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SELF-SIMILAR DECAY TO THE MARGINALLY STABLE
GROUND STATE IN A MODEL FOR FILM FLOW OVER

INCLINED WAVY BOTTOMS

TOBIAS HÄCKER, GUIDO SCHNEIDER, HANNES UECKER

Abstract. The integral boundary layer system (IBL) with spatially periodic
coefficients arises as a long wave approximation for the flow of a viscous in-
compressible fluid down a wavy inclined plane. The Nusselt-like stationary
solution of the IBL is linearly at best marginally stable; i.e., it has essential
spectrum at least up to the imaginary axis. Nevertheless, in this stable case
we show that localized perturbations of the ground state decay in a self-similar
way. The proof uses the renormalization group method in Bloch variables and
the fact that in the stable case the Burgers equation is the amplitude equation
for long waves of small amplitude in the IBL. It is the first time that such a
proof is given for a quasilinear PDE with spatially periodic coefficients.

1. Introduction

The gravity driven free surface flow of a viscous incompressible fluid down an
inclined plate plays an important role in heat exchanging devices. Numerous ap-
plications are found in coating processes ranging from the production of compact
discs to photographic industries. For a flat bottom, the inclined film problem has
been extensively studied experimentally, numerically, and analytically; see [7] for a
review. In particular, it is well known that for a given film height the underlying
Navier-Stokes equations possess a stationary solution with a parabolic velocity pro-
file and a flat surface. Denoting the inclination angle by α, this so-called Nusselt
solution is spectrally stable if the Reynolds number R is below the critical value
Rcrit = 5/6 cotα, and unstable to long waves for R > Rcrit, cf. [2, 24]. Nonlinear
diffusive stability in the sense of the present paper in the spectrally stable case was
shown in [21], while for R > Rcrit surface waves are generated, which pass through a
number of secondary instabilities until turbulence occurs at high Reynolds numbers;
see [6], for instance.

In many applications the bottom is not perfectly flat but rather has a wavy
profile. This may be due to natural irregularities or by design, for example in
cooling processes. Thus, it is of interest to study the impact of an undulated
bottom on the film flow. However, to study the stability of stationary solutions, the
Navier-Stokes equations in combination with the free surface are hard to handle and
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thus there has been much effort to derive simpler model equations. Starting from
the 2D Navier-Stokes equations in curvilinear coordinates, in [12] we derived a 2-
dimensional system with periodic coefficients for the film thickness F = F (t, x) ∈ R
and the local flow rate Q = Q(t, x) :=

∫ F (t,x)

0
U(t, x, z) dz, where U is the velocity

in direction parallel to the bottom. In [12] this system is called weighted residual
integral boundary layer system, here IBL in short, and may be written as

∂tF = − 1
1 + κF

∂xQ, (1.1)

∂tQ =
5

2R

(
sin(α−θ)

sinα
F − Q

F 2
− cos(α−θ)

sinα
∂xF F −

3
8

sin(α−θ)
sinα

∂xθ F
2

)
+

5
6
W(∂3

xF − ∂xκ)F −
17
7
Q

F
∂xQ+

9
7
Q2

F 2
∂xF−

1
210

R(∂xQ)2Q

+
1
R

(
9
2
∂2

xQ+
45
16
κ
Q

F
+4

Q

F 2
(∂xF )2−6

Q

F
∂2

xF−
9
2

1
F
∂xQ∂xF

)
.

(1.2)

Here t ≥ 0 denotes time, x ∈ R corresponds to arclength along the bottom, and
we simplified notation of the IBL used in [12, (31),(32)] by redefining the spatial
variable X, the temporal variable T , and the curvature K used in [12, (31),(32)]
via

x :=
1
δ
X, t :=

1
δ
T, κ := δζK, (1.3)

where δ > 0 is a dimensionless wave number, ζ ≥ 0 describes the bottom waviness,
and κ = κ(x) is the curvature of the bottom which is periodic with period γ > 0.
For the surface tension effects here we replaced the inverse Bond number Bi from
[12] by the Weber number W, defined by W := 3δ−2BiR−1. Finally, α > 0 is
the mean inclination angle such that α − θ, with θ = θ(x) is the γ-periodic local
inclination angle, and R is the Reynolds number which measures the ratio between
inertia and viscous forces.

Remark 1.1. (a) From the non-dimensionalization and derivation in [12] we have
that F ≈ 1 and 1 + κF ≈ 1 and thus the denominators in (1.1), (1.2) are bounded
from below by, e.g., 1/2.

(b) In [12] we also considered a regularized version (rIBL) of (1.1), (1.2), mainly
to correct some unphysical behaviour of (1.1), (1.2) for R � Rcrit. Here we are
interested in R ≤ Rcrit where the difference between (1.1), (1.2) and the rIBL is very
small. In particular, the two versions only differ by terms which for R < Rcrit are
asymptotically irrelevant. Therefore we stick to the slightly simpler version (1.1),
(1.2), but nevertheless (1.1), (1.2) is a quasilinear parabolic system with spatially
periodic coefficients.

Numerical simulations for (1.1), (1.2) showed very good agreement with data
available from experiment and full Navier-Stokes simulations. In particular, (1.1),
(1.2) can be used to approximate stationary solutions of the original Navier-Stokes
systems, even with eddies, see [12]. Moreover, from linear stability analysis one
can again find a critical Reynolds number Rcrit beyond which the free surface of
stationary solutions undergoes a long wave instability [23], and again the numerical
stability results from [12] for the IBL agree very well with [23].

Thus, here we use the IBL as a model problem to study nonlinear stability of
Nusselt-like stationary γ-periodic solutions (fs, qs) in the spectrally stable case. For
stationary solutions qs is constant, and it turns out that we always have families of
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stationary solutions which can be parametrized by qs. Therefore, the stability of
any spectrally stable (fs, qs) is nontrivial since linearizations around such (fs, qs)
always have essential spectrum up to the imaginary axis. Thus, we cannot conclude
stability from the linearization alone but have to take into account the nonlinearity.

If we restrict to spatially localized perturbations, dissipative systems often show
dynamics which are similar to those of linear diffusion equations. To be more
precise, denoting the solution by v(t, x), the rescaled solution

√
tv(t,

√
tx) converges

towards a Gaussian limit. In this case, the nonlinearity is called asymptotically
irrelevant. However, if the nonlinearity has an advection term ∂x(v2), then it
becomes relevant and the resulting non-Gaussian limit of the rescaled solution is
determined by the Burgers equation, see [5], for instance.

Here we show a similar result for the IBL, namely that localized perturbations of
spectrally stable stationary solutions (fs, qs)> decay in a universal manner, which
is determined by the Burgers equation. The proof relies on renormalization group
(RG) methods [5] for nonlinear parabolic PDEs, which have been used for systems
like the Ginzburg-Landau equation, see [3, 8, 4, 9], or pattern forming systems, see
[16, 17, 19, 10, 18]. Also for film flow over flat inclines RG methods were used to
show nonlinear stability of spectrally stable stationary solutions, namely in [20] for
an IBL and in [21] for the full Navier-Stokes system.

Mathematically, (1.1), (1.2) can be classified as a quasilinear second order par-
abolic system. Besides the quasilinearity, which makes the local existence theory
difficult, we have the following issues. First, in contrast to the Nusselt solution
over flat bottoms, over wavy bottoms the stationary solutions are not known in
closed form. Second, Fourier analysis, which is an essential tool in the stability
proofs for flat inclines, has to be replaced by Bloch wave analysis. This was used in
[22] to prove nonlinear stability for a semilinear model problem, namely a spatially
periodic Kuramoto-Shivashinsky equation.

Notation. For m, r ∈ R the weighted Sobolev spaces Hr(m) are defined as

Hr(m) := {v : R → C | ‖v‖Hr(m) = ‖%mv‖Hr <∞} with %(x) = (1+x2)1/2. (1.4)

Fourier transform F is defined by

Fv(k) =
1
2π

∫
R
v(x)e−ikxdx, v(x) = F−1v̂(x) =

∫
R
v̂(k)eikxdk, (1.5)

and is an isomorphism between Hr(m) and Hm(r).
Our main result now reads as follows, where for notational convenience we take

initial conditions for (1.1), (1.2) at t = 1, and where the spectral stability assump-
tions will be discussed below in Assumption 2.3.

Theorem 1.2. Let p ∈ (0, 1/2), 3 < r < 4, and let (fs, qs)> be a spectrally stable
stationary solution of the IBL (1.1), (1.2), cf. Assumption 2.3 below. Then there
exist constants C1, C2 > 0 such that the following holds. If ‖f0‖Hr(2)+‖q0‖Hr−1(2) ≤
C1, then there exists a unique global solution (F,Q)> = (fs, qs)> + (f, q)> of the
IBL (1.1), (1.2) with (f, q)>

∣∣
t=1

= (f0, q0)> and

sup
x∈R

∣∣∣(f, q)> − t−1/2fz0(t
−1/2(x+ c1t))Φ1(0, x)

∣∣∣ ≤ C2t
−1+p/2 (1.6)
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for t ∈ [1,∞). Here, Φ1(0, ·) = (dfs/dqs, 1)> is the critical eigenfunction of the
linearization of (1.1), (1.2) around (fs, qs)>, and

fz0(y) =
√
c2
d

z0 erf ′(y/(2
√
c2))

4 + 2z0
(
1 + erf(y/(2

√
c2))

) , (1.7)

denotes the non-Gaussian profile determined by the Burgers equation, where c1 < 0,
c2 > 0 and d < 0 are likewise determined by the linearization around (fs, qs)>, while
z0 > −1 can be given explicitly in terms of the excess mass

∫
R f0 dx, see (4.31).

