturbation does not
decay to 0, but instead evolves into a long pulse. We expect that this situation can
be described by a generalized KS equation, see, e.g., [7, [I5] for the situation over
flat bottoms, and [22] for a model problem for wavy bottoms.
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(a) Decay of the film thickness F’ (b) Decay of the flow rate
Q(t,x)

0 50 100 150 200 0 50 100 150 200
(c) Bottom profile and free surface in (d) Evolution to a long pulse
Cartesian coordinates (mm), ¢ = 1 in the unstable case, Q(t, )
" surface
bottom -~

1
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FIGURE 2. Numerical simulations of (1.1}, (1.2)

The plan of this article is as follows. First we make precise the assumptions
on spectral stability of (fs,qs)', review basics of the RG method and of Bloch
transform, and formally derive the Burgers equation from (|1.1)), (1.2). Then, using

.

maximal regularity results we first prove local existence for | ) and then use
the RG method to prove Theorem The RG method is worked out here for the
first time for a realistic quasilinear fluid dynamical system with spatially periodic
coeflicients in which the renormalized solution converges to a non-Gaussian limit.
We expect that the analysis is useful for a number of similar problems, for instance
the full Navier-Stokes film flow problem over wavy bottom, and other parabolic
systems with spatially periodic coefficients and a nonlinearity with lowest order
terms of convective type.

2. BACKGROUND AND RESULT

2.1. Stationary solutions. From (|1.1)), for y-periodic stationary solutions
(F,Q)T = (fs,qs)T, we immediately obtain that d,qs = 0. Plugging 9;qs = 0,qs =
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0 into (1.2)) and multiplying it by f2, we obtain

5 [sin(a—0) .. cos(a—0 3 sin(a—6
021{(().]03(]9() Tfefg ()xef;l)
sin o sin o sin «
5 3 3,9 9 1 (45 2 2
+ éw(amfé - 8I"<’)fs + ?qs 61f6 + E 16KQ6f6+4Q6(8 fé) GQ.S 0 f.s f&

(2.1)
If the bottom waviness ( is zero, the coefficients x and 6 vanish and we have the
well known Nusselt solution f; = fn W1th constant film thickness fy = ¢s 13 . Thus,
one possibility to obtain solutions of (2.1) is to continue (fy,qs) for ¢ > 0 using
the implicit function theorem. Since z is measured in curvilinear coordinates, the
periodicity v of x depends on the bottom waviness (, and in order to apply the
implicit function theorem in a function space with fixed periodicity we temporarily
replace x by kox, where we set kg = 27 /~. This yields

0= % (singa—Q) £ g cos.(oz—H) ko fo 7 — 35111(04 9) ko, 9f4)
sin « sin si
+ %W(kgaffs - /ﬂoaxfﬁ)ff + %kofﬁ Oz fs (2.2)

R

To solve this equation we fix the parameters «,d, R, W and the flow rate ¢s. For
¢ > 0, we write as S(fs,() = 0. Assuming that the bottom contour is in
Hp..(0,2m) with s > 3, we obtain 0,k € H3.3(0,27), and thus,

1 /45
+ = (IGKQSfS+4kOqS(8 fs) _GkQQS ans fs) .

per
S € C (H o (0,2m) x U, H3 (0, 27))
with U C R{. For Ag := 0;S(fn,0), H,(0,27) — H;Cf’(O 27) we have

15 9 5
Ao = g™+ (a2 = o cot@) o) o, — QIS + ShWa.E,
and the eigenfunctions of this constant coefficient linear differential operator are
e'** k€ Z. The real part of the eigenvalue wy, is given by
15 6
Rewg = ool + ki) * k%

, the spectrum is bounded away from zero. Therefore, Ay is an isomorphism
between H;..(0,27) and H3?(0,2m), and the implicit function theorem yields that
for each ¢ small enough the equation S(fs,¢) = 0 has a unique solution f({) €

H;..(0,27m) which depends continuously on ¢. Altogether, for each constant flow
rate gs > 0 and for small bottom waviness ¢ there exists a unique stationary solution

of the IBL (T.1), (T.2).

Remark 2.1. The implicit function theorem yields the existence of fs for small
values of (. This can be extended until a bifurcation occurs, but it is not clear
for which parameters the stationary solution fs for fixed ¢, is unique. However,
numerically this was the case in our simulations in [I2] up to moderate R much
larger than the critical Reynolds number, beyond which the branch of Nusselt-like
solutions becomes unstable. Thus, it is mainly this branch that we have in mind
here. However, we shall prove a general nonlinear stability result for all spectrally
stable (fs,gs). Thus, instead of discussing the existence and spectral properties of
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stationary solutions in more detail, we simply postulate the pertinent properties in
Assumptions [2.2] and 2.3

Assumption 2.2. For fixed o, R, W > 0 and x € H3.,2(0,7),s > 3, the IBL (1.1)),

per

(T.2) has a family of y-periodic stationary solutions (fs,qs)" with
fs € per( 7)7 qs = const., (23)

which can be parametrized by the flow rate gs € (¢s min, gs,max), Where ¢s min,max
may depend on the branch considered.

2.2. Perturbation of stationary solutions. Let (fs,qs)" be a fixed stationary
solution of the IBL (T.1]), (T.2). Then the perturbation (f,q)" := (F — fs,Q —qs)"

satisfies
1

O f = —maxq

(2.4)

and

5 (sin(a—@)

_f2 2 .
8tq - f+ fs Q+2fSQSf+qu COS(O[ 9)

sin o F2(fs+1)?  sina
=N p 0afud ) WSO+ DWR .+ 02— 0um) S

8 sina
17 g5+ ¢ 9 (gs +q)* 92f2qsq 22 f + fiq® — 2 f?
f2(fs+[)?

A R
5 (200 fs Ou f + (02f)?)
fsqa—asf

45  fsq — L qs+q
(fs +)fs

(Oufs fHTs Ouf+0uf f)

a0 S+ Ou fs

oo f

P — 2 —_—

* R( T f)fq Fot 1)2

f2 2fstf_QSf2 QS+q
T e ey

) - e o o

The denominators in (2.5)) are bounded from below since F is of order 1, cf. Remark
The linearization of (2.4), (2.5) around (f,q)" = 0 reads

f 0 — 0, f
0 = . - _ LA I+nfs , 2.6
’ (q a1o + @110, + @120% 4+ a1303  aso + a0 0y + a220? q (26)

with the y-periodic coefficients

(a0t o0y g Sy )

+4 Orf — 67— 0L fs

0= 5R sin a 13 sin « 4 sina
B (3 180:fsqi 45 qs o1 (0ufs)®as 1 02fsqs
+ 6W(83:fs Oz k) 7 f53 16Rnf52 8R fs?’ 6R f2 ,
(2.7)
_ 51 cos(a — 6) 9 ¢2 10:fsqs lgs 5
= a5 .  Js === 8= ) :_6773 =-W EX)
METOR sma TR AR e o M2= Ogys G =W
(2.8)
5 1 180ufsqs 45 1 1(9uf)2 192,
-2, 20 s 4 6= 2.9
w=wmptT g Tw'rn 'R g mnc Y
17 g5 9 O.fs 9
g = T8 9 %fs 9 (2.10)
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By the transformation
1
H = F + JkF? (2.11)

the nonlinear equation (1.1)) becomes linear, namely 0;H = —9,Q. The transfor-
mation (2.11)) is one-to-one if the film thickness F' is of order 1, and we can express

F by H as
—1+v1+2xkH
K

F= =H - %I{HQ +O(H?). (2.12)

The family of stationary solutions (fs,qs)" from Assumption is transformed
into (hs,qs) ", where hy = fs + %/ﬁfg Setting h := H — h, we obtain

-1+ v1+2cH B —1+ 1+ 2khg
K

K

f:Fffs:

% (\/1 ¥ 26(hs + h) — 1+ 2/{hs)

2.13)
1 K (
= h— —h*+ O(h?
A omh) 2" 2 2enygarz +OW)
1 K
— h— h? + O(h?),
14+ kfs 2(14’“.]05)3 - ( )
while the inverse transformation is given by
1
h=(+rf)f+5af* (2.14)

For the time derivative of the perturbation’s total mass

fs+f
M:/R/s (l—i—ffz)dzdx:/Rf(l—kli(fs—kfﬂ))dx (2.15)

we obtain

Thus, the total mass of perturbatlons is conserved. ThlS simply reads <& 3 fR hdz =
0, and the IBL . . is equivalent to solving 6th = —0,q together with .,
where f must be replaced everywhere according to . For the linear terms we
write in short

h 0 _a:v h
A(aa:) ((]) T (a10 +a118 + a1282 + (11383 a0 +a218 + CL2282> < ) s (217)

where a1g = @108+a110,:8+a1202+a13030, a1 = a118+2a120,843a130203, a12 =
G128 + 3a130,0, a1z = a3/, with g(z) := W Since all fractions in
are finite for small perturbations with ||f||z= < || fs]|L=/2, they can be expanded
in powers of f, and thus, in powers of h. Hence we can write the transformed IBL

0, (Z) — A0, (Z) + N(h,q), (2.18)

where N contains the nonlinear terms. The first component of N Vanishes since the
equation for 9;h is linear. We look for a solution (h,q) " of (2.18)) with (h(t),q(t))T €
H"(2)x H™=1(2) for fixed t and r > 3 in order to avoid Sobolev spaces Wlth negatlve
orders. Due to the weight we will achieve C'-regularity with respect to the wave
number ¢ in Bloch space, which is necessary to expand the critical mode in terms

of ¢ in Section 4.3
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2.3. Bloch transform. Considering a bottom with fixed wavelength v and setting
ko := 2w/, we define for v € H"(m) the Bloch transform Jv as

Jo(l,z) = 5(0,x) = 7% (koj + £). (2.19)
JEL
From (2.19) we have that Jv(¢,x +v) = Jv({,x), and that Bloch transform is

an isomorphism between the weighted Sobolev space H"(m) and the Bloch space
B(m,r) defined by

B(m,r) = H™((—ko/2, ko/2), pcr(o 7)),
1ol B(m.ry = Z/ 18356, )13 s, )dg) 2’ (2.20)

]<m

where I5 := (—0/2,6/2). The inverse Bloch transform is given by
v(z) = / e Ju(e, x) de. (2.21)
Iig

We collect some useful properties of Bloch transform. For a real-valued function v,
we have

Ju(—t,x) = Jv(l,x). (2.22)
If a : R — R is 7-periodic, then
J(av)(4, x) = a(z)Tv(¢, x). (2.23)

Thus, Bloch transform is invariant under multiplication with y-periodic coefficients.
So far, functions in Bloch space are only defined for ¢ € (—ko/2,ko/2]. In order
to transform products uv with u,v € H"(m) we extend the domain of v € B(r,m)

corresponding to (2.19); i.e.,
f)([-l,- kO,-T) = Zeijkox@(k,oj Ny k/’O) — o~ ko Zeijkoa:ﬁ(k,oj + g) — e—ikoxﬂ(€7 LL‘)
jez JEZ
Then, multiplication in xz-space corresponds to convolution in Bloch space; i.e.,
k0/2

T ()t z) = / Tull — by 2)Tolk,z) dk = (Tus Jo)(6a).  (2.24)

—ko/2
Therefore we adapt the definition of B(m,r) in (2.20) to

Blm,r) i= {7 9,;, € H™ (Tys Hper(0,7)) and 50 + ko, @) = < *075(¢,2) }.
(2.25)
The notation *; in becomes clear in , where we define a more general
convolution operator. If there is no ambiguity we omit the subscript in the fol-
lowing and write Ju * Jv. Due to the extension in convolution becomes
commutative. From we obtain

k0/2
Ozv(z) = / (9, + i) T (L, ) d; (2.26)

7]60/2

i.e., d; in z-space corresponds to the operator (0 + i) in Bloch space. Thus,
settmg h:= Jh and q := Jq the IBL (| is equivalent to

Oy (Z) A(0y +10) <;) + N(h,q) (2.27)
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in Bloch space, where

N(h,q) = IN(T"h, T ). (2.28)
Since Bloch transform is an ibomorphism between H"(2) and B(2,r), we look for
a solution (h,§)" of (2:27) with ( q(t))" € B(2,7) x B(2,r — 1) for fixed t and

r>3.

2.4. Spectral situation and mode filters. Spectral situation.

By the family of stationary solutions (fs,qs) from Assumption is
transformed into a family of stationary solutions (hs,qs) " of the IBL for (H,Q)T,
which we write in short as

H G (H, Q)>
0 =G(H,Q) = . 2.29
(o) —otm = (g d (2:29)
Since the ~-periodic stationary solutions are parametrized by the z-independent

flow rates g5, we have
G(hs(gs);qs) =0 for all g5 € (¢s,min> ¢s,max)> (2.30)

and differentiating with respect to g5 gives

0G1 9G1 dhg
o d g(hs(qs),qs)< 7+ (hs(qs); ) ﬁ(h 5(s), qs)> ( 1(q‘s)>. (231)

dgs L (hs(gs), qs) (h (s),4s)

The linear differential operator on the right-hand side of also occurs in
the linearization of the IBL around a stationary solution: Choosing in
the following ¢, fixed, the perturbation (h,q)" = (H — h,,Q — q;)' satisfies
0¢(h,q) T = G(hs + h,qs + q). Thus, the linearization around (h,q)" = 0 reads

h oG <h>
0 = ——(hs,qs , 2.32
(3) B(H,Q)( w (! (2.32)
which we have already exprebbed in with the help of the differential operator

A(0y). Therefore, combining ([2.31] and gives
A(,) (dqsl(qs)) — 0 for all g, € (0, go ). (2.33)

Transferring the IBL to Bloch space, we know from that the linear opera-
tor in the evolution equation for (h,q)" is given by A(d, + if). Corresponding to
(233), (dhs/dgs, 1)T € H5, (0,7) X H3o*(0,7) is an eigenfunction of A(d; +if) to
the eigenvalue A\;(0) = 0 for £ = 0. Thus, in Bloch space the linearization of the
IBL around a stationary solution has always a zero eigenvalue. This property corre-
sponds to the free surface in the underlying physical problem. Furthermore, for fixed
¢ € (—ko/2,ko/2) the differential operator A(d, + if) : H3,,(0,7) x ngrl 0,7) —
H5.2(0,7) x H553(0,7) is elliptic, and thus we obtain countable many curves of
eigenvalues A, with Re \,,(¢) — —oo for n — oo. Like for the stationary solutions,
instead of calculating the spectrum of A(9, + i), we state an assumption based on

the properties derived above. A typical spectrum is then sketched in Figure

Assumption 2.3 (Spectral stability). Let s be the bottom regularity from As-
sumptlon We assume that A(9, +i-) with A(9,+if) : HS,.(0,7)x H31(0,) —

(
per per
H322(0,v)x H5.,3(0,7) has countable many curves of eigenvalues \,, : (—ko/2, ko/2)

per per
— C, n €N, with eigenfunctions £ — ¢" (¢, ) € H5,.(0,7) x H3'(0,7) and

per

(1) )\1(1€) =1l — 62£2 + O(ﬁ?’) with ¢, € R, Recy > 0,
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(ii) ReAi(€) < —col? for |¢| < 4r, and a éa < ca,
(i) Re A1 (¢) < —og < 0 for ¢ > 4r,, and Re A1 (¢) > —oyq for |£| < 4ry,
(iv) ReAp(f) < —ag for alln > 2, £ € (—ko/2,ko/2).