The behaviour of the function vz(t, x) := t−1/2fz(t−1/2x) is shown in Fig. 1.

Figure 1. Sketch of self-similar decay of the amplitude in a co-
moving frame in (1.6)

Figure 2 shows numerical simulations of (1.1), (1.2) in the stable case (a)-(c)
and the unstable case (d), with periodic boundary conditions. This is also intended
to relate (1.1), (1.2) to the underlying physics. In (a)-(c) we used a sinusoidal
bottom with amplitude a = 0.4mm and wavelength λ=10mm (bottom profile b̂(x̂) =
a cos( 2π

λ x̂)). The mean film thickness is h≈0.06mm, inclination angle α = 60◦,
and the fluid parameters correspond to water, which yields δ ≈ 0.037, ζ = 0.25,
Bi ≈ 3.25 and R = 0.6. The initial condition is F = fs + 2/ cosh((x − 50)/5),
Q = qs ≡ 1. Although R is larger than the critical Reynolds number over flat
bottom, which is Rcrit ≈ 0.48, the stationary solution is stable and the perturbation
decays in the self-similar way predicted by (1.6). (a) shows F at times as indicated,
while (b) shows the evolution of Q. In the latter we directly see the envelope
t−1/2fz0(t

−1/2(x + c1t)) since Φ1
2(0, ·) ≡ 1, while Φ1

1(0, x) = dfs

dqs
(x) is γ-periodic.

To illustrate the physical situation, panel (c) shows the bottom contour and the free
surface at initial time t = 1 in dimensional (mm) cartesian coordinates, between
the 4th and 6th bottom wave. Finally, panel (d) shows Q (for large time) after we
increased α to 90◦. Here (fs, qs)> has become unstable: the perturbation does not
decay to 0, but instead evolves into a long pulse. We expect that this situation can
be described by a generalized KS equation, see, e.g., [7, 15] for the situation over
flat bottoms, and [22] for a model problem for wavy bottoms.
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(a) Decay of the film thickness F (b) Decay of the flow rate
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Figure 2. Numerical simulations of (1.1), (1.2)

The plan of this article is as follows. First we make precise the assumptions
on spectral stability of (fs, qs)>, review basics of the RG method and of Bloch
transform, and formally derive the Burgers equation from (1.1), (1.2). Then, using
maximal regularity results we first prove local existence for (1.1), (1.2) and then use
the RG method to prove Theorem 1.2. The RG method is worked out here for the
first time for a realistic quasilinear fluid dynamical system with spatially periodic
coefficients in which the renormalized solution converges to a non-Gaussian limit.
We expect that the analysis is useful for a number of similar problems, for instance
the full Navier-Stokes film flow problem over wavy bottom, and other parabolic
systems with spatially periodic coefficients and a nonlinearity with lowest order
terms of convective type.

2. Background and result

2.1. Stationary solutions. From (1.1), for γ-periodic stationary solutions
(F,Q)> = (fs, qs)>, we immediately obtain that ∂xqs ≡ 0. Plugging ∂tqs = ∂xqs =
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0 into (1.2) and multiplying it by f2
s , we obtain

0 =
5

2R

(
sin(α−θ)

sinα
f3

s − qs −
cos(α−θ)

sinα
∂xfs f

3
s −

3
8

sin(α−θ)
sinα

∂xθ f
4
s

)
+

5
6
W(∂3

xfs − ∂xκ)f3
s +

9
7
q2s ∂xfs +

1
R

(
45
16
κqsfs+4qs(∂xfs)2−6qs ∂2

xfs fs

)
.

(2.1)
If the bottom waviness ζ is zero, the coefficients κ and θ vanish and we have the
well known Nusselt solution fs = fN with constant film thickness fN = q

1/3
s . Thus,

one possibility to obtain solutions of (2.1) is to continue (fN , qs) for ζ > 0 using
the implicit function theorem. Since x is measured in curvilinear coordinates, the
periodicity γ of x depends on the bottom waviness ζ, and in order to apply the
implicit function theorem in a function space with fixed periodicity we temporarily
replace x by k0x, where we set k0 = 2π/γ. This yields

0 =
5

2R

(
sin(α−θ)

sinα
f3

s − qs −
cos(α−θ)

sinα
k0∂xfs f

3
s −

3
8

sin(α−θ)
sinα

k0∂xθ f
4
s

)
+

5
6
W(k3

0∂
3
xfs − k0∂xκ)f3

s +
9
7
k0q

2
s ∂xfs

+
1
R

(
45
16
κqsfs+4k2

0qs(∂xfs)2−6k2
0qs ∂

2
xfs fs

)
.

(2.2)

To solve this equation we fix the parameters α, δ,R,W and the flow rate qs. For
ζ ≥ 0, we write (2.2) as S(fs, ζ) = 0. Assuming that the bottom contour is in
Hs

per(0, 2π) with s ≥ 3, we obtain ∂xκ ∈ Hs−3
per (0, 2π), and thus,

S ∈ C1
(
Hs

per(0, 2π)× U,Hs−3
per (0, 2π)

)
with U ⊂ R+

0 . For A0 := ∂fS(fN , 0), Hs
per(0, 2π) → Hs−3

per (0, 2π) we have

A0 =
15
2R

q2/3
s +

(
9
7
q2s −

5
2R

cot(α) qs

)
k0∂x −

6
R
k2
0q

4/3
s ∂2

x +
5
6
k3
0Wqs∂

3
x,

and the eigenfunctions of this constant coefficient linear differential operator are
eikx, k ∈ Z. The real part of the eigenvalue ωk is given by

Reωk =
15
2R

q2/3
s +

6
R
k2
0q

4/3
s k2;

i.e., the spectrum is bounded away from zero. Therefore, A0 is an isomorphism
between Hs

per(0, 2π) and Hs−3
per (0, 2π), and the implicit function theorem yields that

for each ζ small enough the equation S(fs, ζ) = 0 has a unique solution fs(ζ) ∈
Hs

per(0, 2π) which depends continuously on ζ. Altogether, for each constant flow
rate qs > 0 and for small bottom waviness ζ there exists a unique stationary solution
of the IBL (1.1), (1.2).

Remark 2.1. The implicit function theorem yields the existence of fs for small
values of ζ. This can be extended until a bifurcation occurs, but it is not clear
for which parameters the stationary solution fs for fixed qs is unique. However,
numerically this was the case in our simulations in [12] up to moderate R much
larger than the critical Reynolds number, beyond which the branch of Nusselt-like
solutions becomes unstable. Thus, it is mainly this branch that we have in mind
here. However, we shall prove a general nonlinear stability result for all spectrally
stable (fs, qs). Thus, instead of discussing the existence and spectral properties of
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stationary solutions in more detail, we simply postulate the pertinent properties in
Assumptions 2.2 and 2.3.

Assumption 2.2. For fixed α,R,W > 0 and κ ∈ Hs−3
per (0, γ), s ≥ 3, the IBL (1.1),

(1.2) has a family of γ-periodic stationary solutions (fs, qs)> with

fs ∈ Hs
per(0, γ), qs = const., (2.3)

which can be parametrized by the flow rate qs ∈ (qs,min, qs,max), where qs,min,max

may depend on the branch considered.

2.2. Perturbation of stationary solutions. Let (fs, qs)> be a fixed stationary
solution of the IBL (1.1), (1.2). Then the perturbation (f, q)> := (F − fs, Q− qs)>
satisfies

∂tf = − 1
1 + κ(fs + f)

∂xq (2.4)

and

∂tq =
5

2R

( sin(α−θ)
sinα

f +
−f2

s q+2fsqsf+qsf2

f2
s (fs+f)2

− cos(α−θ)
sinα

(∂xfs f+fs ∂xf+∂xf f)

− 3
8

sin(α−θ)
sinα

∂xθ(2fsf + f2)
)

+
5
6
Wfs ∂

3
xf +

5
6
W(∂3

xfs + ∂3
xf − ∂xκ)f

− 17
7
qs + q

fs + f
∂xq +

9
7

(qs + q)2

(fs + f)2
∂xf +

9
7

2f2
s qsq − 2fsq

2
sf + f2

s q
2 − q2sf

2

f2
s (fs + f)2

∂xfs

+
1
R

(9
2
∂2

xq +
45
16
κ
fsq − qsf

(fs + f)fs
+ 4

qs + q

(fs + f)2
(2∂xfs ∂xf + (∂xf)2)

+ 4
f2

s q − 2fsqsf − qsf
2

f2
s (fs + f)2

(∂xfs)2 − 6
qs + q

fs + f
∂2

xf − 6
fsq − qsf

(fs + f)fs
∂2

xfs

− 9
2
∂xq(∂xfs + ∂xf)

fs + f

)
− 1

210
R(∂xq)2(qs + q).

(2.5)
The denominators in (2.5) are bounded from below since F is of order 1, cf. Remark
1.1. The linearization of (2.4), (2.5) around (f, q)> = 0 reads