X A
/_1 j
k
Re A, Ty 27y dry, G £
—0p
rest of spectrum

FIGURE 3. Sketch of the spectral situation and the cut-off function x

Eigenfunctions. The relation between the eigenvalues and eigenvectors of the two

versions of the IBL, namely system (2.4 , ) for ( f7 T and system (2.18) for
(h,q)", is as follovvs. Let us denote the hnearlzed (f,q)-system (2.6) by 9:(f,q)" =

A(0,)(f,q)T. Since h = %f + O(f?), see ([2.17)), we have

a0, (1) - (1{)5 ) (5.

where 8(z) = 1/(14x(x) fs(x)), see (2.17)). Thus, for each eigenvalue \,, of A(9,+if)

we obtain
A" = A(D, +i0)¢" = (léﬁ (1)) A0, +10) (ﬂgf,’;) :

B80T\ _ aco. 1 ip (B9
)\n<¢g>A(6‘z+€)(¢g>.

Therefore, in Bloch space the two systems for (f,q)" and (h,q)" have exactly the
same eigenvalues, where the eigenvectors of the (f, g)-system are given by

ie.,

o = <§ O) . (2.34)
In particular, the critical eigenfunctions read
dfe 1 dhy dfs
ot = () vow. e = (TR ) = () con. 2

This property is used in the proof of Theorem where the universal decay be-
havior for the (h, ¢)-system is transferred back to the original (f, ¢)-system.

Since the IBL in Bloch space has a zero eigenvalue, we have to split (l~z, q’
into its stable part and into a multiple of the critical eigenvector ¢'. On the linear
level, the critical curve A\ (£) = ¢1il — ca0? + O(£2) for the mode ¢! (¢, -) corresponds
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to Ov = (c10; + c20%)v, which is the linear diffusion equation in the comoving
frame y = x 4+ c1t. However, going into this comoving frame in leads to a
time dependent differential operator, which would make the subsequent analysis
more complicated. Therefore, we introduce the rotated variable w by

B(t, 0, ) = (g;) (1,6, 2) = o1t (’;) (t,0,), (2.36)

which satisfies
oub(t, 0, x) = A(O)w(t, L, x) + N(w)(t, L, x) (2.37)
with
A(l) := —c1il + A9, + i)

_ —c1il — (05 +1i4)
- a10+a11(6x+ie)+a12(8m+i£)2+a13(8m+i£)3 (a207c1i6)+a21(8m+i£)+a22(81+il)2 :

(2.38)
The nonlinearity N is exactly the same as for the (h,§)-system in (2.27) since

(0; x 05)(€) = ff%% W; (0 — k)ecti=Rtp, (k)erikt dk = el (w; x ;) (£) for § :=
e and i, € {1,2}. Clearly, A has the same eigenfunctions ¢™ as A(9, + if)
with eigenvalues u,,(¢) = A\, (€) — ¢1i€ . In particular, for the critical eigenvalue we
obtain

p1(l) = —col® + O(63). (2.39)

Mode filters. We introduce mode filters to extract the critical mode ¢'. Let
X : R — [0,1] be a smooth cut-off function with x(¢) =1 for |¢| < r, and x(¢) =0
for |¢| > 2r,, see Figure 3] Due to Assumption [2.3|the curve of critical eigenvalues
1 is isolated from the rest of the spectrum for |¢| < 4r,. Thus, denoting the scalar
product in L2(0,7) by (-,-); i.e.,

.
(u, v) :z/ u-vdx,

0

W

where the “” stands for the standard scalar product in R?, we can define the critical
mode filter E. by

(Be)(6,2) = X(O)((¢, ), 01 (€, )" (€, 2). (2.40)

Here ' (¢,-) is an eigenfunction of the L?(0, v)-adjoint operator A*(£) to the eigen-
value Jiy(£). The L?(0,~)-adjoint operator of a differential operator L = a(z)(d, +
if) with a y-periodic coefficient a is given by L*v = —(9, + if)(av). Thus, for the
critical eigenfunction we obtain 1! (0,z) = (cp,0)T; i.e.,

v = () + 000, (2.41)

and we choose 1! such that (¢p'(¢,-),9'(¢,)) = 1 for all £ € (—4r,,4ry). Addi-
tionally to E., we define the scalar mode filter E and the stable mode filter E;
by

(EXw)(€) := x(O)(w(L, ), (L,-)), Es:=Id—E,. (2.42)
Moreover, we define auxiliary mode filters

(Egw)(t,x) = x(£/2)(@(¢,-), " (£,)¢' (¢,2),  EL :=1d—E} (2.43)
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such that E'E, = E, and EfEi — E,, which is used to substitute for missing
projection properties of E. and Es. Setting a(t, () := (E;w(t))(¢), ws(t,{,x) =
(Esw(t)) (¢, x), we obtain the splitting

Wt lx) = a(t, ) (0, x) + wy(t, £, ) (2.44)

into the critical mode &¢' and the stable component w,.

Remark 2.4. The idea of this splitting is that due to the spectral properties of
EMA(0), w, is linearly exponentially damped. Thus, we expect the dynamics of
(2.37) to be governed by the dynamics of the critical mode ag®.

Altogether, after applying mode filters, the IBL in Bloch space reads

Dralt,0) = p(Oa(t,0) + Bo(a(0)(0) + Ho(a(), m,(0)(0),  (245)
Dy (1, 0,2) = A, (0)ib,(t, 0, ) + HL(G(t), B (1)) (£, ), (2.46)
where
Be(a)(0) := idex(€)(a?)(¢), (2.47)
Ho(@, ) (0) 1= B (N(@o! +,)) (€) — idex(0)a™(0), (2.48)
Ay(0)i= BRA(0), (@, @,)(6) = B, (N(@' +,)) (Go),  (2.49)

with d specified subsequently in . Below we will see that cubic terms as well
as those involving w, are asymptotically irrelevant. Thus, the only dangerous terms
are the quadratic ones in N(a¢!), which are not damped by the decay of w,. In
the formal derivation in §2.6) we will see that these terms have the “derivative-like”
structure id¢x(¢)a*? with d € R, which leads to a Burgers-like decay. There also
occur terms of the order of (’)(52) *2_ but as they turn out to be irrelevant due to
the additional factor ¢, we put them mto H, and denote by B, the term id¢x(£)a*2,
which is the only relevant one.

Function spaces. It remains to choose appropriate function spaces for & and w;.
For fixed t we have (h,q)" € H"(2)x H"~1(2) if and only if @ € B(2,7)x B(2,7—1);
i.e., both a¢! and ws € B(2,7r) x B(2,r — 1).

Thus, in a first step we assume that a¢! € B(2,7) x B(2,7 — 1). In the fol-
lowing let the bottom profile be at least in H'.(0,7), such that due to Assump-

per

tion we have ¢'(¢) € H', (0,7) x H";,1(0,7) for fixed ¢. Since the critical

per per
eigenvalue p;(¢) is isolated from the rest of the spectrum for |¢| < 4r,, the eigen-
function ¢' is smooth with respect to £ in this interval. In particular, we have
¢' € H?((—2ry,2ry), H>..(0,7) x H'1(0,7)). Since the same is true for the ad-

per per
joint eigenfunction 1!, the definition of the critical mode filter in ([2.42)) leads to
& € H*(R), suppd € [-2r,,2r]. (2.50)

Next, we conversely assume that & € H%(R) with supp & € [—2r,,2r,], and s €
B(2,7) x B(2,r —1). It immediately follows that a¢' is in H?(Iy,, H}.(0,7) X
H"21(0,7)), but not in B(2,7) x B(2,r — 1) since the extension property from

(2.25)) is missing, which is required to calculate convolutions. However, since & has
compact support, this is not needed. On the one hand, in convolutions like

ko/2 k0/2
/ G0 — B)6M (€ — k)o(k) dk — / (R)5(C — k) dk,
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with o € B(2,r) x B(2,r — 1), we can use the extension property of ¢ such that
a¢! must only be evaluated for ¢ € I,. On the other hand, for convolutions

ko/2 27y
/ a(l —k)o* (L — k)a(k)p' (k) dk = / a(l — k) (0 — k)a(k)o (k) dk
—ko/2 —2ry
we have to extend a¢! to || < ko/2+2r, by (apt)({+ko) = e 0% (agt)(¢). Thus,
agl is extended with values of (agt)(¢), £ € (—1/2,—-1/2+2r,J U (1/2 —2r,,1/2],
where @ and hence a¢! is zero. Thus, there is no difference if we extend a¢!
according to the extension rule in or if we use & € H?(R) with compact
support. If necessary, we must replace r, in Assumption @ by a smaller value
depending on the final degree of the nonlinearity since each convolution enlarges

the support of (a¢!)*/. Altogether, we obtain the equivalence
W € B(2,7)xB(2,7r — 1) & &€ H*(R), suppa € [—2ry,27y], (2.51)
and ws € B(2,r)xB(2,r —1). '

Moreover, since & is independent of z we obtain

ko/Q .
lalben =3 [ 10aOI, d
j<2v—ko/2
ko/Q .
=Y [ ejar ae=Plale,,,
j<2/~ko/2 ’

for all » > 0. Therefore, and since it does not matter how & is extended to [£] > ko /2,
& € H?(R) in ([2.51)) can be substituted by & € B(2,r). Thus, we look for a solution
(&, ;) of 2.46 with &(t) € B(2,r) and w(t) € B(2,7) x B(2,r — 1) for
fixed t and r > 3.

2.5. Self-similar decay in the viscous Burgers equation. The idea behind
the splitting of w into & and w; is that & will fulfill a perturbed Burgers equation
while w is linearly exponentially damped. Here we collect some basic facts about
the dynamics of the Burgers equation, mainly from [5], see also [20, 21I] for more
details.
By the Cole-Hopf transformation 7(t,£) = exp (% f_\{fﬁ v(t, x)dx), the viscous
Burgers equation
O = 2020+ d0,(v?), T €R, t >0 (2.52)

is transformed into the linear diffusion equation 0;n = 3277. The inverse transfor-

mation is given by
V2 Oen(t,x/\/c2)
v(t,x) = Y———""L"2,
d  n(t,z/\/c2)
By construction, we have limg_, o 7(t,§) = 1forall t > 0. Setting lim¢_.o 1(0,&) =
1 + z for the initial condition, it is well known that

. 2 T,
n(t, &) =1+ %(1—|—erf (QL\/E)) with erf(z) = ﬁ/o e Vdy

is an exact solution of the linear diffusion equation. Thus, for every z > —1 there
exists a self-similar solution of the Burgers equation ([2.52)) given by

v, (t,z) =t~ V2 L (7Y %) with f.(y) = %4 n 2; Eiffyeiiiﬁ)\)/@)))’ (2.53)
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where In(z 4+ 1) = % Jg v=(t, z)dz.
Moreover, if we consider an arbitrary initial condition 17| +—o = Mo € L with the
boundary conditions lime_,_ o 10(§) = 1 and lime_,oo 70(§) = 1 + 2, the solution

can be written as
1

") = = /R o/

If we assume that 1y decays sufficiently fast to 1 for £ — o0, we have g := O¢no €
L', and ¢ := O¢n satisfies the linear diffusion equation with the localized initial

condition ¢(0,€) = ¢o(€). Then supees lo(t &) — //t po(0)e€/U0| < O,
which, by integration with respect to &, yields

z S
?elg |77(t,§) —-1- 5(1 + erf (Tx/i

Therefore, the renormalized solution of the Burgers equation (2.52) with initial
condition v|t=0 = vy € L' satisfies

)| <

sup [tY20(t, t1/%z) — f.(z)| < Ct™Y/2, (2.54)
z€R
where In(2+1) = % Jg vo(x)dz. Thus, solutions of the Burgers equation to localized
initial conditions converge to a non-Gaussian profile, see Fig. [I} This behaviour is

stable under suitable perturbations of the Burgers equation, cf., e.g., [21, Theorem
1.5].

Lemma 2.5. Let p € (0,1/2) and h(v,0,v,02v) = v91(9,v)%(0%v)% with d), =
1+ 2g2 +3g3 > 3, qj € No, and g3 < 1. Then there exist C1,Cy > 0 such that the
following holds. If ||vo|| g2y < C1, then the perturbed Burgers equation

O = 2020 + dB,(v?) + h(v, Opv, O2v)

with co > 0, d # 0 has a unique solution v with v’f:l =wvg. For az > —1 it satisfies

H\/iv(t? \/ix) - fz(x)||H2(2) < 02t71/2+p (2.55)
for allt > 1, where f, is the non—Gaussian profile from (2.53]).

In particular, nonlinearities h with degree d;, > 3, or more general nonlineari-
ties (not necessarily monomials) such that (2.55) holds, are called asymptotically
irrelevant.

2.6. Derivation of the Burgers equation. Splitting of the nonlinearity. To
distinguish relevant from asymptotically irrelevant terms we split the nonlinearity
N from into N = B + G, where the second component of B(h,q) contains
all quadratic terms without a factor d,q. The terms in B turn out to have a
“derivative-like” structure and hence lead to a Burgers-like decay, see Remark [2.6]
below. For all other terms, which we collect in G(h, q), we later show that they are
irrelevant. By construction,

B(h,q) = (32((])% q)>

0
- (b00h2+b01h Oz h+bozh 82 h+bosh 03 h-+b11(0zh)>+b1hq+badsh g+bsd2h q+b4q2) ’
(2.56)
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where again all coefficients are y-periodic in  and depend on the stationary solution
(hs, s)-

Since the equation for d;h is linear, also in G(h, ¢) the first component vanishes.
The terms in the second component of G can be characterized as follows:

(i) Terms in Bo(h,q), multiplied by A7, j > 1.

(i) (9:9)*, b7 8pqq, W Dpq, W9 9,h 8,q with j > 0.

(iii) (0.q)%q, b’ Ozhq?, b/ (0,.h)*q with j > 0.
The terms in (i) are due to the expansions 1/(fs + f) = 2,50 cjff and f =
Zj>1 G h7. They are at least cubic and contain the quasilinear terms h’/ 92h, j > 2.
The terms in (ii) are the quadratic ones in which contain a factor d,q. Except
of the first one, they also occur multiplied by powers of h due to the denominator
1/(fs + f). Finally, the terms in (iii) originate from the terms in having a
cubic numerator. Altogether, we can write the IBL for (h,q)" as

0, (Z) — A0, (Z) + B(h,q) + G(h,q). (2.57)

Setting B(h,q) = JB(Jth,J1q) and G(h,§) = JG(J *h, J1§), this corre-
sponds to

O (t, 6, x) = A(0)w(t, 0, z) + B(w)(t, £, x) + G(D)(t, ¢, x) (2.58)
in Bloch space, cf. (2.37).