∂t

(
f
q

)
=
(

0 − 1
1+κfs

∂x

ã10 + ã11∂x + ã12∂
2
x + ã13∂

3
x a20 + a21∂x + a22∂

2
x

)(
f
q

)
, (2.6)

with the γ-periodic coefficients

ã10 =
5

2R

(
sin(α− θ)

sinα
+ 2

qs
f3

s

− cos(α− θ)
sinα

∂xfs −
3
4

sin(α− θ)
sinα

∂xθ fs

)
+

5
6
W(∂3

xfs − ∂xκ)−
18
7
∂xfs q

2
s

f3
s

− 45
16R

κ
qs
f2

s

− 8
1
R

(∂xfs)2qs
f3

s

+ 6
1
R
∂2

xfs qs
f2

s

,

(2.7)

ã11 = −5
2

1
R

cos(α− θ)
sinα

fs +
9
7
q2s
f2

s

+ 8
1
R
∂xfs qs
f2

s

, ã12 = −6
1
R
qs
fs
, ã13 =

5
6
Wfs,

(2.8)

a20 = − 5
2R

1
f2

s

+
18
7
∂xfs qs
f2

s

+
45

16R
κ

1
fs

+ 4
1
R

(∂xfs)2

f2
s

− 6
1
R
∂2

xfs

fs
, (2.9)

a21 = −17
7
qs
fs
− 9

2R
∂xfs

fs
, a22 =

9
2R

. (2.10)
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By the transformation

H := F +
1
2
κF 2 (2.11)

the nonlinear equation (1.1) becomes linear, namely ∂tH = −∂xQ. The transfor-
mation (2.11) is one-to-one if the film thickness F is of order 1, and we can express
F by H as

F =
−1 +

√
1 + 2κH
κ

= H − 1
2
κH2 +O(H3). (2.12)

The family of stationary solutions (fs, qs)> from Assumption 2.2 is transformed
into (hs, qs)>, where hs = fs + 1

2κf
2
s . Setting h := H − hs we obtain

f = F − fs =
−1 +

√
1 + 2κH
κ

− −1 +
√

1 + 2κhs

κ

=
1
κ

(√
1 + 2κ(hs + h)−

√
1 + 2κhs

)
=

1
(1 + 2κhs)1/2

h− κ

2(1 + 2κhs)3/2
h2 +O(h3)

=
1

1 + κfs
h− κ

2(1 + κfs)3
h2 +O(h3),

(2.13)

while the inverse transformation is given by

h = (1 + κfs)f +
1
2
κf2. (2.14)

For the time derivative of the perturbation’s total mass

M =
∫

R

∫ fs+f

fs

(1 + κz) dz dx =
∫

R
f(1 + κ(fs + f/2)) dx (2.15)

we obtain
∂tM =

∫
R
∂tf(1 + κ(fs + f)) dx = −

∫
R
∂xq dx = 0. (2.16)

Thus, the total mass of perturbations is conserved. This simply reads d
dt

∫
R h dx =

0, and the IBL (2.4), (2.5) is equivalent to solving ∂th = −∂xq together with (2.5),
where f must be replaced everywhere according to (2.13). For the linear terms we
write in short

A(∂x)
(
h
q

)
:=
(

0 −∂x

a10 + a11∂x + a12∂
2
x + a13∂

3
x a20 + a21∂x + a22∂

2
x

)(
h
q

)
, (2.17)

where a10 = ã10β+ã11∂xβ+ã12∂
2
xβ+ã13∂

3
xβ, a11 = ã11β+2ã12∂xβ+3ã13∂

2
xβ, a12 =

ã12β + 3ã13∂xβ, a13 = ã13β, with β(x) := 1
1+κ(x)fs(x) . Since all fractions in (2.5)

are finite for small perturbations with ‖f‖L∞ < ‖fs‖L∞/2, they can be expanded
in powers of f , and thus, in powers of h. Hence we can write the transformed IBL
as

∂t

(
h
q

)
= A(∂x)

(
h
q

)
+N(h, q), (2.18)

where N contains the nonlinear terms. The first component of N vanishes, since the
equation for ∂th is linear. We look for a solution (h, q)> of (2.18) with (h(t), q(t))> ∈
Hr(2)×Hr−1(2) for fixed t and r ≥ 3 in order to avoid Sobolev spaces with negative
orders. Due to the weight we will achieve C1-regularity with respect to the wave
number ` in Bloch space, which is necessary to expand the critical mode in terms
of ` in Section 4.3.
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2.3. Bloch transform. Considering a bottom with fixed wavelength γ and setting
k0 := 2π/γ, we define for v ∈ Hr(m) the Bloch transform J v as

J v(`, x) = ṽ(`, x) :=
∑
j∈Z

eijk0xv̂(k0j + `). (2.19)

From (2.19) we have that J v(`, x + γ) = J v(`, x), and that Bloch transform is
an isomorphism between the weighted Sobolev space Hr(m) and the Bloch space
B(m, r) defined by

B(m, r) = Hm((−k0/2, k0/2),Hr
per(0, γ)),

‖ṽ‖B(m,r) :=
(∑

j≤m

∫
Ik0

‖∂j
` ṽ(`, ·)‖

2
Hr(Iγ) d`

)1/2

,
(2.20)

where Iδ := (−δ/2, δ/2). The inverse Bloch transform is given by

v(x) =
∫

Ik0

ei`xJ v(`, x) d`. (2.21)

We collect some useful properties of Bloch transform. For a real-valued function v,
we have

J v(−`, x) = J v(`, x). (2.22)
If a : R → R is γ-periodic, then

J (av)(`, x) = a(x)J v(`, x). (2.23)

Thus, Bloch transform is invariant under multiplication with γ-periodic coefficients.
So far, functions in Bloch space are only defined for ` ∈ (−k0/2, k0/2]. In order
to transform products uv with u, v ∈ Hr(m) we extend the domain of ṽ ∈ B(r,m)
corresponding to (2.19); i.e.,

ṽ(`+ k0, x) =
∑
j∈Z

eijk0xv̂(k0j + `+ k0) = e−ik0x
∑
j∈Z

eijk0xv̂(k0j + `) = e−ik0xṽ(`, x).

Then, multiplication in x-space corresponds to convolution in Bloch space; i.e.,

J (uv)(`, x) =
∫ k0/2

−k0/2

J u(l − k, x)J v(k, x) dk =: (J u ∗1 J v)(`, x). (2.24)

Therefore we adapt the definition of B(m, r) in (2.20) to

B(m, r) :=
{
ṽ | ṽ

∣∣
`∈Ik0

∈ Hm(Ik0 ,H
r
per(0, γ)) and ṽ(`+ k0, x) = e−ik0xṽ(`, x)

}
.

(2.25)
The notation ∗1 in (2.24) becomes clear in (4.23), where we define a more general
convolution operator. If there is no ambiguity we omit the subscript in the fol-
lowing and write J u ∗ J v. Due to the extension in (2.25) convolution becomes
commutative. From (2.21) we obtain

∂xv(x) =
∫ k0/2

−k0/2

ei`x(∂x + i`)J v(`, x) d`; (2.26)

i.e., ∂x in x-space corresponds to the operator (∂x + i`) in Bloch space. Thus,
setting h̃ := J h and q̃ := J q the IBL (2.18) is equivalent to

∂t

(
h̃
q̃

)
= A(∂x + i`)

(
h̃
q̃

)
+ Ñ(h̃, q̃) (2.27)



10 T. HÄCKER, G. SCHNEIDER, H. UECKER EJDE-2012/61

in Bloch space, where
Ñ(h̃, q̃) := JN(J−1h̃,J−1q̃). (2.28)

Since Bloch transform is an isomorphism between Hr(2) and B(2, r), we look for
a solution (h̃, q̃)> of (2.27) with (h̃(t), q̃(t))> ∈ B(2, r)×B(2, r− 1) for fixed t and
r ≥ 3.

2.4. Spectral situation and mode filters. Spectral situation.
By (2.11) the family of stationary solutions (fs, qs)> from Assumption 2.2 is

transformed into a family of stationary solutions (hs, qs)> of the IBL for (H,Q)>,
which we write in short as

∂t

(
H
Q

)
= G(H,Q) =

(
G1(H,Q)
G2(H,Q)

)
. (2.29)

Since the γ-periodic stationary solutions are parametrized by the x-independent
flow rates qs, we have

G(hs(qs), qs) = 0 for all qs ∈ (qs,min, qs,max), (2.30)

and differentiating with respect to qs gives

0 =
d

dqs
G(hs(qs), qs) =

(
∂G1
∂H (hs(qs), qs) ∂G1

∂Q (hs(qs), qs)
∂G2
∂H (hs(qs), qs) ∂G2

∂Q (hs(qs), qs)

)(
dhs

dqs
(qs)
1

)
. (2.31)

The linear differential operator on the right-hand side of (2.31) also occurs in
the linearization of the IBL (2.29) around a stationary solution: Choosing in
the following qs fixed, the perturbation (h, q)> = (H − hs, Q − qs)> satisfies
∂t(h, q)> = G(hs + h, qs + q). Thus, the linearization around (h, q)> = 0 reads

∂t

(
h
q

)
=

∂G
∂(H,Q)

(hs, qs)
(
h
q

)
, (2.32)

which we have already expressed in (2.17) with the help of the differential operator
A(∂x). Therefore, combining (2.31) and (2.32) gives

A(∂x)
(

dhs

dqs
(qs)
1

)
= 0 for all qs ∈ (0, qs,max). (2.33)

Transferring the IBL to Bloch space, we know from (2.27) that the linear opera-
tor in the evolution equation for (h̃, q̃)> is given by A(∂x + i`). Corresponding to
(2.33), (dhs/dqs, 1)> ∈ Hs

per(0, γ)×Hs−1
per (0, γ) is an eigenfunction of A(∂x + i`) to

the eigenvalue λ1(0) = 0 for ` = 0. Thus, in Bloch space the linearization of the
IBL around a stationary solution has always a zero eigenvalue. This property corre-
sponds to the free surface in the underlying physical problem. Furthermore, for fixed
` ∈ (−k0/2, k0/2) the differential operator A(∂x + i`) : Hs

per(0, γ) ×Hs−1
per (0, γ) →

Hs−2
per (0, γ) × Hs−3

per (0, γ) is elliptic, and thus we obtain countable many curves of
eigenvalues λn with Reλn(`) → −∞ for n→∞. Like for the stationary solutions,
instead of calculating the spectrum of A(∂x + i`), we state an assumption based on
the properties derived above. A typical spectrum is then sketched in Figure 3.

Assumption 2.3 (Spectral stability). Let s be the bottom regularity from As-
sumption 2.2. We assume that A(∂x+i·) with A(∂x+i`) : Hs

per(0, γ)×Hs−1
per (0, γ) →

Hs−2
per (0, γ)×Hs−3

per (0, γ) has countable many curves of eigenvalues λn : (−k0/2, k0/2)
→ C, n ∈ N, with eigenfunctions ` 7→ φn(`, ·) ∈ Hs

per(0, γ)×Hs−1
per (0, γ) and

(i) λ1(`) = c1i`− c2`
2 +O(`3) with c1 ∈ R, Re c2 > 0,
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(ii) Reλ1(`) < −c̃2`2 for |`| ≤ 4rχ and a c̃2 < c2,
(iii) Reλ1(`) < −σ0 < 0 for |`| > 4rχ and Reλ1(`) > −σ0 for |`| < 4rχ,
(iv) Reλn(`) < −σ0 for all n ≥ 2, ` ∈ (−k0/2, k0/2).

Figure 3. Sketch of the spectral situation and the cut-off function χ

Eigenfunctions. The relation between the eigenvalues and eigenvectors of the two
versions of the IBL, namely system (2.4), (2.5) for (f, q)> and system (2.18) for
(h, q)>, is as follows. Let us denote the linearized (f, q)-system (2.6) by ∂t(f, q)> =
Â(∂x)(f, q)>. Since h = 1

β f +O(f2), see (2.17), we have

A(∂x)
(
h
q

)
=
(

1/β 0
0 1

)
Â(∂x)

(
βh
q

)
,

where β(x) = 1/(1+κ(x)fs(x)), see (2.17). Thus, for each eigenvalue λn ofA(∂x+i`)
we obtain

λnφ
n = A(∂x + i`)φn =

(
1/β 0
0 1

)
Â(∂x + i`)

(
βφn

1

φn
2

)
;

i.e.,

λn

(
βφn

1

φn
2

)
= Â(∂x + i`)

(
βφn

1

φn
2

)
.

Therefore, in Bloch space the two systems for (f, q)> and (h, q)> have exactly the
same eigenvalues, where the eigenvectors of the (f, q)-system are given by

Φn :=
(
β 0
0 1

)
φn. (2.34)

In particular, the critical eigenfunctions read

φ1(`, ·) =
(dfs

dqs

1

)
+O(`), Φ1(`, ·) =

(
1

1+κfs

dhs

dqs

1

)
=
(dfs

dqs

1

)
+O(`). (2.35)

This property is used in the proof of Theorem 1.2, where the universal decay be-
havior for the (h, q)-system is transferred back to the original (f, q)-system.

Since the IBL (2.27) in Bloch space has a zero eigenvalue, we have to split (h̃, q̃)>

into its stable part and into a multiple of the critical eigenvector φ1. On the linear
level, the critical curve λ1(`) = c1i`−c2`2 +O(`3) for the mode φ1(`, ·) corresponds
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to ∂tv = (c1∂x + c2∂
2
x)v, which is the linear diffusion equation in the comoving

frame y = x + c1t. However, going into this comoving frame in (2.18) leads to a
time dependent differential operator, which would make the subsequent analysis
more complicated. Therefore, we introduce the rotated variable w̃ by

w̃(t, `, x) =
(
w̃1

w̃2

)
(t, `, x) := e−c1i`t

(
h̃
q̃

)
(t, `, x), (2.36)

which satisfies
∂tw̃(t, `, x) = Ã(`)w̃(t, `, x) + Ñ(w̃)(t, `, x) (2.37)

with

Ã(`) := −c1i`+A(∂x + i`)

=
(

−c1i` −(∂x+i`)
a10+a11(∂x+i`)+a12(∂x+i`)2+a13(∂x+i`)3 (a20−c1i`)+a21(∂x+i`)+a22(∂x+i`)2

)
.

(2.38)
The nonlinearity Ñ is exactly the same as for the (h̃, q̃)-system in (2.27) since
(ṽi ∗ ṽj)(`) =

∫ k0/2

−k0/2
w̃i(` − k)ec1i(`−k)tw̃j(k)ec1ikt dk = ec1i`t(w̃i ∗ w̃j)(`) for ṽ :=

ec1i`tw̃ and i, j ∈ {1, 2}. Clearly, Ã has the same eigenfunctions φn as A(∂x + i`)
with eigenvalues µn(`) = λn(`)− c1i` . In particular, for the critical eigenvalue we
obtain

µ1(`) = −c2`2 +O(`3). (2.39)

Mode filters. We introduce mode filters to extract the critical mode φ1. Let
χ : R → [0, 1] be a smooth cut-off function with χ(`) = 1 for |`| ≤ rχ and χ(`) = 0
for |`| ≥ 2rχ, see Figure 3. Due to Assumption 2.3 the curve of critical eigenvalues
µ1 is isolated from the rest of the spectrum for |`| < 4rχ. Thus, denoting the scalar
product in L2(0, γ) by 〈·, ·〉; i.e.,

〈u, v〉 :=
∫ γ

0

u · v̄ dx,

where the “·” stands for the standard scalar product in R2, we can define the critical
mode filter Ẽc by

(Ẽcw̃)(`, x) := χ(`)
〈
w̃(`, ·), ψ1(`, ·)

〉
φ1(`, x). (2.40)

Here ψ1(`, ·) is an eigenfunction of the L2(0, γ)-adjoint operator Ã∗(`) to the eigen-
value µ̄1(`). The L2(0, γ)-adjoint operator of a differential operator L = a(x)(∂x +
i`) with a γ-periodic coefficient a is given by L∗v = −(∂x + i`)(āv). Thus, for the
critical eigenfunction we obtain ψ1(0, x) = (c0, 0)>; i.e.,

ψ1(`, x) = c0

(
1
0

)
+O(`), (2.41)

and we choose ψ1 such that 〈φ1(`, ·), ψ1(`, ·)〉 = 1 for all ` ∈ (−4rχ, 4rχ). Addi-
tionally to Ẽc, we define the scalar mode filter Ẽ∗c and the stable mode filter Ẽs

by
(Ẽ∗c w̃)(`) := χ(`)〈w̃(`, ·), ψ1(`, ·)〉, Ẽs := Id−Ẽc. (2.42)

Moreover, we define auxiliary mode filters

(Ẽh
c w̃)(`, x) := χ(`/2)〈w̃(`, ·), ψ1(`, ·)〉φ1(`, x), Ẽh

s := Id−Ẽh
c (2.43)
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such that Ẽh
c Ẽc = Ẽc and Ẽh

s Ẽs = Ẽs, which is used to substitute for missing
projection properties of Ẽc and Ẽs. Setting α̃(t, `) := (Ẽ∗c w̃(t))(`), w̃s(t, `, x) :=
(Ẽsw̃(t))(`, x), we obtain the splitting

w̃(t, `, x) = α̃(t, `)φ1(`, x) + w̃s(t, `, x) (2.44)

into the critical mode α̃φ1 and the stable component w̃s.

Remark 2.4. The idea of this splitting is that due to the spectral properties of
Ẽh

s Ã(`), ws is linearly exponentially damped. Thus, we expect the dynamics of
(2.37) to be governed by the dynamics of the critical mode α̃φ1.

Altogether, after applying mode filters, the IBL in Bloch space reads

∂tα̃(t, `) = µ1(`)α̃(t, `) + B̃c(α̃(t))(`) + H̃c(α̃(t), w̃s(t))(`), (2.45)

∂tw̃s(t, `, x) = Ãs(`)w̃s(t, `, x) + H̃s(α̃(t), w̃s(t))(`, x), (2.46)

where

B̃c(α̃)(`) := id`χ(`)(α̃∗2)(`), (2.47)

H̃c(α̃, w̃s)(`) := Ẽ∗c

(
Ñ(α̃φ1 + w̃s)

)
(`)− id`χ(`)α̃∗2(`), (2.48)

Ãs(`) := Ẽh
s Ã(`), H̃s(α̃, w̃s)(`, x) := Ẽs

(
Ñ(α̃φ1 + w̃s)

)
(`, x), (2.49)

with d specified subsequently in (2.64). Below we will see that cubic terms as well
as those involving w̃s are asymptotically irrelevant. Thus, the only dangerous terms
are the quadratic ones in Ñ(α̃φ1), which are not damped by the decay of w̃s. In
the formal derivation in §2.6 we will see that these terms have the “derivative-like”
structure id`χ(`)α̃∗2 with d ∈ R, which leads to a Burgers-like decay. There also
occur terms of the order of O(`2)α̃∗2, but as they turn out to be irrelevant due to
the additional factor `, we put them into H̃c and denote by B̃c the term id`χ(`)α̃∗2,
which is the only relevant one.