Remark 2.6. Heuristically, the reason for splitting the nonlinearity into B and G
is the following. To project the nonlinearity N onto the critical eigenfunction we
take the scalar product of N (¢, ) with the eigenvector of the adjoint linear operator
A*(£,-), which, by ([2-41), reads ¥ (£) = (co,0) " + O(¢). Thus, since the equation
for O:h is linear, the critical component of the nonlinearity obtains an additional
factor ¢ in Bloch space, which increases its degree by 1. This is the reason why
terms like A2 turn out to have the same degree as the nonlinearity 9,(v?) in the
Burgers equation. As the IBL has non-constant coefficients, a d, in z-space, which
corresponds to (9, +1¢) in Bloch space, does not automatically increase the degree.
Therefore, also terms like h 92h, which at first view appear to be irrelevant, make
an contribution to the relevant terms. On the other hand, since the g-component of
the critical eigenvector ¢! is independent of x at wave number ¢ = 0, a factor J,q
leads to a further factor ¢ after projecting it onto the critical eigenvector, and thus
to an asymptotically irrelevant term. That is why quadratic terms with a factor
0.q are assigned to G. These considerations are made rigorous in

Formal derivation of the Burgers equation. Following Remarks[2.4and [2.6]we
formally derive the Burgers equation for & by ignoring w; as well as the nonlinearity
G. Thus, setting @ = (w1, w2)" = ag¢!, (2.45) becomes

Opir(t, £) = pa(O)a(t, 0) + EX(B(a(t)g"))(0). (2.59)

Since the equation for 9;h is linear, the nonlinearity reads

B2 (Blag")(t) = x(0 / " Bo(aoh) (6, x) B (. z) da,
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where yields
Bo () = bootw}? + borthy * [(8, + i0)w1] + boothy * (e + 10)%10]
+ bozthy * [(9 + 10)3101] + b11[(8s + 1)1 + byaiy * o (2.60)
+ ba[(Dy + 1)t ] x Wo + bs[(Dy + €)% 1] * Wy + babs>.
We study in detail only the first term of By (1) and show afterwards that all other

terms can be treated the same way. We have

/7 boo (ac)u?f(@, x)q/_zé (¢, z)dx
0

~ ko/2 _
- / boo(x) / G0~ )OIl — by x)a(K) 6Lk, ) dk G3(4, 7) da

—ko/2

ko2 , ) (2.61)
- / a(0 — k)a(k) / boo(2) S (€ — &, 2)} (k, 2) G4 (€, ) da dk

—ko/2 0
= /k0/2 &l — k)a(k)K (0, ¢ — k, k) dk.

—k?o/2

Before we expand the kernel K (¢,¢ — k,k) in terms of ¢, we state the following
useful properties.

Lemma 2.7. The adjoint eigenfunction ! satisfies 13 (0,2) = 0 and 9pp3(0,z) €
iR.

Proof. The first property immediately follows from . Differentiating the eigen-
value equation A*(€)y' (¢, z) = jiy1 (€)' (¢, x) with respect to ¢ gives
DA (O (4 2) + A (00 (4 x) = e ()% (€, 2) + (I (¢, ),
i.e., from the locally parabolic shape of ji; () = —ca2f? + O(£3) it follows that
9y A*(0)3" (0, 2) + A*(0)9y)* (0, z) = 0.
Since 9y A*(0)91(0,2) = (icocr,ic) ", cf. ([2:38), we obtain A*(0)9,4'(0,2) € iR2.

As all coefficients of A*(0) are real, we obtain dy'(0,z) € iR? + ker A*(0)
iR? + Ct1(0, ) and thus 9,93(0,z) € iR.

ol

Returning to (2.61) we can write the integral kernel as
K, 0 —k,k) =0, K(0) + 0. K(0)(£ — k) + 03 K(0)k + O(|¢]* + |¢ — k|* + |k|?),

since K(0) = 0 due to ¥3(0,2) = 0. For the same reason we obtain 9K (0) =
05K (0) = 0, while the first term reads

M K(0)¢ = /’Y boo ()7 (0,2)$1 (0, 2)erhs (0, ) dw £ =: 1K, £ € iR, (2.62)
0

since ¢1(0,z) € R?, see (2.35). Altogether, we have
K(,0—k k) =1K1L+ O(|¢]* + |€ — k> + |k[?). (2.63)

Therefore,

/ " boo (@) @12(€, )0 (0, ) da
0
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ko/2
= / a(l —k)a(k) iK1+ O(J€]? + | — k|* + |k|*)) dk
—ko/2

= iK 0&"2(0) + O(2)a"2(0).

For the remaining terms in By () the same considerations lead to
ko/Q

/0W Bo(agb) (4, z)i (0, x) dz = / all — k)a(k)K (0 — k, k) dk,

—ko/2

where the integral kernel K is given as sum of terms of the type

[ b5l (¢~ k)it 3yl (. 0) 4 0,
Thus, there exists a d € R such that we can write
K0, 0~k k) =idl + O(|0]* + |£ — k|* + |k[?), (2.64)
which yields o
EX(B(agh))(0) = idtx(£)a*? (L) + O(1*)a*? (). (2.65)
Altogether leads to
Oa(t, 0) = —cal?a(t, £) + idbx (0)a*?(t, £) + O(L*)a(t, £) + O(L2)a*?(t, £). (2.66)

Since 0, in z-space corresponds to i in Fourier space and since a derivative increases
the degree of irrelevance by one, this reminds us strongly of an asymptotically
irrelevant perturbation of the Fourier transformed Burgers equation 0,0 = —cok?0+
idk9*2. This formally explains why in the main Theorem the comoving non-
Gaussian profile t /2 f, (t=1/2(x+c,t))®'(0, z) governs the asymptotics of the IBL
at lowest order.

2.7. The result. about the Burgers equation and the formal calculations in
motivate the formulation of the following theorem about nonlinear stability of
stationary solutions of the IBL.

Theorem 2.8. Let p € (0,1/2), 3 < r < 4, and let (fs,qs)" be a spectrally

stable stationary solution of the IBL (L.1)), ; i.€e., Assumption 18 fulfilled.
Then there exist constants Cy,Ca > 0 such that the following holds. If ||ho| g+ (2) +

llqoll r—1(2) < C1, then there exists a unique global solution (h,q) of the transformed

IBL R.18) with (h.q)|,_, = (ho,q0) and
sup (h,q) T =17 Ly (1712 - e1)6! (0,2)| < ot 402 (2.67)
fas

fort € [1,00). Here, zg > —1, f., denotes the non-Gaussian profile from (2.53)),
and ¢*(0,-) = (dhs/dgs, 1) " is an eigenfunction to the critical eigenvalue \;(f) =
c1il — col? + O(£3) from Assumption .

Theorem [2.8] follows from the subsequent Theorem [.2] about nonlinear stability
in rescaled Bloch spaces. To transfer Theorem to the original (F,Q)-system

(1.1), (1.2)) we note that (2.67)) yields sup h? < Ct~'. Since due to (2.13) the
r€ER

transformation for the film thickness reads f = 3h + O(h?), we can write

()T =t 2 L (72 (2 + 1) @10, )]

- ](ﬁ D) (o) = g c1t>>¢1<o,x>)\ Lo,



EJDE-2012/61 SELF-SIMILAR DECAY 19

where ®! is the eigenvector corresponding to the critical eigenvalue \; in the (f, q)-
system, see (2.34). This yields Theorem

3. EXISTENCE OF A LOCAL SOLUTION
For the proof of Theorem we use the RG method [B] for (2.45), (2.46). The

main steps consist in a proof of local existence using maximal regularity methods,
and in a careful estimate of the nonlinear terms. The local existence and uniqueness
of solutions is carried out via resolvent estimates in x-space, while the RG method
is set up in Bloch space.

3.1. Function spaces depending on time and space. In the following, we
always assume that X is a Hilbert space and tg,t; € RU{—00,00}. If not stated
otherwise, H" stands for H"(R).

Definition 3.1. L?((tg,t1), X) denotes the space of (strongly) measurable func-
1/
tions v with values in X such that the norm [|u||2(¢(y,¢1),x) = ( :01 lu(t) |3 dt)
is finite. For m € N we write
H™((to,11), X) = {u | &u € L((to,t1), X) for 0 < j < m},

m . 1/2
el o ) = (30 10l tgy ) -
=0

In the special case (tg,t1) = R and X = H"(R),r € RT we find the equivalent
norm

1/2
iy ~ ([ [ @+ R Fur P arar) ", @)

where F,u denotes the Fourier transform of u with respect to time and space.
Obviously, this definition can be extended to all m € RY.
Lemma 3.2. Let s > 0. Then, we have
(i) ue H*(R,X) & (1+73)2Fu e LR, X).
(ii) H*((to,t1),X) coincides with the space of restrictions to (to,t1) of the el-
ements in H*(R, X). Extension and restriction are both continuous opera-
tors.

For a proof see [I3 p. 58 and Theorem 9.1]. By (i) we see that is an
equivalent norm in H™ (R, H") also for non-integer values of m. The next lemma
shows that the regularity of space and time derivatives is the same as in the scalar
valued case. Here we denote by [s] the integer part of s.

Lemma 3.3. Let u € H*((to,t1), H"), j <[s], | < [r]. Then
oLalu e H* I ((to,t1), H™ ™).
Proof. We assume (to,t1) = R. Then by (3.1) we have

1000l s o gge sy < C / / (L4729 (1 4+ K2 Fra0h 0] (, )2 dr

= O/ /(1 + 725 (L4 ) R 7| Frau(r, k)| dr dk
R JR

< Cllullgs w, a7y
O
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As we will see in Lemma below, for u € H*((tg, ), L?), s > 1/2, there
exist traces 8 u(to,-) € L*(R) for all j € Ny with j < s —1/2. Thus, we can define
the following subspace of H*((tg,00), H").

Definition 3.4.
H§((tg,00), H™) :={u € H*((tg,00), H") | ||07u(tg, -)||z2=0 for j < S—i,jENo}.
By the following lemma these functions can be extended by zero for ¢ < 0.

Lemma 3.5. Let s > 0 be not a half integer, to € R, u € H§((tg,00), H"), and

ot ) = u(t,-) fort > to,
O o fort < to.

Then u — ug is a continuous mapping from HE((tg,00), H") into H*(R, H"); i.e
there exist Cy,Cq > 0 such that
Cullull s ((to,00), 187 < w0l ms @, mry < Callull s ((to,00), 17

For a proof see [13], in particular Theorem 11.4. Next we characterize functions
uw in HE((0,00), H"). Since they can be extended by zero for ¢ < 0 we can apply
Fourier transform in time. The problem is that without making further demands
on the regularity of Fyu we can not guarantee that the inverse Fourier transform
is again in H§. The following two lemmas show conditions based upon the Paley-
Wiener Theorem which ensure that the inverse Fourier transform maps back to
functions vanishing on the negative time axis. As u is only defined for ¢ > 0 and
Fiu must be treated as function on 7 € C it is common to replace Fourier transform
in time by Laplace transform:

Lu(T) :== % /000 u(t)e™ '™ dt. (3.2)

The relation to Fourier transform is

1 .
Lu(r +im,x) = om / up(t,z)e e dt = Fyle” Mug(-, x)](72).
R

Lemma 3.6. Let s > 0 be not a half integer, r > 0. If u € HZ((0,00), H"), then
the Laplace transform Lu satisfies

(i) 7 — Lu(r,z) is holomorphic in the half-plane ReT > 0 for almost every
z eR.

(ii) sup / |Lu(Ty + T, 2)|? Ao < 00 for almost every x € R.
71>0JR

1/2
(111) HUHHS((O,OO),H") ~ (/(1 +T22)S||£’U,(i’7'2, )H%P d’TQ) .

Proof. Since u € H§((0,00), H"), we have u € L*((0,0), L?). Thus

oo
// u(t, z |2dtdx—/ /|u(t7x)|2dxdt<oo
o Jr

which yields fo lu(t,z)|?dt < oo for almost every # € R. Applying the Paley-
Wiener Theorem, see [25] for instance, gives the first property. Now let 71 > 0.
Parseval’s identity implies

/ |£u(7'1 + iTQ,(E)|2dTQ
R
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= [ 1Al o)) P b

< C/ le™ g (t,z)|* dt < C/ 2dt < oo for almost every = € R

independently of 7;. This shows the second property. The third property follows
with the help of Lemma and Lemma 3.2 i.e.,

[ aylcutin, e dr = [ (4 5| P,y dre
R R
~ ”uO”%IS(R,H"‘) ~ ||u||%15((0,oo),H"')'
(]

The following lemma shows that regularity in x is preserved under Laplace trans-
form.

Lemma 3.7. Letr > 0. If u € L*((0,00), H"), then

sup / [[Lu(Ty + iTo, )Hin dry < C||u||%2((0,00)’Hr).

7120 JR

In particular, Lu(T,-) € H" for almost every 7 with Ret > 0.
Proof. Let 7y > 0. Then

/ 1Cu(rs +ir, )% drs = / 1ol (t, )] (o) i
R
<C/|‘e tTl’LL ||H’ dt

e / €2 fu(t, ) 3 dt < Cllula o005
0

independently of 7. O
Lemma has the following inverse.

Lemma 3.8. Let s > 0 be not a half integer, > 0, and assume f: Cx R — C
fulfills the following conditions.

(i) f(7,z) is holomorphic in the half-plane ReT > 0 for almost every x € R.

(ii) sup / |f (1 +i79,2)|? Ao < 00 for almost every x € R.
T1>0JR

(i) /(1 2|1 G, ) 3 dra < o0
Then the inverse Fourier transform g(t,x) fR iTo, x)el' 2 dry satisfies

(iv) 9‘R+xREH0((0,OO),HT) and Lg=f.

Proof. Due to (i) and (ii), for almost every € R we can apply the Paley-Wiener
Theorem and obtain g(t,z) = 0 for t < 0, Lg(7,2z) = f(T,x), see [25], for instance.
It remains to prove that g|R+XR € HE((0,00), H"). Due to Lemma [3.2| we have

1911772 g, 11y < C/R (1 +73) 5 Feg(ra, )l dr = C/R(l +73)°1Lg(irz, )l dr

- 0/<1+r2> 1 (irs ) |4e dry < o0,
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thus g € H*(R, H"). Let 5 € N such that s — j > 1/2. Lemmagives 8,{9 €
H*~I(R,H"), and due to standard Sobolev embedding we have 8/g € C(R, H").
Since g(t,z) = 0 for t < 0 and almost every z € R we achieve ||d? g(0,-)||z2 = 0.
This shows the first property. ([

To prove local existence for the IBL (2.18) we use the following Sobolev spaces.