Function spaces. It remains to choose appropriate function spaces for α̃ and w̃s.
For fixed t we have (h, q)> ∈ Hr(2)×Hr−1(2) if and only if w̃ ∈ B(2, r)×B(2, r−1);
i.e., both α̃φ1 and w̃s ∈ B(2, r)×B(2, r − 1).

Thus, in a first step we assume that α̃φ1 ∈ B(2, r) × B(2, r − 1). In the fol-
lowing let the bottom profile be at least in Hr

per(0, γ), such that due to Assump-
tion 2.3 we have φ1(`) ∈ Hr

per(0, γ) × Hr−1
per (0, γ) for fixed `. Since the critical

eigenvalue µ1(`) is isolated from the rest of the spectrum for |`| < 4rχ, the eigen-
function φ1 is smooth with respect to ` in this interval. In particular, we have
φ1 ∈ H2((−2rχ, 2rχ),Hr

per(0, γ) × Hr−1
per (0, γ)). Since the same is true for the ad-

joint eigenfunction ψ1, the definition of the critical mode filter in (2.42) leads to

α̃ ∈ H2(R), supp α̃ ∈ [−2rχ, 2rχ]. (2.50)

Next, we conversely assume that α̃ ∈ H2(R) with supp α̃ ∈ [−2rχ, 2rχ], and w̃s ∈
B(2, r) × B(2, r − 1). It immediately follows that α̃φ1 is in H2(Ik0 ,H

r
per(0, γ) ×

Hr−1
per (0, γ)), but not in B(2, r) × B(2, r − 1) since the extension property from

(2.25) is missing, which is required to calculate convolutions. However, since α̃ has
compact support, this is not needed. On the one hand, in convolutions like∫ k0/2

−k0/2

α̃(`− k)φ1(`− k)ṽ(k) dk =
∫ k0/2

−k0/2

α̃(k)φ1(k)ṽ(`− k) dk,
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with ṽ ∈ B(2, r) × B(2, r − 1), we can use the extension property of ṽ such that
α̃φ1 must only be evaluated for ` ∈ Ik0 . On the other hand, for convolutions∫ k0/2

−k0/2

α̃(`− k)φ1(`− k)α̃(k)φ1(k) dk =
∫ 2rχ

−2rχ

α̃(`− k)φ1(`− k)α̃(k)φ1(k) dk

we have to extend α̃φ1 to |`| ≤ k0/2+2rχ by (α̃φ1)(`+k0) = e−ik0x(α̃φ1)(`). Thus,
α̃φ1 is extended with values of (α̃φ1)(`), ` ∈ (−1/2,−1/2 + 2rχ] ∪ (1/2− 2rχ, 1/2],
where α̃ and hence α̃φ1 is zero. Thus, there is no difference if we extend α̃φ1

according to the extension rule in (2.25) or if we use α̃ ∈ H2(R) with compact
support. If necessary, we must replace rχ in Assumption 2.3 by a smaller value
depending on the final degree of the nonlinearity since each convolution enlarges
the support of (α̃φ1)∗j . Altogether, we obtain the equivalence

w̃ ∈ B(2, r)×B(2, r − 1) ⇔ α̃ ∈ H2(R), supp α̃ ∈ [−2rχ, 2rχ],

and w̃s ∈ B(2, r)×B(2, r − 1).
(2.51)

Moreover, since α̃ is independent of x we obtain

‖α̃‖2B(2,r) =
∑
j≤2

∫ k0/2

−k0/2

‖∂j
` α̃(`)‖2Hr(Iγ) d`

=
∑
j≤2

∫ k0/2

−k0/2

γ2|∂j
` α̃(`)|2 d` = γ2‖α̃‖2H2(Ik0 )

for all r ≥ 0. Therefore, and since it does not matter how α̃ is extended to |`| > k0/2,
α̃ ∈ H2(R) in (2.51) can be substituted by α̃ ∈ B(2, r). Thus, we look for a solution
(α̃, w̃s) of (2.45), (2.46) with α̃(t) ∈ B(2, r) and w̃(t) ∈ B(2, r) × B(2, r − 1) for
fixed t and r ≥ 3.

2.5. Self-similar decay in the viscous Burgers equation. The idea behind
the splitting of w̃ into α̃ and w̃s is that α̃ will fulfill a perturbed Burgers equation
while w̃ is linearly exponentially damped. Here we collect some basic facts about
the dynamics of the Burgers equation, mainly from [5], see also [20, 21] for more
details.

By the Cole-Hopf transformation η(t, ξ) = exp
(

d
c2

∫√c2ξ

−∞ v(t, x)dx
)
, the viscous

Burgers equation
∂tv = c2∂

2
xv + d∂x(v2), x ∈ R, t ≥ 0 (2.52)

is transformed into the linear diffusion equation ∂tη = ∂2
ξη. The inverse transfor-

mation is given by

v(t, x) =
√
c2
d

∂ξη(t, x/
√
c2)

η(t, x/
√
c2)

.

By construction, we have limξ→−∞ η(t, ξ) = 1 for all t ≥ 0. Setting limξ→∞ η(0, ξ) =
1 + z for the initial condition, it is well known that

η(t, ξ) = 1 +
z

2

(
1 + erf

( ξ

2
√
t

))
with erf(x) =

2√
π

∫ x

0

e−y2
dy

is an exact solution of the linear diffusion equation. Thus, for every z > −1 there
exists a self-similar solution of the Burgers equation (2.52) given by

vz(t, x) := t−1/2fz(t−1/2x) with fz(y) =
√
c2
d

z erf ′(y/(2
√
c2))

4 + 2z
(
1 + erf(y/(2

√
c2))

) , (2.53)
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where ln(z + 1) = d
c2

∫
R vz(t, x)dx.

Moreover, if we consider an arbitrary initial condition η
∣∣
t=0

= η0 ∈ L∞ with the
boundary conditions limξ→−∞ η0(ξ) = 1 and limξ→∞ η0(ξ) = 1 + z, the solution
can be written as

η(t, ξ) =
1√
4πt

∫
R

e−(ξ−y)2/(4t)η0(y)dy.

If we assume that η0 decays sufficiently fast to 1 for ξ → ±∞, we have ϕ0 := ∂ξη0 ∈
L1, and ϕ := ∂ξη satisfies the linear diffusion equation with the localized initial
condition ϕ(0, ξ) = ϕ0(ξ). Then supξ∈R |ϕ(t, ξ) −

√
π/t ϕ̂0(0)e−ξ2/(4t)| ≤ Ct−1,

which, by integration with respect to ξ, yields

sup
ξ∈R

∣∣η(t, ξ)− 1− z

2

(
1 + erf

( ξ

2
√
t

))∣∣ ≤ Ct−1/2.

Therefore, the renormalized solution of the Burgers equation (2.52) with initial
condition v

∣∣
t=0

= v0 ∈ L1 satisfies

sup
x∈R

|t1/2v(t, t1/2x)− fz(x)| ≤ Ct−1/2, (2.54)

where ln(z+1) = d
c2

∫
R v0(x)dx. Thus, solutions of the Burgers equation to localized

initial conditions converge to a non-Gaussian profile, see Fig. 1. This behaviour is
stable under suitable perturbations of the Burgers equation, cf., e.g., [21, Theorem
1.5].

Lemma 2.5. Let p ∈ (0, 1/2) and h(v, ∂xv, ∂
2
xv) = vq1(∂xv)q2(∂2

xv)
q3 with dh =

q1 + 2q2 + 3q3 > 3, qj ∈ N0, and q3 ≤ 1. Then there exist C1, C2 > 0 such that the
following holds. If ‖v0‖H2(2) ≤ C1, then the perturbed Burgers equation

∂tv = c2∂
2
xv + d∂x(v2) + h(v, ∂xv, ∂

2
xv)

with c2 > 0, d 6= 0 has a unique solution v with v
∣∣
t=1

= v0. For a z > −1 it satisfies

‖
√
tv(t,

√
tx)− fz(x)‖H2(2) ≤ C2t

−1/2+p (2.55)

for all t ≥ 1, where fz is the non–Gaussian profile from (2.53).

In particular, nonlinearities h with degree dh > 3, or more general nonlineari-
ties (not necessarily monomials) such that (2.55) holds, are called asymptotically
irrelevant.

2.6. Derivation of the Burgers equation. Splitting of the nonlinearity. To
distinguish relevant from asymptotically irrelevant terms we split the nonlinearity
N from (2.18) into N = B + G, where the second component of B(h, q) contains
all quadratic terms without a factor ∂xq. The terms in B turn out to have a
“derivative-like” structure and hence lead to a Burgers-like decay, see Remark 2.6
below. For all other terms, which we collect in G(h, q), we later show that they are
irrelevant. By construction,

B(h, q) =
(

0
B2(h, q)

)
=
(

0
b00h2+b01h ∂xh+b02h ∂2

xh+b03h ∂3
xh+b11(∂xh)2+b1hq+b2∂xh q+b3∂2

xh q+b4q2

)
,

(2.56)
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where again all coefficients are γ-periodic in x and depend on the stationary solution
(hs, qs).