Definition 3.9. Let H™*((to,t1)) := L?((to,t1), H"(R)) N H*((to,t1), L*(R)), with
norm
t1 ) ) 1/2
el = ( / JeaCt, e+ [l .00).22))
0

Applying (3.1) we can state an equivalent norm for the case (¢g,t1) = R, namely

s

. 1/2
||UHHT,5(R) / / 1 +T 5 (1 +]§2)§)2|ffmu(7’7 k)‘szdk> . (33)

Functions in H™*(R) also belong to “intermediate spaces” with intermediate regu-
larities in time and space

Lemma 3.10. Let r,s > 0, ¢ € (0,1). Then H™*(R) is continuously embedded
into HY$(R, H(1=9)7),

Proof. For u € H™*(R), Lemma [3.2] yields
HUHQH’gS(R,H(l—‘g)r) < C’/ /(1 + 7'2)195(1 + k2)(17ﬁ)r\]—}xu(r, k)| dr dk.
R JR

By Young’s inequality, (1 +72)75(1 4 k2)=7" <914 72)% + (1 —=9)(1 + k?)" we
obtain ||u||fws(R’H<1,mT) < COl|ull? rs (R)" O

Later we need estimates of the H*=®~1/2_norm for fixed times. Lemma .10
particularly yields that H™*(R) is continuously embedded into HY/?(R, H = (s=1/2)),
but by standard Sobolev embedding theory this does not allow any conclusion for
fixed t. However, by interpolation theory the following trace theorem can be shown.

Lemma 3.11. Letu € H"*((to,t1)), 7 > 0, s > 1/2. Then for all integers j < s—1
there exists the trace
j . r 1
du(to,-) € HY (R), p; = ;(s —j— 5)
The mappings H™*((to,t1)) — HP(R) : u — dlu are continuous. Furthermore,
the mapping u — (8gu(t0,~))ogj<s_% from H™((to,t1)) into H0§j<s—% HPi s
surjective.

A proof can be found in [14, Theorem 4.2.1]. For the surjectivity of the trace
operator see [13] Theorem 4.4.2] with X = H",Y = L2. Since the trace operator is
continuous, we have the following corollary, see [I3l Theorem 1.3.1] and the proof
of [I3, Theorem 1.4.2].

Corollary 3.12. Let u € H™*((to,t1)), 7 > 0, s > 1/2. Then there exists a C >0
such that

sup [u(t, )|l gr—1 < C||U|\H"'vs((to,t1))~
tE€[to,t1]
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It turns out, that the IBL is a second-order parabolic evolution system, and
therefore the spaces H™*® always occur with s = r/2 and usually consist of functions
defined only for ¢ > 0. Hence we set

Definition 3.13. K7((to,t,)) := H™2((to,t1)), and
Kg((tmtl)) = {u S KT((toﬂfl)) | \|8§u(t0, ')||L2 =0 fOI"j € Ny with 25 < r — 1}.

Thus we have K{((0,00)) = HO%((O, o), L?) N L?((0,00), H") and with the help
of Lemma [3.6| and Lemma [3.8| we can characterize K ((0,00)) in Fourier space.

Theorem 3.14. Let r >0, (r+1)/2 ¢ N. Then u € K{((0,00)) if and only if the
Laplace transform Lu fulfills

(i) Lu(T,z) is holomorphic in the half-plane ReT > 0 for almost every x € R.

(ii) sup [ |Cu(r +ime,2)|*dm < 0o for almost every x € R.

71>0JR
1/2
i) ([ eutin, s+ et ) ar ) < oo
R
The left-hand side in (iii) defines a norm equivalent to || - || g+ ((0,00))-

Proof. Due to Lemmas [3.6] and [3-8] it remains to show the equivalence of norms.
Since 7/2 is not a half integer we have

el 0000y ~ / |Cu(ir, )3 dr + / (1+72)F | Luli, )| dr.
Now using (1 +72)2 ~ 1+ |7|" yields the result. O

Next, we collect some useful properties of the K"-spaces, concerning derivatives
and nonlinear interaction.

Lemma 3.15. Let r>0 and [, j€N with 142§ < r. If ucK" ((to,t1)) then 8.8/ u €
K172 ((to, 1))

Proof. Applying Lemma with ¢ =1 — % and ¥ = 2, respectively, we obtain
we H = ((to, 1), HY) N HI((to, t1), H"=%). By Lemma [3.3)it follows that 9.0/ u €
H™T =1 ((to, t1), L2) N L2((to, t1), H™~1=27), O

Lemma 3.16. Letr > 3/2, r > s > 0. Ifu € K"((to,t1)) and v € K*((to,t1)),
then wv € K*((to,t1)) and there exists a C > 0 such that

luvllres ((to,60)) < Cllullier((to,e0) 1Vl 55 ((t0,80)) - (3.4)
If ue Kj orv € K§, then wv € K.

A proof of can be found in [II Lemma 5.1] while the second statement
is obvious. We need function spaces with weights in the spatial variable, namely
H*((to,t1), H"(n)) where H"(n) is the weighted Sobolev space introduced in (L.4));
Le., |ullgr(n) = llo"u| mr with o(z) := (1+22)'/2. A natural description equivalent
to Definition [3.1] is given by the following obvious lemma.

Lemma 3.17. Let s,7 > 0, n € N. Then u € H*((tog,t1),H"(n)) < o"u €
H*((to,t1), H).
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Definition 3.18. For r,s,n > 0 let
H"™((to, t1),n) == L*((to, t1), H" (n)) N H*((to, t1), L*(n)),
K" ((to,t1),n) :== H"3((to, t1), n).
Remark 3.19. Due to Lemma[3.17] Theorem [3.14]also holds for u € K§((0, 00),n)

if we replace H" by H"(n) and L? by L?(n) in property (iii). The same is true

for Lemmas [3.5] [3.7] 311} [3:15] [3:16] if we replace the respective Sobolev spaces by
weighted ones.

3.2. Existence of a local solution. Taking into account that the space regularity
of h should be taken higher than that of ¢, we introduce the vector-valued function
spaces

H"(m) := H"(m) x H 1 (m), (3.5)
KT+1((t0,t1),m) = Kr+1((to,t1),m) X KT((to,tl),m). (36)

To prove that spectrally stable stationary solutions of the IBL are nonlinearly stable
we first need local existence in a given time interval (¢g,t1).

Theorem 3.20 (Local existence). Let 3 <r <4 and fix some tg < t1. Then there
exist Cy,Cy > 0 such that the following holds. If (ho,q0)' € H"(2) = H"(2) x
H™1(2) satisfies

p = [(ho,00) "3 (2) < Ch,y
then there exists a unique local solution

(h,q)" € K™ ((to, t1),2) = K" ((to, 11),2) x K" ((to. t1),2)

of IBL ([2.18]) with
”(haq)THIC’“‘*'l((tD,tl)Q) < Cyp (3.7)

and (h,q) " |i=¢, = (ho,qo0)". Moreover, for ty < ty < tyand any m € N we have
(h,q) T € K™™((to,t1),2), and there exists C3 = Cs(tg,m) such that

(7, q) 7|

To prove this theorem we need to apply maximal regularity results based on
Laplace transform. First we solve the linearized problem with inhomogeneous right-
hand side and zero initial condition. This requires resolvent estimates for the linear
operator A. Due to the periodic coefficients, these cannot be shown by applying
Fourier transform in space. Instead, we have to test in z-space with appropriate
test functions. This is carried out in detail in §3:3] The higher regularity in the
time interval [fo,t;] then follows from a bootstrapping argument in i.e., since
yields (h(t),q())T € H"*! for almost every € (to,t1), we can start again at
t = t. This gives (h,q)" € K"*2, and iterating this argument shows .

Krtm((fo,t1),2) < C3p. (3.8)

3.3. Resolvent estimates. The resolvent equation is obtained by Laplace trans-
form with respect to time of the linear inhomogeneous equation (0; — A(0z))u =g
and reads (A — A(0,))u = g with g € H"1 x H"=2 and the linear operator A from

; ie.,

q a1o + a110; + 1202 + 1303 as0 + 210, +a2002) \q) ~ \g2)°

(3.9)
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Theorem 3.21. Let r > 2. Then there exist C,a > 0 such that for all g =
(91,92)7 € H™™' x H"% and all X with Re\ > a the resolvent equation (A —

A(02))(h,q)T = g has a unique solution, which satisfies
1l mss + IR L2+ gl + A2 gl 2 (3.10)
<0 (Il + N2l + lgalars + D 2 galza) .

For the proof we give separate estimates for ¢ and h, and moreover first restrict
tor =2.

Estimates for ¢. From the first equation in (3.9) we obtain

h = ﬂ’ (3.11)
A
and plugging this into the second equation yields
1
(A+ao)q+a10,q+ a202q+ azdiq+ asdyq = g2 + X(alo +a110; + a1202 + a1392)g1.
(3.12)
The v-periodic coefficients are given by

ag = —asg, a1 = —CL21+QT1\O, as = —a22+a7)1\1, az = af)l\z, a4 = L;f)’~ (3.13)

To solve (3.12)) we define on H? x H? the bilinear form
b(a, ) = / (A + a0)ap + a10.q ¢ + 4202 ¢ — dua3 020 ¢ — 43020 02
R
+ 83(14 8§q @+ 20,04 aﬁq Opp + a48§q 8%95) dx.

Using integration by parts, ¢ € H? is a weak solution of (3.12) if and only if

A

for all ¢ € H?. To prove the existence of a unique weak solution we apply the
Lemma of Lax-Milgram. Therefore, we have to show that the bilinear form b is
continuous and elliptic. Since all coefficients of b are in L, the continuity is
obvious. To verify the ellipticity of b we have to estimate b(q, ¢), which reads

b(q,Q)=/(/\+ao)|ql2d$+/a16chidx—/a2|3xq\2dx—/8xa26xqcidw
R R R R

1
b(g, ) = / (gg + —(a10 + a110, + aua;ﬁ + algag)gl)cﬁdx (3.14)
R

—/3;5113 aﬁchdx—/agﬁﬁqaxcjder/aﬁaz;@iqq_dx
R R R
+2/3ma48§q8$zjdz+/a4|8ﬁq|2dx
R R
:/()\+a0)|q|2dx—/a2|8zq\2dx+/a4|8§q|2d:c
R R R
—|—/(a1—8za2) 5‘xq(jdx+/ (8§a4—8za3) agq(jdm
R R

+/(281a4_a3)agqaqux~
R
(3.15)
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We begin with estimating the real part of the first three integrals on the right-hand
side of ([3.15)), related to the H2-norm of ¢, and which for Re A large enough also
absorb the mixed terms. For Re A > ||lagg||~ we have

Re [ (\+ ao)lgl? do > (Re = flaanl) a2 (3.10
R

Since Re(1/A) = Re A/|A|? we obtain from (2.8) —Reas > 55 — %@HQHHLW- For

Re A > (4R/9)|la11|| the second integral in ([3.15)) can be estimated by

9

- Re/ 03]0g[? dz > —=[|9pq]%s. (3.17)

A IR
By (2.8) we obtain ay = %2 = %Hf;fs, and since £ is small we have C; :=

mingejo,,] a13(x) > 0, and therefore Reay > C1 Re A/|A[%. Thus,

Re A

Re/ a4]02¢)? dz > Cy \;|2 02|12 (3.18)
R

Next, we estimate the mixed terms in (3.15)) by applying Young’s inequality ab <
£a? + £b? for € > 0. Looking at we find that in case |A| — oo the
inequalities for [|¢||%., ||0xq||%2, and ||02¢]|?, get worse the more derivatives we have.
Thus, we have to choose € with care such that the mixed terms can be absorbed by
— without losing the positive coefficients. Therefore, we start with the
integral containing the highest derivatives; i.e.,

1
/ (20,04 — a3) 029 0,7 dz| < / 120,01 — as[2[02]% du + / 10,4/ da.
R 2¢ Jgr 2 Jr

Choosing € = 9/(8R), we obtain

1 9 1 4R 9 1
2*6|23xa4 - a3| < W?HQQMB - alQHLoo = CQW,
and thus,
[ 20201 - as) B2 dua0s| < Cor o2l + o 0wl
" @ = AR T T OI6R L
ReX o 9 9 9
< -
= Cl 4|)\|2 Harq”L2 + 16R||a$q“L2

for Re A > 4C3/C. Analogously, for Re A > [|02a13 — Oraia||2 /(Chllazol| L=) =:
C3/C1 we obtain

/ (3%(14 — ﬁzag) d2qqdx
R

Finally, for the fourth integral in (3.15)) we use the inequality

Re A
< Clwﬂaiﬂliz + [lazo || lql3- (3.19)

1
lla1 — Ozaz||ree < || — a21 + Ozaozl|n~ + mHalo — Ozai1| pee

1 9
< || — a21 + Oza22||n> + mﬂalo — Oza11]| > =: 1/ ECZ

for Re X > ||lago||z~. Using again ¢ = 9/(8R) in Young’s inequality, we obtain

_ 1 €
|/R(a1—axa2>8zqqu! < 5cllar=0zaz) < llal 72 + 51102l
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9
< Cullgl: + 1oz 10aallz.
Altogether, we have
01 Re A
Reb(g,q) > (Re A =2z~ — Ca)llql7- + RllaxQIliz MRV 1024ll7> (3.20)
for all A with
4Cy C
Re A > max {2|jazo| = + 04, ||a11||Lw 72 63
1 O

This shows the ellipticity of b; i.e., there exist a,C' > 0 such that for all A with
Re A > a we have

Re A
102417

Re
CRebd(q,q) > (ReA —a/2)|qlZ> + [0 e

Thus, by the Lax-Milgram Lemma, there exists a unique weak solution ¢ € H? of
(3.12)) if Re A > a. Furthermore, from the weak formulation (3.14]) we obtain the

estimate

Re A
2all7e < Cllg2llzellgllzz + O

(Re A—a/2) [ql[2+|0aql 2+ on AP

WQ || lgullzllal s>
To estimate the H2-norm of ¢, we can use Re A — a/2 > a/2. Thus, the coefficient
in front of [|¢||3. can be estimated from below independently of A. However, the
coefficient of [|92g||2. converges to zero for |A\| — oo. Therefore, it is necessary to
test the resolvent equation not only with g itself, but also with §2¢q. However,
since g; is only in H', on the right-hand side of the weak formulation there
occurs the integral fR 0xg91 0%gdw, for instance. This can only be estimated with
the help of ||g|| g4, which is not helpful for estimating ||¢|| 2. Therefore, we split g
into ¢ = qg + ¢, where the two components are supposed to fulfill

1
(AMao)qo + (a18m+a28§+a38§+a43§)q0 = X(a10+a118x+a1283+a138§)91, (3.21)
(Map)q + (a181+a283+a38§+a48§)q~ = go. (3.22)

Since the right-hand side of has a leading factor 1/, it is sufficient to test
with ¢p. In , the right-hand side is in L?, thus it can be tested with 924,
which leads to an estimate of ||¢|| g2 independent of A.

We begin with estimating go. By the considerations above we find a unique weak

solution ¢g of (3.21]) with
Re A Re A
(Re A —a/2)|lqoll72 + 11020172 + Wllaﬁ%lliz < CW”glnHln‘]OHH?

for Re A > a. Since (Re A —a/2)/Re X > 1/2 and since |A\|?/ Re A > ||, we obtain

APllaollzz + IM102g0ll72 + 107401122 < Cligallr llgoll a2 (3.23)
As |A] > a is bounded from below, it follows that
lgoll 2 < Cllgall - (3.24)

In particular, together with (3.23) this leads to [A|?|lqol|2: < Cllg1]lmllgollrz <
Cllgilpn; ie.,
Alllaol|z2 < Cllgillm- (3.25)
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Next, we look for the corresponding estimates for q. Exactly as for gy, by testing
(3.22) with ¢ and taking the real part we obtain

- - Re A B
(ReA = a/2)[|dl|72 + 1024l 7= + 5 e 1024172 < Cllgallz2lldll 2 (3.26)

for Re A > a. Testing (3.22) with 02¢; i.e., b(q,02q) = [, g2 802G dx, and integration
by parts leads to

_ /()\ + a0)|0sil? dz + /(—ag—l—@Iag—aiaZl)Wi(ﬂde + / 04034 dw
A A A (3.27)

—l—/@wao ijaw(idx—/alazijaicjdx—l—/(ag—awa4)05682§dx.
R R R

Since both a3 and a4 have a leading 1/ and since —as > 0 is bounded from below,

can be estimated similarly to - 3.15) by applying Young’s inequality. An
exceptlon is the integral fRé) ag G 0,Gdz, which cannot be absorbed by the first

three integrals, and therefore

- Re X
(Re = /20,2 + 1073 + 13 103112

< Cllgallz2 1024l 22 + C/(ICII2 +10:q*) dz < Cllgal|L2 1074l 2 + Cllgzll 21l 2
R

(3.28)
Here, we used ( in the second estimate. Combining (3.26) and ( - yields
the resolvent ebtlmate

lqll 2 < Cligalz2 (3.29)
for Re A > a.

Remark 3.22. To test (3.22) with 92§ we actually have to test with smooth
functions which are dense in H? and then extend the resulting resolvent estimates
continuously to the respective Sobolev spaces.

Finally, to estimate |A|||G||zz, we also have to estimate the imaginary part of

b(q,q). Using Im(1/X) = —Im A/|A|? we obtain from (3.15) and (3.22)),

/gggdx
R

B Im M\ B Im A\ -
> (1A = ol 1 + Ty / nodf d = T / a3 9241 da

> Imb(q,q)

(3.30)
_ 1 _
+ Im/ (CL] — 5‘xa2) 6m(j(jd1' + Im/ X (650,13 — 8za12) 8gzjddx
R R
1 _
+ Im/ 3 (20,a13 — a12) 92§ 0,q dz.
R

This estimate is less powerful than the one for the real part, since a;; and a3 have
an undefined or even the wrong sign. However, since the coefficients a1, a2, and
a13 have a leading Im(1/)), it allows for Im A > a the inequality

(Im A — a/2)[1]1Z

1 ~ ~ ~ ~ ~
< CW(Ilaquliz +102dl72) + lax — Bwaz| L / 10:q1|q| dz + ‘/ g2qdx
R R
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Im A
< Cr(Iosils + 103l + =5~ [ liar +

Im A 19 2 9
— d — d
o e AR

Irn/\

1 - -
< O (1.l + 102a13:) + 1l + o loale

oyl — 2l [ onif?as

where we used Young’s inequality twice. Thus,

3 2
(3 TmA —a/2)]ldll7: < C— (Haivq”L? +11024ll7) + T lloa1 72

Since (3/4)ImA = ((3/4)Im A —a/2) +a/2 < ((3/4)Im A —a/2) +Im \/2, we have
ImA < 4((3/4)Im A — a/2), and as we have already estimated |G| g2 in (3.29), we
obtain

- - 1
tn Al < O (10:all3s + 102135 + 9212) < O lgall

Considering —Im b(g, §) in (3.30]) gives the same estimate for — Im A instead of Im A.
Thus, for [Im A| > a we have

[Tm Al [|gllz> < Cllgallr2

By (3.26)), the same estimate is true if we replace |[Im A| by Re A, since Re A <
(ReA—a/2)+Re A/2, which implies Re A < 2(Re A—a/2). Altogether, for Re A > a
we obtain

[Alllgllzz < Cllgallre. (3.31)

Combining (3.24), (3.25), (3.29)), and (3.31) yields for ¢ = go + ¢ the resolvent

estimate

Allgliz + llallaz < C(lgrllar + lg2llz2) - (3.32)

Estimates for h. It remains to estimate the L2- and the H3-norm of h. Identity

(3.11)) leads to

1
2]l < o (10zqll2 + llgrllz2) s 19zh]lL2 <

thus, by applying (3.32)) we obtain

1Pllzz + 10zhll L2 < C (lgrllar + llg2ll2) - (3.34)

B |(||82QHL2+||8191”L2), (3.33)

From the second equation in the resolvent equation (3.9) we obtain
algﬁih + a136§h
= —g2 + (A\—a20)q — a210:q — a2202q — a1oh — a110,h

1 1
= —go + (A—a20)q — a210,q — (1223311 + Xalo(axq -g1)+ Xan(aiq — 0201).
(3.35)
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Since all coefficients a;; are real, testing (3.35) with (—92h + 92h) yields for the
left-hand side

Re / (a1202h + a1302h) (—02h + 02h) da
R

:—/al2|a§h|2dx+/a13|a§h\2dx+Re/amaghaghdx
R R R (3.36)

—Re/alg,@gh@iﬁdx
R

=- /]R a12|02h|* dz + /Ra13|6gh\2 dz + Re/R(alg —a13)0*h 93h dz.
Integration by parts leads to
/R(au —a13)02hd3hdr = — /R(axau — 0pay3)|0%h|* do — /R(alg —a13)02h 9%h dz,
and thus,
Re/R(am — a13)8§h 8:;de = —% /R(ﬁxam — 8xa13)|8§h|2dx.

Due to the definitions of aj2,a13 in (2.17)), there exist positive constants Ch, Cy
with mingejo 4] @13 = C1, mingejo 4(—a12) = 2C;. Hence, (3.36) can be estimated
by

Re / (a1202h + a1302h) (—02h + 02h) da
R (3.37)
A 1127 (12 32 1 2712

2 201103 hlz2 + CullOzh|z2 — 5 (10sar2]lzee + |10za13]l o) (|02

On closer inspection of we find that due to the additional x-derivative,
the coefficients Oya12,0,a13 are of the order of O(e), where € is proportional
to the bottom waviness. Hence, without loss of generality we may assume that
2 (190za12]| Lo + [|0zars]|L=) < C1. Then reads

Re/(amaih + a1305h) (—02h + 93h) da > C1||2h]72 + C1l|O3h| 72 (3.38)
R
Thus, testing (3.35) with (—92h + 93h) yields

Ci]|2h]72 + C1(|03R] 122

1 1 1
< ‘/ (7gg—Xaloglfxan@rchr(/\*azo)qu(Xaw*a?l)aﬂfq
R
1

+(X&11—a22)8§q) (—02h 4 92h) dx‘

< C(llgellzz + llgullzr + [Allallzz + llall =) (1077] 22 + 10201 2) |

together with (3.32) we obtain ||02h|z2 + [|03h]|L2 < C (|lg1llgr + [lg2]lz2). Com-
bination with (3.34]) yields

[hllgs < C(lgallm + llg2llr2) (3.39)
and (3.33)) finally implies
AP (Bl 2 < CINY2 (1024l 22 + llgrllc2)- (3.40)
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Since integration by parts gives
_ 1 1
Asalts = =1l [ adbade < ZPRlal: + 310l
we have [A|["?]|0,q]|z2 < C(IMllqllz2 + 934l 2), and (B.40) reads

AP2IR] e < C (N2 gillze + gl + a2 (3.41)

This proves Theorem for r = 2. For r > 3, r € N, the proof works the same way
as above by testing with the respective derivatives of h,q. For non-integer values
of r, the resolvent estimate follows by interpolation theory, see [13], for instance.

Analytic semigroup. With a few additional expenses the proof of Theorem [3.21]
allows to show that the linear operator A is sectorial; i.e., there exists a ¢ € (0,7/2)
such that a slightly modified resolvent estimate can be extended to the sector
Saw :={N| 0 <|arg(a — N\)| < ¥+ 7/2} covering the half-plane Re A > a. Setting
X :=H'= H' x L?, the domain of A is D(A) = H? = H® x H> C X. Moreover,
let g € D(A) and Re N > a. By Theorem there exists a unique solution of the
resolvent equation (N — A)u = ¢, and from (3.32)), it follows the estimate
M
X
for a M > 0 independent of X" and g. It remains to extend this estimate to the sector
Sa,9 by a perturbation argument, which we recall for completeness in the following.
Let A € S, 9 with Re A < a, where ¢ is specified later. Setting A := a + i(Im \)
yields

IV = )7 gllx < 77llallx (3.42)

A—A=N—-A+2-XN=WN-A4) (Id+N -4 ' (A=X)). (3.43)

Choosing ¢ € (0,7/2) small enough we can always ensure that

MNP L
N T |ImA| — M
Hence,
N A TA=N <—M>\ N <1
[(\—=A)" (A= )||$(X,X)_|X|| =N <1,

and the Neumann series

(Id+(\N —A) 1A= N)) ' = Z (N =4 A= N))

converges in .Z (X, X). By (3.43), there exists the inverse

A=A = Id+N — A A =N) TV =) (3.44)
with
C o M M
(A =A) " gllx <OV = A)Hgllx < lelgllx < lelgllx. (3.45)

Lemma 3.23. Let X = H' x L?. Then the operator A : D(A) — X from ([2.17)
is sectorial; i.e., there exist M,a > 0 and ¥ € (0,7/2) such that the sector Sg 9 =
{A0< |arg(a — \)| <9+ 7/2} is part of the resolvent set and
_ M
I = A)gllx < ylolx
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forallAe€ S, and g € X.

Thus, the linear operator A generates an analytic semigroup, see [I], for in-
stance.

Weighted Sobolev spaces. Since we will need some decay rate in x, which cor-
responds to some regularity with respect to the wave number in Bloch space, we
transfer the result of Theorem [3.21] to the case of weighted Sobolev spaces.

Theorem 3.24 (Resolvent estimate in weighted Sobolev spaces). Theorem[3.2]]
also holds for the weighted spaces H"(2); i.e., (3.10) becomes

Hh||HT+1(2) + |)\|(r+1)/2||h\|L2(2) + HQHHT(Q) + |>‘|T/2||QHL2(2)
<C (HQIHHT‘*l(Q) + N2 g1l 222y + g2l mr—2(2) + |)‘|(r72)/2‘|92”L2(2)) :

Proof. In contrast to the proof of , we have to multiply the test functions
by o(z) = (1 4 22)/? before testing. Differentiating the weight leads to additional
terms in the estimates of the weak formulation. However, since derivatives of g are
of lower order, the additional mixed terms can be controlled by the terms in which
o occurs without a derivative if we choose a and C' larger than in Theorem [3.21
Details for a related problem can be found in [2I, Appendix A.2], for instance. O

3.4. Maximal regularity. With the resolvent estimate from Theorem [3:24] we
are now able to prove Theorem [3.20] concerning local existence. For this purpose
we fix some times ty < t; and denote again by A the linear operator from .
Furthermore, let » > 2 be not an integer such that both (r +1)/2 and r/2 are not
half integers in order to apply Theorem and use Laplace transform in time.

The linear inhomogeneous problem. We begin with the linear inhomogeneous
equation

Mu := (0, — A)u = g, u|t:t0 =0, (3.46)

where g € g~ ((to,t1),2) == K5 ((to, t1),2) x K5 *((to,t1),2). Due to Lemma
we can identify g with its extension to [tg, 00). Thus, without loss of generality,
we can write g € Kj~!((tg,0),2). For a oy > 0 chosen below we set

Ut,z) :=e "u(t +tg,z), G(t,z):=e " g(t+to, 7). (3.47)
Then G € K5~ *((0,00),2), and (B.46) is equivalent to solving
(O +01 - AU =G, U|,_,=0. (3.48)

Since U | +—o = 0, the Laplace transform of U satisfies
1 o0
L(Ow)(T) = —/ O (t)e " dt = 7Lu(7),
2 0

and becomes
(T4 01— A)LU(1,2) = LG(T, ). (3.49)

From Lemma and Remark it follows that LG € H"~1(2) x H"2(2) for
almost every 7 with Re7 > 0. Thus, according to Theorem [3.24] for almost every
7 with Re 74 01 > a there exists a unique solution of the resolvent equation (3.49)).
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Choosing 01 > a and setting U = (Uy,Us)", G = (G1,G2)", we achieve the
estimate

LU ey + 1712 LU L2 2) + (LU ) 12 + 1717721 LUz L2 2)
< C(HLGIHHT*l(Z) + |7'|(T71)/2||£G1||L2(2) (3.50)
+I£Gallr-20) + 1712/ LGl p2a) )
for almost every 7 with Rer > 0. To apply Theorem [3.14] which yields U €

K5 ((0,00),2), we additionally have to show for j € {1,2} that

(i) 7 — LU;(7,z) is holomorphic in the half-plane ReT > 0 for almost every
z € R,
(ii) sup,,~¢ Jg [LU;(T1 + i3, 2)|? d72 < oo for almost every z € R.

Property (ii) immediately follows from the corresponding estimate for LG i.e.,

sup / (|EU1(T1 + iTQ,LL‘)|2 + ‘EUQ(Tl + iTQ,Z)|2) dTQ
R

71 >0

<Csup [ (LU + ir2, e + €02 (1 + 172, gy)
R

71 >0

<C Su%/ (HEGl(ﬁ +im, e + 1£G2 (i +im, ')||2L2(2)) drz <o
71>0JR
due to Lemma In order to show that LU is holomorphic, we set 7 = 7. + i7;
and LU = U, + il;, thus the resolvent equation (3.49)) reads
(7'7- + o1 +i1; — A)(UT + IZ/{,) = LG.

Differentiating with respect to 7, and 7; and using on the right-hand side that LG
is holomorphic, we obtain

(T,« + o1 +im — A) [87—Tu7~ — 87—11/{1 +1i (87—Tui + (9712/{7«)} =0 (351)
for 7. > 0. Due to Theorem there exists a unique solution of (3.51)), given by
0 U, — 0, U; +1(0:,U; + 0-,U,) = 0. (3.52)

Thus, LU fulfills the Cauchy-Riemann differential equations for Re7 > 0. Trans-
ferring the results back to u, g proves the following lemma.