Since the equation for ∂th is linear, also in G(h, q) the first component vanishes.
The terms in the second component of G can be characterized as follows:

(i) Terms in B2(h, q), multiplied by hj , j ≥ 1.
(ii) (∂xq)2, hj ∂xq q, h

j+1 ∂xq, h
j ∂xh ∂xq with j ≥ 0.

(iii) (∂xq)2q, hj ∂xh q
2, hj(∂xh)2q with j ≥ 0.

The terms in (i) are due to the expansions 1/(fs + f) =
∑

j≥0 cjf
j and f =∑

j≥1 c̃jh
j . They are at least cubic and contain the quasilinear terms hj ∂3

xh, j ≥ 2.
The terms in (ii) are the quadratic ones in (2.5) which contain a factor ∂xq. Except
of the first one, they also occur multiplied by powers of h due to the denominator
1/(fs + f). Finally, the terms in (iii) originate from the terms in (2.5) having a
cubic numerator. Altogether, we can write the IBL (2.18) for (h, q)> as

∂t

(
h
q

)
= A(∂x)

(
h
q

)
+B(h, q) +G(h, q). (2.57)

Setting B̃(h̃, q̃) = JB(J−1h̃,J−1q̃) and G̃(h̃, q̃) = JG(J−1h̃,J−1q̃), this corre-
sponds to

∂tw̃(t, `, x) = Ã(`)w̃(t, `, x) + B̃(w̃)(t, `, x) + G̃(w̃)(t, `, x) (2.58)

in Bloch space, cf. (2.37).

Remark 2.6. Heuristically, the reason for splitting the nonlinearity into B and G
is the following. To project the nonlinearity Ñ onto the critical eigenfunction we
take the scalar product of Ñ(`, ·) with the eigenvector of the adjoint linear operator
Ã∗(`, ·), which, by (2.41), reads ψ1(`) = (c0, 0)> +O(`). Thus, since the equation
for ∂th is linear, the critical component of the nonlinearity obtains an additional
factor ` in Bloch space, which increases its degree by 1. This is the reason why
terms like h2 turn out to have the same degree as the nonlinearity ∂x(v2) in the
Burgers equation. As the IBL has non-constant coefficients, a ∂x in x-space, which
corresponds to (∂x +i`) in Bloch space, does not automatically increase the degree.
Therefore, also terms like h ∂3

xh, which at first view appear to be irrelevant, make
an contribution to the relevant terms. On the other hand, since the q-component of
the critical eigenvector φ1 is independent of x at wave number ` = 0, a factor ∂xq
leads to a further factor ` after projecting it onto the critical eigenvector, and thus
to an asymptotically irrelevant term. That is why quadratic terms with a factor
∂xq are assigned to G. These considerations are made rigorous in §4.

Formal derivation of the Burgers equation. Following Remarks 2.4 and 2.6 we
formally derive the Burgers equation for α̃ by ignoring w̃s as well as the nonlinearity
G̃. Thus, setting w̃ = (w̃1, w̃2)> = α̃φ1, (2.45) becomes

∂tα̃(t, `) = µ1(`)α̃(t, `) + Ẽ∗c (B̃(α̃(t)φ1))(`). (2.59)

Since the equation for ∂th is linear, the nonlinearity reads

Ẽ∗c (B̃(α̃φ1))(`) = χ(`)
∫ γ

0

B̃2(α̃φ1)(`, x) ψ̄1
2(`, x) dx,
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where (2.56) yields

B̃2(w̃) = b00w̃
∗2
1 + b01w̃1 ∗ [(∂x + i`)w̃1] + b02w̃1 ∗ [(∂x + i`)2w̃1]

+ b03w̃1 ∗ [(∂x + i`)3w̃1] + b11[(∂x + i`)w̃1]∗2 + b1w̃1 ∗ w̃2

+ b2[(∂x + i`)w̃1] ∗ w̃2 + b3[(∂x + i`)2w̃1] ∗ w̃2 + b4w̃
∗2
2 .

(2.60)

We study in detail only the first term of B̃2(w̃) and show afterwards that all other
terms can be treated the same way. We have∫ γ

0

b00(x)w̃∗21 (`, x)ψ̄1
2(`, x) dx

=
∫ γ

0

b00(x)
∫ k0/2

−k0/2

α̃(`− k)φ1
1(`− k, x)α̃(k)φ1

1(k, x) dk ψ̄1
2(`, x) dx

=
∫ k0/2

−k0/2

α̃(`− k)α̃(k)
∫ γ

0

b00(x)φ1
1(`− k, x)φ1

1(k, x)ψ̄
1
2(`, x) dxdk

=:
∫ k0/2

−k0/2

α̃(`− k)α̃(k)K(`, `− k, k) dk.

(2.61)

Before we expand the kernel K(`, ` − k, k) in terms of `, we state the following
useful properties.

Lemma 2.7. The adjoint eigenfunction ψ1 satisfies ψ1
2(0, x) = 0 and ∂`ψ

1
2(0, x) ∈

iR.

Proof. The first property immediately follows from (2.41). Differentiating the eigen-
value equation Ã∗(`)ψ1(`, x) = µ̄1(`)ψ1(`, x) with respect to ` gives

∂`Ã
∗(`)ψ1(`, x) + Ã∗(`)∂`ψ

1(`, x) = ∂`µ̄1(`)ψ1(`, x) + µ̄1(`)∂`ψ
1(`, x);

i.e., from the locally parabolic shape of µ̄1(`) = −c2`2 +O(`3) it follows that

∂`Ã
∗(0)ψ1(0, x) + Ã∗(0)∂`ψ

1(0, x) = 0.

Since ∂`Ã
∗(0)ψ1(0, x) = (ic0c1, ic0)>, cf. (2.38), we obtain Ã∗(0)∂`ψ

1(0, x) ∈ iR2.
As all coefficients of Ã∗(0) are real, we obtain ∂`ψ

1(0, x) ∈ iR2 + ker Ã∗(0) =
iR2 + Cψ1(0, x) and thus ∂`ψ

1
2(0, x) ∈ iR. �

Returning to (2.61) we can write the integral kernel as

K(`, `− k, k) = ∂1K(0)`+ ∂2K(0)(`− k) + ∂3K(0)k +O(|`|2 + |`− k|2 + |k|2),

since K(0) = 0 due to ψ1
2(0, x) = 0. For the same reason we obtain ∂2K(0) =

∂3K(0) = 0, while the first term reads

∂1K(0)` =
∫ γ

0

b00(x)φ1
1(0, x)φ

1
1(0, x)∂`ψ̄

1
2(0, x) dx ` =: iK1` ∈ iR, (2.62)

since φ1(0, x) ∈ R2, see (2.35). Altogether, we have

K(`, `− k, k) = iK1`+O(|`|2 + |`− k|2 + |k|2). (2.63)

Therefore, ∫ γ

0

b00(x)w̃∗21 (`, x)ψ̄1
2(`, x) dx
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=
∫ k0/2

−k0/2

α̃(`− k)α̃(k)
(
iK1`+O(|`|2 + |`− k|2 + |k|2)

)
dk

= iK1`α̃
∗2(`) +O(`2)α̃∗2(`).

For the remaining terms in B̃2(w̃) the same considerations lead to∫ γ

0

B̃2(α̃φ1)(`, x)ψ̄1
2(`, x) dx =

∫ k0/2

−k0/2

α̃(`− k)α̃(k)K(`, `− k, k) dk,

where the integral kernel K is given as sum of terms of the type∫ γ

0

bij(x)φ1
j1(`− k, x)(ik)n1∂n2

x φ1
j2(k, x)ψ̄

1
2(`, x) dx.

Thus, there exists a d ∈ R such that we can write

K(`, `− k, k) = id`+O(|`|2 + |`− k|2 + |k|2), (2.64)

which yields
Ẽ∗c (B̃(α̃φ1))(`) = id`χ(`)α̃∗2(`) +O(`2)α̃∗2(`). (2.65)

Altogether (2.59) leads to

∂tα̃(t, `) = −c2`2α̃(t, `) + id`χ(`)α̃∗2(t, `) +O(`3)α̃(t, `) +O(`2)α̃∗2(t, `). (2.66)

Since ∂x in x-space corresponds to i` in Fourier space and since a derivative increases
the degree of irrelevance by one, this reminds us strongly of an asymptotically
irrelevant perturbation of the Fourier transformed Burgers equation ∂tv̂ = −c2k2v̂+
idkv̂∗2. This formally explains why in the main Theorem 1.2 the comoving non-
Gaussian profile t−1/2fz0(t

−1/2(x+c1t))Φ1(0, x) governs the asymptotics of the IBL
at lowest order.

2.7. The result. §2.5 about the Burgers equation and the formal calculations in
§2.6 motivate the formulation of the following theorem about nonlinear stability of
stationary solutions of the IBL.

Theorem 2.8. Let p ∈ (0, 1/2), 3 < r < 4, and let (fs, qs)> be a spectrally
stable stationary solution of the IBL (1.1), (1.2); i.e., Assumption 2.3 is fulfilled.
Then there exist constants C1, C2 > 0 such that the following holds. If ‖h0‖Hr(2) +
‖q0‖Hr−1(2) ≤ C1, then there exists a unique global solution (h, q) of the transformed
IBL (2.18) with (h, q)

∣∣
t=1

= (h0, q0) and

sup
x∈R

∣∣∣(h, q)> − t−1/2fz0(t
−1/2(x+ c1t))φ1(0, x)

∣∣∣ ≤ C2t
−1+p/2 (2.67)

for t ∈ [1,∞). Here, z0 > −1, fz0 denotes the non-Gaussian profile from (2.53),
and φ1(0, ·) = (dhs/dqs, 1)> is an eigenfunction to the critical eigenvalue λ1(`) =
c1i`− c2`

2 +O(`3) from Assumption 2.3.