Lemma 3.25. Let r > 2 be not an integer, and fiz some t1 > ty. Then there
exists a C' > 0 such that for g € K ((to,t1),2) there exists a unique solution
u € K6+1((t0at1)72) Of

Mu= (0 — A)u = g, u|t:t0 =0

with ||u||,<8+1((t0’t1)72) < C’||g||,<8—1((t0’tl)’2),

The nonlinear problem. To prove Theorem we look for a solution u =
(h,q)T € K™ 1((to,t1),2) of the nonlinear problem (2.18)); i.e.,

9, (Z) — A (Z) + N(h,q). (3.53)

As initial condition we take

u’t:to =up = (ho,q0)" € H"(2) = H"(2) x H"}(2). (3.54)
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Since the nonlinearity N contains a third derivative of h, we restrict our cal-
culations to the case r > 3. According to Lemma there exists a function
v € K™ ((tg,t1),2) with U‘t:to = ug. Setting u = v + w the initial value prob-
lem , is equivalent to 0yv + dyw = Av + Aw + N (v + w) satisfied by
w € K"1((to,t1),2) with homogeneous initial condition; i.e.,

Mw = N(v+w) — Mo, w|t:t0:0. (3.55)

In the next step we assume that w € K5t ((¢o,%1),2). To invert the operator M on
the left-hand side of (3.55)), we have to show that N (v+w)—Mv € K~ ((to, t1), 2).
As Lemma does not work for integers, we take r > 3 in the following. The
highest derivatives occurring in the nonlinearity N(v + w) are 92h and 9,q. Since
v,w € K™ ((to,11),2) = K™ ((to, t1), 2) < K" ((to, t1), 2), Lemmal3.15]yields 921 €
K"™2((to,t1),2) and 0,q € K"~ ((to,t1),2). Thus, we can apply Lemmawhich
gives N(v +w) € K" 1((to,t1),2). Due to Lemma the same is true for Mv,
hence

N(v+w) — Mv e K" ((to, 1), 2). (3.56)
According to Definition [3.13] it remains to show that
&) (N(v+ w) — Mv)) ’t:to =0 forall j<(r—2)/2. (3.57)

Restricting the regularity to 3 < r < 4, we have to check ([3.57)) only for j = 0. Since
v e K™ ((to,11),2) x K"((to,1),2), Lemma additionally allows to choose
aiv‘t:to for j < (r —1)/2 arbitrarily. Hence we set 8tU’t:t0 = Aug + N (ug), which
yields (N (v + w) — Mv) ‘t:tg = N(uo)—atv{tzto—l—Auo =0, thus, N(v+w)—Mv €
Kyt ((to, t1),2) if w € K§H((to, 1), 2). Therefore, we can apply Lemma and
write (3.55)) as fixed point equation, namely

w= My (N(w+w)— Mv), (3.58)
where we denote the solution operator of Lemma by My *. The choice of v is
not unique, but by applying a cut-off function in time we can always ensure that

[0llicr+1((to,t1),2) < Clluollrer(2) for a fixed C' > 0. Setting |[ug||sr2) = € < 1 and
assuming [|w||jcr+1((10,11),2) < € we obtain

[ Mg (N (v 4 w) — M) ||icr+1((t,41),2)
< CIN(v+w) — Mol[icr=1((t9,t1),2)
, (3.59)
< C (Il rra o iy 2) + Iollerss o))
< Ce? = C||u0||Hr(2) <e€

for € > 0 small enough. Therefore, the right-hand side of (3.58)) maps a small ball
in K5t ((to, 1), 2) into itself if the initial condition ug is small enough. For w; and
ws in this ball, additionally we have
IMg " (N (v +wi) = Mv) = Mg (N(v+ws) = M) [er+1((2,61),2)
1 (3.60)
S CIN( +w1) = N(v +w2)llkr1((to,00).2) < Gllwr = w2lliere (@o,0),2)-

since NN is at least quadratic and pure v-terms drop out.
Thus, for a sufficiently small initial condition the right-hand side of (3.58)) defines
a contraction in K ((to,t1),2), and the contraction mapping theorem yields the

existence of a w € Ky ((to,t1),2) satisfying (3.55). Since from (3.59) we obtain
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1wl cr+1((to,01),2) < Clluollsr(2), there exists a solution u = v +w of (3.53), (3.54)
with

[ellicr1((to,t0),2) < Clluollaer2)-

Uniqueness. To show uniqueness of u suppose there are two solutions w1, us. Then
the difference u; — ug fulfills

M(u1 — ’LLQ) = N(ul) - N('LLQ), (Ul - uz)’tzto =0. (361)
Since N(ul)|t:t0 = N(u2)|t:t0’ we have N(u;) — N(ug) € K5~ ((to,t1),2). Thus,
we can write u; —us = My ' (N (u1) — N(us)), and similarly to (3-60) we obtain
1
[ur —uzllicr+1((o,00),2) < CIN(ua) = N(u2)llcr=1((t0,01),2) < 5llus —vzllicr+1((eo,00),2):
if the initial condition ug is small enough. Thus, u; = us.

Higher regularity. The higher regularity in the time interval ¢ € [fo,t;] for to <
to < tp follows from a bootstrapping argument, which we sketch next. As u €

L2((to,t1), H"t1(2)), there exists a t € [%,t})} with

- < 2
[ult, )llrr+1(2) < m||U||L2((to,£0),w+1(2)),
since otherwise we had

io
g 2 g 2
/fmo It Miersa2) 4 > M1l za o, o) 11 21

2
Starting again at t = £ yields u € K" 2((£, 1), 2) with

lul

r+2((E)2) < Clul 12y < Cllullicr+1((19,01),2) < Clluollnr(a)-

In particular, we have

[ullcr2((fo,t0),2) < Clluollrr2)- (3.62)

Iterating this procedure for m € N yields |ul
hence the second assertion in Theorem [3.201

Remark 3.26. In we had to choose r < 4 in order to achieve (N (v + w) —
Mv) € K5~ ((to, t1),2), hence it is not obvious why the bootstrapping argument
can be applied to initial conditions with higher regularity. However, considering the
two components of N (v +w) — Mv separately, condition can be substituted
by

Krm (o t1),2) = Clluoller(2), and

0] (Beor + Dyva) |,_, =0 forall ju < (r—2)/2, (3.63)
d7 (Ny(v + w) — Byvg + Agv =0 forall jo < (r—23)/2, (3.64)

) ‘t:to
where Asv denotes the second component of Av. According to Lemma[3.11] we can
choose the time derivatives

J1 J2
9, vl‘t:to’ 9% U2|t:t0

arbitrarily for all j; < /2 and j, < (r — 1)/2. The essential property is that the
regularities of v € K™ and N(v +w) — Mv € K1 differ by two, such that there
is always one degree of freedom left in the choice of v| 4y, to fulfill , .
For instance, if 5 < r < 6, we additionally have to fulfill for j1 =1 and
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for jo = 1, which is no problem since we can arbitrarily choose 8?v; and d?vy at
t = ty. Thus, the restriction to r < 4 above is only for notational convenience.

4. RENORMALIZATION

To make the formal calculations in §2.6] rigorous and hence prove Theorem [2.8]
we establish a renormalization process as in [0, 22]. Additional to iterating the
application of the local existence and uniqueness theorem, the key issue is to ex-
tract the leading order behavior formally described by the Burgers equation .
Therefore we now consider the IBL in Bloch space which is split in for the
linearly diffusive mode a¢! and in for the linearly exponentially damped
remainder. Here rescaled Bloch spaces with different weights in ¢ turn out to be
useful.

4.1. Basic setup. For m € Ny, r,b > 0, and L > 0 we set
BL(m’T’ b) = Hm(ILka;er(I’Y))v ||1~]HBL(m,r,b)

= ( 3 /I (L) 10756, ) 131 de)l/z, (4.1)

j<m Y 1Lkg

where again Is = (—§/2,0/2). Note that the spaces adhere to the fixed choice of
periodicity v = 27 /ko. Let B(m,r,b) := Bi(m,r,b). Regarding the original Bloch
spaces from we have B(m,r) = B(m,r,0). At first view, the introduction
of weights in the /-variable seems dispensable since all norms || - ||, (m,rp,) and
|l - 1B, (m,rps) are equivalent due to the compact support in £. But as constants
depend on L this step is crucial in to control nonlinear interaction without
losing powers of L~!. For L > 0 we define the renormalization operator R, /L by

Ri/r : B(m,r,b) — Br(m,r,b), Ry,p0({,x):=0({/L,x). (4.2)

Note that only ¢ is rescaled, and thus there is no matching rescaling in z-space.
For L > 1 we have
L5 ol 5on ) < IR0l By mrty L7 [l Bomrn < CL2 18] 50mr0)-
(4.3)
We will mainly need the second inequality for b = 2, which yields an additional
factor L%/? in the estimates.
For a fixed p € (0,1/2) we introduce the renormalized variables

an(t,0) == Ry-na(L*t,0), wp(t,l,x) =LY PR, b (L2, 0, x).  (4.4)

Since we suppose the stable component to decay like t ! and since time is scaled by
L?", we blow up w,, by multiplying it with L(!~?)"_ The factor LP" is needed later
to control some constants. From the IBL (2.45)), (2.46) in Bloch space we obtain

Brcn(t,0) = L2 iy (L") (t, £) + L2 BE (an (£))(£)
+ LPH (), L™ 077w, (1)) (0),

Opwn (t, 0, x) = L2 Ag(L™ 0w, (L, 4, 2) + LEPMHS (o, (8), L~ P, (8)) (4, ),
(4.6)

(4.5)

where
B¢ (ay) = Ry -nBe. (Rprnan), Hi(ap,wy) = Rp-nH. (Rprnan, Rpnwy,),

" (4.7)
H,Z(Oén,’wn) = RL*"HS (RLnan,Rann) .
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Thus, solving (2.45), (2.46) with the initial condition (&,ws)|,_, = (a0, wo) is
equivalent to iterating the following renormalization process: For n € N solve (4.5]),

for t € [1/L%,1] with the initial condition
an(1/L20) = an_1(1,4/L), w,(1/L* ¢,2) = L' Pw,_1(1,{/L, ). (4.8)
We take (o, wy,) € Xpn(2,7,0), where
Xpn(m,r,b) := Bpa(m,r,b)xBrn(m,r,b),
Brn(m,r,b) := Brn(m,r,b)xBrn(m,r—1,b),

with » > 3 and b > 0 to be chosen later. Note that the value of r does not play any
role in the critical component & since @ is independent of x. We introduce

K7 ((to,t1),m,b) := H"/?((to, t1), BL(m,0,b)) N L*((to, t1), BL(m,r,b)). (4.10)
Finally, let

K+ ((to, 1), m, b) == KT ((to, t1), m, b) x K7 ((to, t1),m,b), (4.11)

XrTN((1/0%1),2,2) := KUPH((1/02%,1),2,2) x K5 ((1/0%,1),2,2). (4.12)

Then, due to Theorem |3.20| concerning local existence in the original system, we
expect local solutions of (&.5), (4.6) in the space X} *((1/L?,1),2,2).

Theorem 4.1 (Local existence in the renormalized system). Let 3 < r < 4.
There exist Lo > 1 and Cy,Cs > 0 such that for all L > Lg the following holds. Let

pr-1 = |(an—1(1), wn1(1)llx,, s @r2) < CLL™>2.

Then there exists a unique local solution (cu,,wy) € Xj41((1/L2,1),2,2) of (&5),
[8) with

(4.9)

H(an»wn)”;cg;l(u/w,n,z,z) < CoLpyy. (4.13)

Moreover, for any m € N we have (ay,,w,) € X 1™((1/2,1),2,2) and there exists
a C3 > 0 such that

(| (Qtn, wn)|

5/2
xrim(jenzg < CsL¥?puot.

Proof. The proof can be adapted from Theorem [3.20f The crucial point is to have
C5, C5 independent of n, which depends on suitable resolvent estimates of the linear
parts L2 (L~"¢) and L*" A (L~"¢), and on estimates for the nonlinearities. The
latter is worked out in detail in in a slightly different form suitable to obtain
more detailed asymptotics. Thus, here we only sketch the main ideas. First, we
consider the linear inhomogeneous system

Oran — L*" iy (L") vy, = g1, (4.14)
dywy, — LA (L7 0w, = gno- (4.15)
Since (4.14) is independent of  no smoothing properties are needed, and hence, as
well as (4.5]), it can be solved by the yariation—of—constants formula. For (4.15)) we
find resolvent estimates for A — L?" A (L~"¢) which correspond to Theorem [3.24

transferred to Bloch space. Since we are in the stable part, we can choose a = 0
independently of n, which yields

[ (e, wn)||x£j;1((1/L2,1),2,2) < Cal[(gn,1: 9n,2) ‘|X£;1((1/L2,1),2,2) (4.16)

with Cy independent of n. Note that (4.16)) could be improved by choosing a =
—L*04/2, but to show the local existence result ([4.13), a = 0 is sufficient here.
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The estimates for the nonlinearities, see §4.2] together with Banach’s fixed point
theorem and (4.3]) then yield the first result, while the higher regularity follows as
in Theorem by a bootstrapping argument. O

The local existence Theorem [£.1] turns out to be a fundamental step in the proof
of the following nonlinear stability result.

Theorem 4.2. Letp € (0,1/2) and 3 < r < 4. In the spectrally stable case, cf. As-
sumption there exist C1,Cy > 0 such that the following holds. If ||ag || g(2,r2) +
lwollp(2,r,2) < C1, then there erists a unique global solution W = agl + W, of the
IBL (2-45), in Bloch space with (d,ﬁ)s)’t:l = (g, wp). Moreover, we have

(0.) = (06720 0) = (20 g (0610,0)) [l o,y < Cot~ O,
(4.17)
where sz is the Fourier transformed profile from , @' is the eigenvector to the
critical eigenvalue Ay, see (2.35), and In(zo +1) = 27r%a0(0) with d from (2.64).
Theorem [£.2] is proved in §4.2) and §4.3] by an iteration scheme for the renormal-
ized system. Here, we translate back to z-space in order to show Theorem

23
Proof of Theorem [2.8. We have

1/2ke 1/2ko
(hao) (t,2) = / & ()T (t,,7) Al = / et (1, 0, ) df
—1/2ko —1/2ko

1/2kovVt Z1)2
_ t_l/g/ elét (r+c1t),d~)(t’t—1/2g’ .Z‘) dvs.
—1/2koVt

With the inverse Fourier transform f.,(t=1/2(z + c1t)) = [, 6“3’571/2(9”61’5)fz0 (£)de
we obtain

(hy@)T(t,2) =12 L0 (67 (2 + 11))¢1 (0, )

1/2koVE R R
_ t_1/2/ oift /2 (z4c1t) (zb(t7t_1/2€, z) — X(t_l/%)fzo(fwl((),x)) d¢
—1/2koVt
=12 (4 _
—t 1/2/ et £, (1= x(71/20) deg! (0,).
R

(4.18)
The first integral on the right-hand side of (4.18]) can be estimated by

1/2ko V't B .
£ 2 sup | / ) (G (1,112, 0) = X (720 £, (061 (0,2) ) a]
z€R 1/2ko/t

1/2760\[ ~
< / sup [t t720, @) — x(171/20) f., (0)6 (0, ) d¢
1/2ko /% z€[0,7)]

< Ot 1te/2,

Since f,, is analytic, the Fourier transform sz is exponentially decaying. Thus,
the second integral in can be estimated as

{1/ Sup‘/ Hatat) f(p) (1— X(t 1/24)) déqbl((),x)‘ <ot

zeR
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Altogether, this proves Theorem [2:8 Thus, it remains to prove Theorem [£.2}

4.2. Estimates. We write the solution of the renormalized IBL (4.5)), (4.6]) in Bloch
space with the help of the variation-of-constants formula; i.e.,
Qg (ta E)

= e(t—Ld)LM#l(L*W)an_l (1, L—lg)

w1 O (B (9)(0) + H o), 170 (5)(0)) s,
L2

(4.19)
wy,(t, 4, x)

_ 71-p (t—L72)L* A (L™ "0) -1
=L "Pe wp—1(1, L7, x) (4.20)

t A —n
*L(gfp)”/ =LA O s (0, (5), L~ APy, (5)) (€, ) ds,
L2

where etL”" As(L7"0) gtands for the analytic semigroup generated by L2 A, (L7™0),

cf. Lemma which clearly transfers from A(¢) to L** A (L~"(). To prove
existence of a solution for ¢ € [1/L? 1] we need estimates of the linear semigroups
and the nonlinearities. These are shown in Lemma [£.3] Lemma [£.8 and Lemma

[1.9] respectively.