Theorem 2.8 follows from the subsequent Theorem 4.2 about nonlinear stability
in rescaled Bloch spaces. To transfer Theorem 2.8 to the original (F,Q)-system
(1.1), (1.2) we note that (2.67) yields supx∈R h

2 ≤ Ct−1. Since due to (2.13) the
transformation for the film thickness reads f = βh+O(h2), we can write

|(f, q)> − t−1/2fz0(t
−1/2(x+ c1t))Φ1(0, x)|

=
∣∣∣∣(β 0

0 1

)(
(h, q)> − t−1/2fz0(t

−1/2(x+ c1t))φ1(0, x)
)∣∣∣∣+O(h2),
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where Φ1 is the eigenvector corresponding to the critical eigenvalue λ1 in the (f, q)-
system, see (2.34). This yields Theorem 1.2.

3. Existence of a local solution

For the proof of Theorem 2.8 we use the RG method [5] for (2.45), (2.46). The
main steps consist in a proof of local existence using maximal regularity methods,
and in a careful estimate of the nonlinear terms. The local existence and uniqueness
of solutions is carried out via resolvent estimates in x-space, while the RG method
is set up in Bloch space.

3.1. Function spaces depending on time and space. In the following, we
always assume that X is a Hilbert space and t0, t1 ∈ R ∪ {−∞,∞}. If not stated
otherwise, Hr stands for Hr(R).

Definition 3.1. L2((t0, t1), X) denotes the space of (strongly) measurable func-

tions u with values in X such that the norm ‖u‖L2((t0,t1),X) :=
( ∫ t1

t0
‖u(t)‖2X dt

)1/2

is finite. For m ∈ N we write

Hm((t0, t1), X) := {u | ∂j
t u ∈ L2((t0, t1), X) for 0 ≤ j ≤ m},

‖u‖Hm((t0,t1),X) :=
( m∑

j=0

‖∂j
t u‖2L2((t0,t1),X)

)1/2

.

In the special case (t0, t1) = R and X = Hr(R), r ∈ R+ we find the equivalent
norm

‖u‖Hm(R,Hr) ∼
(∫

R

∫
R
(1 + τ2)m(1 + k2)r|Ftxu(τ, k)|2 dτ dk

)1/2

, (3.1)

where Ftxu denotes the Fourier transform of u with respect to time and space.
Obviously, this definition can be extended to all m ∈ R+.

Lemma 3.2. Let s ≥ 0. Then, we have
(i) u ∈ Hs(R, X) ⇔ (1 + τ2)

s
2Ftu ∈ L2(R, X).

(ii) Hs((t0, t1), X) coincides with the space of restrictions to (t0, t1) of the el-
ements in Hs(R, X). Extension and restriction are both continuous opera-
tors.

For a proof see [13, p. 58 and Theorem 9.1]. By (i) we see that (3.1) is an
equivalent norm in Hm(R,Hr) also for non-integer values of m. The next lemma
shows that the regularity of space and time derivatives is the same as in the scalar
valued case. Here we denote by [s] the integer part of s.

Lemma 3.3. Let u ∈ Hs((t0, t1),Hr), j ≤ [s], l ≤ [r]. Then

∂l
x∂

j
t u ∈ Hs−j((t0, t1),Hr−l).

Proof. We assume (t0, t1) = R. Then by (3.1) we have

‖∂l
x∂

j
t u‖2Hs−j(R,Hr−l) ≤ C

∫
R

∫
R
(1 + τ2)s−j(1 + k2)r−l|Ftx[∂l

x∂
j
t u](τ, k)|2 dτ dk

= C

∫
R

∫
R
(1 + τ2)s−j(1 + k2)r−l|k|2l|τ |2j |Ftxu(τ, k)|2 dτ dk

≤ C‖u‖Hs(R,Hr).

�



20 T. HÄCKER, G. SCHNEIDER, H. UECKER EJDE-2012/61

As we will see in Lemma 3.11 below, for u ∈ Hs((t0,∞), L2), s > 1/2, there
exist traces ∂j

t u(t0, ·) ∈ L2(R) for all j ∈ N0 with j < s− 1/2. Thus, we can define
the following subspace of Hs((t0,∞),Hr).

Definition 3.4.

Hs
0((t0,∞),Hr) := {u ∈ Hs((t0,∞),Hr) | ‖∂j

t u(t0, ·)‖L2=0 for j < s−1
2
, j∈N0}.

By the following lemma these functions can be extended by zero for t ≤ 0.

Lemma 3.5. Let s ≥ 0 be not a half integer, t0 ∈ R, u ∈ Hs
0((t0,∞),Hr), and

u0(t, ·) :=

{
u(t, ·) for t > t0,

0 for t ≤ t0.

Then u 7→ u0 is a continuous mapping from Hs
0((t0,∞),Hr) into Hs(R,Hr); i.e.,

there exist C1, C2 > 0 such that

C1‖u‖Hs((t0,∞),Hr) ≤ ‖u0‖Hs(R,Hr) ≤ C2‖u‖Hs((t0,∞),Hr).

For a proof see [13], in particular Theorem 11.4. Next we characterize functions
u in Hs

0((0,∞),Hr). Since they can be extended by zero for t ≤ 0 we can apply
Fourier transform in time. The problem is that without making further demands
on the regularity of Ftu we can not guarantee that the inverse Fourier transform
is again in Hs

0 . The following two lemmas show conditions based upon the Paley-
Wiener Theorem which ensure that the inverse Fourier transform maps back to
functions vanishing on the negative time axis. As u is only defined for t > 0 and
Ftu must be treated as function on τ ∈ C it is common to replace Fourier transform
in time by Laplace transform:

Lu(τ) :=
1
2π

∫ ∞

0

u(t)e−tτ dt. (3.2)

The relation to Fourier transform is

Lu(τ1 + iτ2, x) =
1
2π

∫
R
u0(t, x)e−tτ1e−itτ2 dt = Ft[e−·τ1u0(·, x)](τ2).

Lemma 3.6. Let s ≥ 0 be not a half integer, r ≥ 0. If u ∈ Hs
0((0,∞),Hr), then

the Laplace transform Lu satisfies
(i) τ 7→ Lu(τ, x) is holomorphic in the half-plane Re τ > 0 for almost every

x ∈ R.
(ii) sup

τ1>0

∫
R
|Lu(τ1 + iτ2, x)|2 dτ2 <∞ for almost every x ∈ R.

(iii) ‖u‖Hs((0,∞),Hr) ∼
(∫

R
(1 + τ2

2 )s‖Lu(iτ2, ·)‖2Hr dτ2

)1/2

.

Proof. Since u ∈ Hs
0((0,∞),Hr), we have u ∈ L2((0,∞), L2). Thus∫

R

∫ ∞

0

|u(t, x)|2 dtdx =
∫ ∞

0

∫
R
|u(t, x)|2 dxdt <∞

which yields
∫∞
0
|u(t, x)|2 dt < ∞ for almost every x ∈ R. Applying the Paley-

Wiener Theorem, see [25] for instance, gives the first property. Now let τ1 > 0.
Parseval’s identity implies∫

R
|Lu(τ1 + iτ2, x)|2 dτ2
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=
∫

R
|Ft[e−·τ1u0(·, x)](τ2)|2 dτ2

≤ C

∫
R
|e−tτ1u0(t, x)|2 dt ≤ C

∫ ∞

0

|u(t, x)|2 dt <∞ for almost every x ∈ R

independently of τ1. This shows the second property. The third property follows
with the help of Lemma 3.5 and Lemma 3.2; i.e.,∫

R
(1 + τ2

2 )s‖Lu(iτ2, ·)‖2Hr dτ2 =
∫

R
(1 + τ2

2 )s‖Ftu0(τ2, ·)‖2Hr dτ2

∼ ‖u0‖2Hs(R,Hr) ∼ ‖u‖2Hs((0,∞),Hr).

�

The following lemma shows that regularity in x is preserved under Laplace trans-
form.

Lemma 3.7. Let r ≥ 0. If u ∈ L2((0,∞),Hr), then

sup
τ1≥0

∫
R
‖Lu(τ1 + iτ2, ·)‖2Hr dτ2 ≤ C‖u‖2L2((0,∞),Hr).

In particular, Lu(τ, ·) ∈ Hr for almost every τ with Re τ ≥ 0.

Proof. Let τ1 ≥ 0. Then∫
R
‖Lu(τ1 + iτ2, ·)‖2Hr dτ2 =

∫
R
‖Ft[e−tτ1u0(t, ·)](τ2)‖2Hr dτ2

≤ C

∫
R
‖e−tτ1u0(t, ·)‖2Hr dt

= C

∫ ∞

0

e−2tτ1‖u(t, ·)‖2Hr dt ≤ C‖u‖2L2((0,∞),Hr)

independently of τ1. �

Lemma 3.6 has the following inverse.

Lemma 3.8. Let s ≥ 0 be not a half integer, r ≥ 0, and assume f : C × R → C
fulfills the following conditions.

(i) f(τ, x) is holomorphic in the half-plane Re τ > 0 for almost every x ∈ R.

(ii) sup
τ1>0

∫
R
|f(τ1 + iτ2, x)|2 dτ2 <∞ for almost every x ∈ R.