Lemma 4.3. For 0 < b; < by, 0 < j < 2 there exists a C > 0 such that for
« € Bpn(2,7,b1) independent of x we have

2n —n — —
et pa (L ')Oé||BLn(2,r,b2) < C'max{l,t (ba bl)/2}||04||BLn(2,r,b1) (4.21)

in the critical part. The stable part is linearly exponentially damped; i.e., there
exists a o1 > 0 such that for w € Brn (2,7 — j,b) x Bpn (2,7 — 1 — j,b) we have
HetL2nAS(L7%

ull B (28 Bun (27 -10) (4.22)

-~ 2n .
< Cem "7 max{1, (L*"t) j/z}HUHBLn(2,r—j,b)><BLn(2,r—1—j,b)~

Proof. Estimate follows from the locally parabolic shape of L?"yu;(L~"¢) =
—col? + O(L7"3) around £ = 0, see Assumption Since Re pun, (£) = Re Ap () <
—op for all n > 2 and ¢ € (—ko/2, ko/2) and since Re p1(¢) < —oy for all |[¢| > 47y,
the real part of the spectrum of A, is bounded from above by —oo. Thus, we have
inequality for a 01 < 0¢, which avoids the treatment of Jordan blocks. O

To control the integral in (4.20) we use the following lemma.

Lemma 4.4. There exvists a C > 0 such that for to € [1/L%1] and 0 < j <
1 we have j;i e“’l(l_s)LG(1—5)_j/2d8§CL_(2_j)". For 0 < j < 2 we obtain

fll//L22 e_"l(l_s)L%(l — 5)7/2ds<CL~?",

The next lemma exploits the role of leading ¢’s in the critical part of the nonlin-
earity, cf. [16, Lemma 14]. Remember again that kg := 27 /7, where v denotes the
bottom periodicity.

Lemma 4.5. Let ﬁ S 02([—k()/2,k(]/2),C2((0,’7),(C)) with ||/6(€7')||C2((0,7),C) <

CeP27b for a by € [0,b2]. Then there exists a C > 0 such that for all L > 1 we



40 T. HACKER7 G. SCHNEIDER, H. UECKER EJDE-2012/61

have
1(R1/LB)ull By 2,m01) < CL™O27 Bl 02 (= ko 2,80 /2).02 (0,100 1| B (2,080 -

The idea of the lemma is as follows. If the nonlinearity in exhibits, e.g.,
a leading (¢/L™)7, j > 0, we can extract the factor 2201 /L(2=b1)n by _ b < j.
While in the factor £°27%1 can be balanced by the linear semigroup in Lemma
the factor L~(b2=b1)" increases the degree of irrelevance. However, according
to the term ¢—(b2—01)/2 i this is only possible as long as by — by is bounded
from above by, e.g., 2 — p.

As products in z-space correspond to convolutions in Bloch space, the nonlin-
earities in produce terms of the type Ryp—1(Rpu * Rrv). Thus, we define an
adapted convolution operator *, for u,v € Br,(m,r,b) as follows:

Lko/2
Up U= / u(l —m)v(m)dm = LRp-1 ((Rpu) * (Rpv)). (4.23)
—Lko/2

To estimate convolutions we use the following lemma, based on standard Sobolev
embeddings.

Lemma 4.6. Let by > 1/2, by > by > 0. There exists a C > 0 such that, for all
L>1,

lusr vl < Cllullpy e vl @rb)-
Remark 4.7. Before estimating the nonlinearities in detail we want to summarize
the different effects in a descriptive way. By combining (4.23)) and Lemma
each convolution produces a factor L=™. Due to the rescaling in (4.4]), each factor
wy, gives a further L=(1=P)" In the critical component, a factor R -n (£b2=01) in

the renormalized nonlinearity leads to an additional factor L=(2=21)" a5 long as
b2 — b1 S 2 — p-

Lemma 4.8. Let r > 3. For p € (0,1/2) there exists a C > 0 such that for all
(n,wn) € Xpn(2,7,2) = Bra(2,7,2) X Bra(2,7,2) with (0, wn)x, 0 (2,r2) < 1 we
have
LQ”Hﬁ(an, L_(l_p)”wn) = 81 + S9 + 83
with
Is1llBon(zrp < CL™U P JanlE,, 2,02)0 (4.24)

I52]l Bon 21) < CL™ Pl By 2,02 Wl B (2,02 (4.25)

||53||Bm(2,r,1) < CL_Q(l_p)nHwn |?5Ln(2,r,2)- (4'26)

Proof. By construction we have
HE (o, L~(7PInyy, )
= RL—n]EIC(RLnOén, L_(l_p)nRLnU}n)

= Ry B2 (B(Rpr0)e! + L= 0P Rpw,)) — Ryoo (Be(Rina)) 427

+ RL—nE: (é((RLnan)qbl + L_(l_p)"Rann)) 5
see (2.45) and (2.58). We start with the estimates of the first two terms on the

right-hand side of (4.27)). Since they are quadratic, we split them according to the
multiplicities of «,, and w,,.
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1. Terms quadratic in a,. In the formal derivation of the Burgers equation in §2.6]
we obtained

Ez (B(Rinan)8")) (0) = Be(Runan)(0) = B(O(Rpnan) ()
with 3(¢) = O(¢?), cf. (2.65). Therefore, we have to estimate
Ri—n(B(Rpnan)™®) = (Rp-nB)Rp—n((Rpnan)*?).
Applying , Lemma and Lemma we obtain
IRL-n(B(RLrn) ) By 2irp) = LT (R0 8)(n *10 an) | Byn (2,1,)
< CL_(S_p)nHOanZBm (2,r,2)"

Thus, the terms considered in this part can be assigned to s;. Note that here we
only used B(¢) = O(£>7P) instead of B(f) = O(f?), since otherwise the missing
weight in £ could not be balanced by the linear semigroup in (4.21)).

2. Mized terms in oy, w,. The terms in
Bz (Blao' +1,)) (0 = x(0) / " By(@(0)64(€) + 5 (0)) ()P (6 )
which contain both & and w, are all of the type
N(@,@,)(0) = x(¢) / @@t 01 (,2))  (Dartie) 5, 2))] (TR )

with ke, ks € {1,2,3} and 4,5 € {1,2}. Applying (4.23) yields
RL—nN(RLn Ay, Li(lip)nRLn wn)

9
_ ~O-png, (X / [(Rpnan)(@z+i) e d}) # ((Bp+i)™ (Rrnwn ;)] @%dx)
OPY '
Y )
* Rpn ((8m+iﬁ)kswn,j) }@%dm)
= -2 /07 [(an(aﬁiﬁ)kc?&yw%) *n ((&«Hﬁ)ksww)} Ri-n(xthy)da,

where x(£)3(¢) = O(¥), cf. @.41). If u € Bpa(2,7,1) is independent of x, we have
llull Bon2,m,1) = Ul BLn (2,0,1)- Thus, we obtain

|RL-n N(Rpno, L= PR pnwn) || 5n 21

vy
creon [ O SRS ) R ) ) )|
<17 [ (o0t Rue0t) wi ((00ig) )

< CL_(?’_”)"Han(aa;-l-iﬁ)chL*"@||Bm (2,0,2) ||(@Hﬁ)kswn,j||BLn(2,o,2)

dx
Bn(2,0,1)

—(3—p)n
< CL™ Pl |l gy 2002) Wil By (2,02) -
Therefore, the mixed terms in «,,w, can be assigned to ss.

3. Terms quadratic in w,. The estimates for the terms in Ej (B(L_(l_p)"Rann))
are the same as for the mixed terms, except that we have an additional factor
L=(=P)" due to the scaling of w,,, which yields the estimate for s3 in (&.26]).
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It remains to estimate the third term in (4.27)). We have

B (G(Ruman)9h)) (6) = OW)(Rinan)(0) + 3 O(D(Rnan) (), (4.28)

Jj=3

where the O(¢?)-terms are due to the quadratic terms in the IBL with a factor 0,¢.
Since (Qn, Wn) x ;0 (2,r,2) < 1 We have ||an||§3m(2’r’2) < ||an||QBLn(27r’2) for j > 3, thus
the terms in (4.28)) belong to s; and can be estimated as stated in (4.24]). By the
same considerations, all other terms in E* (G((Rpnay,)¢t + L~UP"R aw,)) are
absorbed by s and s3 and can be estimated as specified in (4.24) and (4.26). O

To prove estimates for the stable part of the nonlinearity, which in contrast
to the critical part depends on x, we have to split H; according to the different
regularities in space. Moreover, lowering the weight in ¢ is not useful in this case.
On the one hand, this is because we do not gain an additional factor ¢ by applying
the mode filter F;. On the other hand, the linear semigroup in could not
balance the missing weight without losing powers of L™".

Lemma 4.9. Let r > 3. For p € (0,1/2) there exists a positive constant C such
that HE (o, Lf(lfp)"wn) can be split according to the order of x-derivatives in the
form

3
_ (1 0
LE P H (o, L™ M,) =3 <hs (e, L=y ))’
=0 n, ny n

where
L o e
< C(L(pr)nHanHzBm(z,r,z) + L™ lanllBon 2 2) 1 Wnll B0 2.r,2) (4.29)
+ L w13, 22
for all (o, wy) € Xpn(2,7,2) with (0n, Wn) x,0(2,r2) < 1.

Proof. The proof works along similar lines as for the critical part. Again, it is
sufficient to estimate the quadratic terms. The appropriate estimates for higher
order terms follow a fortiori since each convolution yields an additional factor L~"™.
Moreover, every w, gives a factor L=(1=P)"  We only have to pay attention to
the different regularities in space. Since in the highest derivative 93h occurs
only linearly (i.e., the IBL is quasilinear), the second component of HS maps to
B (2,7 — 4,2), j € {0,3} due to Lemma Inequality then follows by
counting the respective powers of L=, O

Remark 4.10. At first view, estimate for the stable part seems worse than
those for the critical part in Lemma[£.9] since the powers of L in the coefficients do
not converge to zero for n — oco. However, applying the linear semigroup in
yields an additional factor L=2", which in §4.3| allows to prove that the stable
component decays polynomially for ¢ — oo . Furthermore, the nonlinearity hj, 5
only lies in By (2,7 — 3,2). But since in the second component the phase space is
Bprn (2,7 — 1,2), this can be smoothed out by the linear semigroup.
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4.3. Splitting, iteration, and conclusion. The result of the formal calculation
in was
Oa(t, l) = —02£2 (t, 0) 4 idex(€)a*?(t, £) + h.o.t. (4.30)

Since & is independent of x, is reminiscent of the Fourier transform 0,0 =
—co 0?0 + idlp*? + h.o.t. of the Burgers equation. According to the higher
order perturbations are asymptotically irrelevant, and the renormalized solution
tY/2y(t, t1/22) converges for t — oo towards f(z), see (2-54). In Fourier space, this
corresponds to 0(t,t=1/20) — f.(0). If we consider the initial condition v(l,z) =
vo(z), the parameter z is given by ln (z+1)=2 fR vo(z)dz = 2m 2 - 00(0).

Transferring this result to , we expect the rescaled crltlcal component
a(t,t=1/2¢) to converge towards fZO (¢) for t — oo, where

d
In(zo +1) = 271'0—64(1, 0). (4.31)
2
Thus, for fixed times t = L?*, n € N, the renormalized solution a,(1,£) =

(L2, L="0) is expected to converge towards f,, (¢) for n — oc.

Splitting. The formal considerations above give reason to split «,, into
o (t,0) = ol (t,0) + L=O7P)"y, (¢, 0)
with the Fourier transformed profile
P (8, 0) = X (L7005 (8, £) = X(L7™0) fo (1/20).
Then, according to , the correction term -y, satisfies

O = L (L7 + L0 (B () = Bi (o)
(4.32)
+ HE (o, L’”(l’p)wn)) + LU=P)"Res,,,
where Res,, := —0,a? + LQ"ul(L’”-)agf) + LGBg(aS)).
Lemma 4.11. Let |z9| < 1. Then there ezists a C' > 0 such that

sup ||ReSnHBLn (2,r,2) < CL7n|Zo|
te[L—2,1]

Proof. By construction we have LQ”Bg(asf))(E) = idlx (L~ ™) (an * ozgf))(é), while
the renormalization of the largest eigenvalue reads
L2y (L70) = —col® + O(L763).

As 9, is an exact solution of 9;0,,(t,f) = —col?d,, (t,0) + idl(D,, * 1., )(t, ), we
obtain

Res, () = idex(L7"0) (@) alf)(0) = (02, *02,)(0))

— idfx (L") /_ LL:; (X (f ;:”) X (%) - 1) B (€ — M), () dm.

This can be estimated in B (2,r,2) by CL™"|z]| since the first factor in the inte-
gral is zero for both £ —m and m small, and since 79, is a smooth and exponentially
decaying function. O
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Next we study the evolution of v, at the fixed wave number £ = 0. Due to
the definition of the critical mode filter E* we obtain &(t,0) = (w(t,0,-),%(0,))

where @ = e~ #c1t(h §)T, see (2.36) and (2.42). Since according to (2.41)) we have
Y1(0,2) = (co,0) ", we obtain

a(t,0) —co/ htOxdx—co/ Ze”k”}'htk‘o])d

JEZ

1
= ¢oyFh(t,0) = 2—007/ h(t,z)dx.
R

™

The perturbation’s mass f]R hdz is conserved in the IBL, cf. Thus, we have
a(t,0) = &(1,0) for all t > 1, which yields
L=0=Pmy (£,0) = (£, 0) — alP (t,0) = &(L*"t,0) — f,(0)

~ C2
=a(1,0) — —1 1)=0
6(1,0) = 52 n(z0 +1)

for all t € [L=2,1], cf. (4.31)). The following lemma shows a contraction property
of the rescaled linear semigroup when acting on the remainder v, with v,(0) = 0,
and explains why we require some regularity in ¢ in the spaces B(m,r,b).

Lemma 4.12. Let g € H?(2) with g(0) = 0. Then

(A=L7*)L*" pa (L")

e Rusegllmz@) < CL7 gl a2 )

Proof. We state here only the estimates for the L?(2)-norm, as the additional factor
L~! coming from (Rq/19)(¢) = L~'g'(L~1¢) leads to easier estimates in case of
derivatives. Since g(0) = 0, we have for a £ € [0, L~/

(L0 = Lg/'(§) < LM Mllgllen < CL gl 22

due to standard Sobolev embedding. Thus, we obtain

2 2n —2n
(1—L™2)L%"pu,y (L )R1/LgHL2(2)

:/62(17L—2)L2"M(L—"Z)(9(1—716))2(1+£)2d£
R

lle

< CL 2 glfygy [ H1EIEAT R g

where the integral can be estimated independently of n since L?"u; (L~ "() =
—col? + O(L743). O

Let
9n, c( ) ( ) Pn,c = ||gn,c||BLn (2,r,2)»
In, s(g Z‘) (1 ¢ 1‘) Pn,s ‘= ||gn,s||BLn(2,r,2)a
pn = [lan(D)Bon2,r2) + (D) B,02,r2)-

Hence, p, < L=0-Pnp, 4 ||oz£f)(1)||H2(2) + pn.s, and to prove Theorem we
will show that both p, . and p,_ s are bounded for n — oo.
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Proof of Theorem Taking Lo and C; from Theorem [£.I] we assume the
initial condition (ay,wp) to be small enough to fulfill

po < L7Mo~l L Tme < 0 L70/2 (4.33)
where L > Ly and mg € N are specified later. In particular, this yields
20l < Clla§™ (1, ) rr2(2) < CL™™ (4.34)
By we have

Yot €) = U E IOy (172, )
t
+ L8P / (I (B () (€) — By (o) (5))(0) ) ds
L—2

t
+ L(3fp)n/ e(tfs)LQ"m(L_”@)Hﬁ(an(s), Li(l*p)nwn(s))(é) ds
L—2

t
4 (-pn / =L (L " ORes (5 f) ds,
L-2
(4.35)
while w, is obtained from (4.20). In order to apply an iteration scheme, we now
assume

Pn—1 S L_m07 Pn—1,c S L_m07 (436)
which is obviously true for n = 1. Since p,_1 < C1L~%/2, Theorem implies

([ (e, wn)”;\fzj{l((l/LQ,l)Q,Q) < CLs/QPn—l’
||(an,wn)||X£:2((1/271))2,2) <CL?p,_;
for a C > 0. Due to Corollary these estimates yield

sup  |lanllBLa(2,r2) < CLY?p, 1, (4.37)
te[L—2,1]
sup [wnllg,n (2,2 < CLY2pp, (4.38)
te[L—2,1]
sup [ wnll,. (2,41,2) < CLY?ppy. (4.39)
te[1/2,1)

First, we show an a-priori estimate for sup;eiz—2 17 [ (¢ )| B, n (2,r,2) by estimat-
ing (4.35)). We start with the first term on the right-hand side of (4.35)). The initial
condition (4.8)) yields

(L72,0) = LU (a4 (1, L71) = x(L7"0) foy (L710))
= L' a (1L + LU (L7000 = X (L70) ) £y (L710),

Since x(L~("V¢) — x(L~™¢) = 0 for |¢| < L"'r, and since f., decays exponen-
tially, we obtain
Y (L2, M Bw 2.0,2) < CL*PLY 2|y (1, MNB,. 1 @r2) + CL™ 2|

(4.40)
<CL?7Pp, 4+ CL Yz,

where the factor L5/2 comes from the different scalings of ~,,_; and Vny see ([£.3).
Next we estimate the first integral in (4.35). Due to the definitions of B, in (2.48))
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and of the convolution *» in we have L?" B (o, ) (€) = idlx (€) (% 1m0y ) (£),
and thus

1O (B (an) - Bi(al?)) (0)

= L Pmidey () (L7200 g+ 1P s ) (0),
Therefore,

LEP™ sup ||By(an) = Bi(ad?) | Byn 2y
te[L—2,1]

<L s [t M+ Clal s [t )lmin e
te[L—2,1] te[L—2

The missing weight in £ can be balanced by the linear semigroup in Lemma [4.3]
which gives

t
L6 sy | [T (B () - Bl ()
te[L—2,1)1 JL-2

Bpn(2,r,2)

t
IO sup B (o) = Biel)mnann st / (t— 5)~2ds
te[L-2,1] te[L-2,1]

<SCL™ P sup | (t )b, 22 +C|ZOI sup |[vn(t, )l Bon 2,r2)-
te[L=2,1] te[L=2,1]

(4.41)
Similarly, we can estimate the second integral in (4.35)) by applying Lemma and
the estimates for ay,, w, in (4.37)), (4.39), which gives

DO sup [ @), 1O 00O oy < O
elL==,

Using the properties of the linear semigroup in Lemma yields

L(3 p)n sup H/ (t—s)L*"p1 (L™ n')Hﬁ(an(S)’L*(lfp)nwn(s))ds‘
-2

te[L—2,1] Brn(2,r,2)
< CLspn 1
(4.42)
Finally, by Lemma we obtain
¢
LA™ sup H / e(t*S)L%’“(L_W)ReSn(s,Z) ds’ < CL7Pz).
t€[L72,1] L2 BL”(Z’""z)
(4.43)
Combining (4.35) and (4.40)-(4.43), we achieve
Sup ||ryn( )||BLIL(2 7’2)
te[L—2,1
< CL7/2 Ppp_1.e+CL Yz +CL~ 0P [SLu_Ig . It My (2.02) (4.44)
+Claol sup |lyn(t:)llByn 22y + CL? Py + CL7"20].

te[L—2,1]

By choosing mg large enough we obtain C|zo| < CL~™°~! < 1/3, and thus

L= sup |yt ) By 22)
te[L—2,1]
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< sup Han(t7 ) - ag’LZ) (t7 ) HBLn (2,r,2)
te[L—2,1]
< C(LY2pp_q + |20]) < CLY2L™™0 4 CL™™ 1 < 1/(30).
Finally, (4.44) yields the a-priori estimate

1/3 sup  |[vn(t ) BLe(2,m2)
te[L—2,1] (4.45)

< CL? Ppy 1+ CL 20| + CLp}_y + CL™7"|z|.

Iteration. To conclude p, < L~™™° and p, . < L™™° from assumption , the
first term on the right-hand side of is not yet small enough. Thus, we have
to use (4.35) once more for the fixed time ¢t = 1. In this case, as v,-1(¢,0) =0, we
can apply Lemma m In contrast to , we achieve

leA=ET ORI BTy (172 ) |5, 2m2)
< CL |1 (L, )3y o) + CLOPY
x (X(L70D) (270 foy e
< CL Pppre +CL7Y oo llr2(2) < CL™Ppp—,c + CL™ 2]
Similar to (4.44)), we obtain

pre <CL Ppp_y.c+ CL_1|ZO| +cL-t-pn sup Iva(t, ')HQBLV,L(z,r,z)

te[L—2,1] (4 46)

+ C|zol [SUP ] V0 (ts W B w202 + CLPp_y + CL™P" 2]
te[L-2,1

From (4.45)) we obtain

sup ||’Yn(t? ')”BLn(Q,r,Q)
te[L—2,1]

< C (L7/27pL7m0 +L71L7m071 _|_L572m0 + pranmofl) < C«L7/27p7m0,
and plugging this estimate into (4.46) yields
Pr.c < C(L*PLfmo + L*lLfmofl + L*(lfp)nL772p72mo + L7m071L7/27p7m0
4 L5L72m0 T pranmofl).
Choosing now L > Lg such that C' < LP/18, we obtain
Pne < 1 <L7m0 L[ ~mo—l 4 [7T-2mo 4 [3/2-2mo | [5-2mo _'_Lfmofl)
=18 '
Choosing finally mg > 7 such that L"=™0 < 1 leads to
1
prc < gL (4.47)
Next, we estimate the stable part p,_ s. From (4.20) we obtain
Gns(l,3) = LI7re(-ETOENAAT g, ) (1710, )
1 A —n
FLO [ AT By (5), 10D, 5)) (€ )d,
L—2
(4.48)
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Applying Lemma [4.3| we can estimate the first term on the right-hand side of ([4.48)
as

_ _r—2yr2nj} —n
I P”e(l L=2)L2" A, (L ‘)RLflgn—l,s||BLn(2,r,2)

-2 2n
< Ll*pefo'l(lfL )L Hgn—l,s”anfl(Zrﬁ)
< OLilpn—l,&

To estimate the integral in (4.48) we use Lemma which gives

1 A n
L(3_p)n / e(l—s)L2"A3(L7 )H;i(an(s)’L_(l_p)nwn<s))d8‘
L—2 Brn(2,7,2)
3 1 o~ 0
LA g )
; L—2 hfL,J (an’ L a p)nwn) Brn(2,r,2)

3
=Y Millsen @.r2)-
§=0

For the integrals Iy and Iy, the smoothing properties of the linear semigroup are
not required since Br(m,r,b) := Br(m,r,b) x Br(m,r — 1,b); i.e., the regularity
needed for the second component is only » — 1. Applying Lemma and Lemma
{4 we achieve

1
_ _ 2n
115l1B1n (2,r,2) SC/L_QB TR B 20— gi2) ds

1
< C’L(Q*p)"(LE’/Qpn_l)z/ e o1(1=s)L7" 4o < CprnLE)pi_l
L-2
for j € {0,1}. For the estimate of I, the linear semigroup has to smooth out one
z-derivative, which yields

1
11218, 0 (2,r,2) < C’/ efm(lfs)LG(l N Lin(1—3)71/2)
L-2
% 11 (e (8), L0, ()| 5y 2022 s

1
< CL(2—p)n(L5/2pn71)2/ e—Ul(l—s)LZ"(l+L—n(1_s)—l/2)ds
L—2

<CLLPp} .

Treating I3 the same way would lead to factor (1 — s)~! and therefore to a non-
integrable singularity. Thus, we split I3 into

1/2 1
Igz/ ...ds+/ ...ds.
L—2 1/2

While on the first time interval [L~2,1/2] the singularity does not occur, we can
use the higher regularity of w,, on the second time interval as stated in . Note
again that «, is independent of x, thus the value of r plays no role in the spaces
for a,,. We obtain
1/2 2n
113][8,n (2,r,2) < C’/ eI (14 L (1-5)7Y)

L2

< [|h3 5(0n(8), L™ 0P "w,, (8)) | By (2,0—3,2) ds
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1
+C [ eI (1 L (1) 1?)
1/2

X ||hfl,3(04n(5)7Li(lfp)nwn(s))HBm (2,r—2,2) ds
< CL™P"L°p;_,.
Collecting the estimates for I; gives
Pn,s < CL—lpnfl + CL_an5pi,1
1 (4.49)
<CL 'L + CLTPLPL ™2™ < L
Combining (4.34)), (#.47)), and (£.49), we finally obtain
Pn = ||an(1)||BLn(27r,2) + Hwn(l)HBLn(2,r,2) < L_(l_p)npn,c + C'|ZO‘ + Pn,s < L=me,

Conclusion. So far we have shown that if pg < L~™°~!, then Pn.c) Pn,s, and pp
stay smaller than L= for all n € N. In order to prove (4.17)), we estimate

(6x) = i (t, 2 w) = x (7120 £, (060, 2)
at the discrete times t = L?", n € N; i.e.,
WL, L7 x) = x (L) fy (000, 2)
= &(L*, L7 )¢ (L™, @) + s (L*", L, ) — x (L) fo, (£)9 (0, )
= an(L,00" (L7 z) + L™ Mw, (1,6, 2) = X(L7"0) £, (£)¢ (0, 2)
= (@n(1,0) = X(L7"0) 2 (0)) 61 (0,2) + an(1,0) (&' (L") = ¢ (0,2)) (4.50)
+ L=O=Pny (1,0, )
= L==Pney (1,001 (0, ) + aun (1, 0) (qSl(L*”é, x) — ¢ (0, ac))
+ L=0Png (1,4, ).
Taking the B ;(2,7,2)-norm at t = L2, the first term on the right-hand side of
[E50) yields
16, 2) = Y (1, )61 (0,2) || 5, (2.r,2)
2 1/2/{,‘0Ln . 1/2
= (X [ e o 0160, e, )
=0/ =1/2k0Ln
S C||77L(17 ')”BLn (2,r,2) S CL?mo'
The second term in (4.50) is estimated as follows. We have

”(67 :L') = Oén(]-ve) (¢1 (Lingax) - ¢1(0,=’U)) ”BL" (2,m,1)

2 1/2ko L™ ) d7 . . 9 1/2
=(X ) 0Ol a0 (1) = 8 0N, )
=0 0
(4.51)
We now have to distinguish between terms in which the eigenvector ¢! is differen-
tiated with respect to ¢ and those in which only «, is differentiated. For the first
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group, we obtain estimates of the type

1/2koL .
1+ 02| a H L, H a0
/1/2k0L"( 1o or dg” ) Hr (1)
) 1/2ko ) 2
<L "/ 1+ £2)[00 an (1, 0) H _(@ H ar
[ O e .

< CL™[lon (1,95, 2r2):

where j5 is at least one. For the terms without a derivative of ¢! we can use Taylor
expansion, which leads to

QYL x) — ¢H(0,x) = L0  (0(0), ),

where |(¢)] < L="|¢|. Thus, in (£.51)) there also occur terms of the type

1/2ko L™ . ~
[ @ e)oanL L 0N ). e

—1/2koL™

) 1/2k0Ln o2 . 2 1/7 2
< n/ (1+€2)210] cn (1, O)[* (1060 (€(0), ) |11,y A

—1/2ko L™
< CL™|an(1, )15, (2.r.2)-

Note that the additional factor ¢ in this estimate is the reason why we have to
lower the weight in £ from B ;(2,7,2) to B, ;(2,r,1) in Theorem Altogether,
we obtain

H(év 1‘) Lans OLTL(LE) (¢1(L7n£’ ‘T) - ¢1(0,$)) ||BLn 2,r,1) < CL™ n”an( )”BLn 2,7,2)
<CL ™ L™,

The Brn(2,7,2)-norm of third term on the right-hand side of (4.50)) can be easily
estimated by L*(l’p)”pms. Combining all these estimates, we obtain

(€, 2) = @(L*, L7, x) — x(L7") fo ()8 (0, 2) |5, n 2,01y < CL™ 7P,

This is (4.17) for t = L?", and the local existence Theorem yields the result for
all t € [L?", L2("+1)],
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