(iii)
∫

R
(1 + τ2

2 )s‖f(iτ2, ·)‖2Hr dτ2 <∞.

Then the inverse Fourier transform g(t, x) =
∫

R f(iτ2, x)eitτ2 dτ2 satisfies
(iv) g

∣∣
R+×R ∈ H

s
0((0,∞),Hr) and Lg = f .

Proof. Due to (i) and (ii), for almost every x ∈ R we can apply the Paley-Wiener
Theorem and obtain g(t, x) = 0 for t < 0,Lg(τ, x) = f(τ, x), see [25], for instance.
It remains to prove that g

∣∣
R+×R ∈ H

s
0((0,∞),Hr). Due to Lemma 3.2 we have

‖g‖2Hs(R,Hr) ≤ C

∫
R
‖(1 + τ2

2 )
s
2Ftg(τ2, ·)‖2Hr dτ2 = C

∫
R
(1 + τ2

2 )s‖Lg(iτ2, ·)‖2Hr dτ2

= C

∫
R
(1 + τ2

2 )s‖f(iτ2, ·)‖2Hr dτ2 <∞,
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thus g ∈ Hs(R,Hr). Let j ∈ N such that s − j > 1/2. Lemma 3.3 gives ∂j
t g ∈

Hs−j(R,Hr), and due to standard Sobolev embedding we have ∂j
t g ∈ C(R,Hr).

Since g(t, x) = 0 for t < 0 and almost every x ∈ R we achieve ‖∂j
t g(0, ·)‖L2 = 0.

This shows the first property. �

To prove local existence for the IBL (2.18) we use the following Sobolev spaces.

Definition 3.9. Let Hr,s((t0, t1)) := L2((t0, t1),Hr(R))∩Hs((t0, t1), L2(R)), with
norm

‖u‖Hr,s((t0,t1)) :=
(∫ t1

t0

‖u(t, ·)‖2Hr dt+ ‖u‖2Hs((t0,t1),L2)

)1/2

.

Applying (3.1) we can state an equivalent norm for the case (t0, t1) = R, namely

‖u‖Hr,s(R) ∼
(∫

R

∫
R

(
(1 + τ2)

s
2 + (1 + k2)

r
2
)2|Ftxu(τ, k)|2 dτ dk

)1/2

. (3.3)

Functions in Hr,s(R) also belong to “intermediate spaces” with intermediate regu-
larities in time and space.

Lemma 3.10. Let r, s ≥ 0, ϑ ∈ (0, 1). Then Hr,s(R) is continuously embedded
into Hϑs(R,H(1−ϑ)r).

Proof. For u ∈ Hr,s(R), Lemma 3.2 yields

‖u‖2Hϑs(R,H(1−ϑ)r) ≤ C

∫
R

∫
R
(1 + τ2)ϑs(1 + k2)(1−ϑ)r|Ftxu(τ, k)|2 dτ dk.

By Young’s inequality, (1 + τ2)ϑs(1 + k2)(1−ϑ)r ≤ ϑ(1 + τ2)s + (1− ϑ)(1 + k2)r we
obtain ‖u‖2

Hϑs(R,H(1−ϑ)r)
≤ C‖u‖2Hr,s(R). �

Later we need estimates of the H
r
s (s−1/2)-norm for fixed times. Lemma 3.10

particularly yields that Hr,s(R) is continuously embedded into H1/2(R,H r
s (s−1/2)),

but by standard Sobolev embedding theory this does not allow any conclusion for
fixed t. However, by interpolation theory the following trace theorem can be shown.

Lemma 3.11. Let u ∈ Hr,s((t0, t1)), r ≥ 0, s > 1/2. Then for all integers j < s− 1
2

there exists the trace

∂j
t u(t0, ·) ∈ Hpj (R), pj =

r

s

(
s− j − 1

2
)
.

The mappings Hr,s((t0, t1)) → Hpj (R) : u 7→ ∂j
t u are continuous. Furthermore,

the mapping u 7→ (∂j
t u(t0, ·))0≤j<s− 1

2
from Hr,s((t0, t1)) into

∏
0≤j<s− 1

2
Hpj is

surjective.

A proof can be found in [14, Theorem 4.2.1]. For the surjectivity of the trace
operator see [13, Theorem 4.4.2] with X = Hr, Y = L2. Since the trace operator is
continuous, we have the following corollary, see [13, Theorem 1.3.1] and the proof
of [13, Theorem 1.4.2].

Corollary 3.12. Let u ∈ Hr,s((t0, t1)), r ≥ 0, s > 1/2. Then there exists a C > 0
such that

sup
t∈[t0,t1]

‖u(t, ·)‖Hr−1 < C‖u‖Hr,s((t0,t1)).
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It turns out, that the IBL is a second-order parabolic evolution system, and
therefore the spaces Hr,s always occur with s = r/2 and usually consist of functions
defined only for t ≥ 0. Hence we set

Definition 3.13. Kr((t0, t1)) := Hr, r
2 ((t0, t1)), and

Kr
0((t0, t1)) := {u ∈ Kr((t0, t1)) | ‖∂j

t u(t0, ·)‖L2 = 0 for j ∈ N0 with 2j < r − 1}.

Thus we have Kr
0((0,∞)) = H

r
2
0 ((0,∞), L2) ∩ L2((0,∞),Hr) and with the help

of Lemma 3.6 and Lemma 3.8 we can characterize Kr
0((0,∞)) in Fourier space.

Theorem 3.14. Let r ≥ 0, (r+ 1)/2 /∈ N. Then u ∈ Kr
0((0,∞)) if and only if the

Laplace transform Lu fulfills

(i) Lu(τ, x) is holomorphic in the half-plane Re τ > 0 for almost every x ∈ R.

(ii) sup
τ1>0

∫
R
|Lu(τ1 + iτ2, x)|2 dτ2 <∞ for almost every x ∈ R.

(iii)
(∫

R
(‖Lu(iτ, ·)‖2Hr + |τ |r‖Lu(iτ, ·)‖2L2) dτ

)1/2

<∞.

The left-hand side in (iii) defines a norm equivalent to ‖ · ‖Kr((0,∞)).

Proof. Due to Lemmas 3.6 and 3.8 it remains to show the equivalence of norms.
Since r/2 is not a half integer we have

‖u‖2Kr((0,∞)) ∼
∫

R
‖Lu(iτ, ·)‖2Hr dτ +

∫
R
(1 + τ2)

r
2 ‖Lu(iτ, ·)‖2L2 dτ.

Now using (1 + τ2)
r
2 ∼ 1 + |τ |r yields the result. �

Next, we collect some useful properties of the Kr-spaces, concerning derivatives
and nonlinear interaction.

Lemma 3.15. Let r>0 and l, j∈N with l+2j ≤ r. If u∈Kr((t0, t1)) then ∂l
x∂

j
t u ∈

Kr−l−2j((t0, t1)).

Proof. Applying Lemma 3.10 with ϑ = 1 − l
r and ϑ = 2j

r , respectively, we obtain
u ∈ H r−l

2 ((t0, t1),H l)∩Hj((t0, t1),Hr−2j). By Lemma 3.3 it follows that ∂l
x∂

j
t u ∈

H
r−l
2 −j((t0, t1), L2) ∩ L2((t0, t1),Hr−l−2j). �

Lemma 3.16. Let r > 3/2, r ≥ s ≥ 0. If u ∈ Kr((t0, t1)) and v ∈ Ks((t0, t1)),
then uv ∈ Ks((t0, t1)) and there exists a C > 0 such that

‖uv‖Ks((t0,t1)) ≤ C‖u‖Kr((t0,t1))‖v‖Ks((t0,t1)). (3.4)

If u ∈ Kr
0 or v ∈ Ks

0 , then uv ∈ Ks
0 .

A proof of (3.4) can be found in [1, Lemma 5.1] while the second statement
is obvious. We need function spaces with weights in the spatial variable, namely
Hs((t0, t1),Hr(n)) where Hr(n) is the weighted Sobolev space introduced in (1.4);
i.e., ‖u‖Hr(n) = ‖%nu‖Hr with %(x) := (1+x2)1/2. A natural description equivalent
to Definition 3.1 is given by the following obvious lemma.

Lemma 3.17. Let s, r ≥ 0, n ∈ N. Then u ∈ Hs((t0, t1),Hr(n)) ⇔ %nu ∈
Hs((t0, t1),Hr).
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Definition 3.18. For r, s, n ≥ 0 let

Hr,s((t0, t1), n) := L2((t0, t1),Hr(n)) ∩Hs((t0, t1), L2(n)),

Kr((t0, t1), n) := Hr, r
2 ((t0, t1), n).

Remark 3.19. Due to Lemma 3.17, Theorem 3.14 also holds for u ∈ Kr
0((0,∞), n)

if we replace Hr by Hr(n) and L2 by L2(n) in property (iii). The same is true
for Lemmas 3.5, 3.7, 3.11, 3.15, 3.16 if we replace the respective Sobolev spaces by
weighted ones.

3.2. Existence of a local solution. Taking into account that the space regularity
of h should be taken higher than that of q, we introduce the vector-valued function
spaces

Hr(m) := Hr(m)×Hr−1(m), (3.5)

Kr+1((t0, t1),m) := Kr+1((t0, t1),m)×Kr((t0, t1),m). (3.6)

To prove that spectrally stable stationary solutions of the IBL are nonlinearly stable
we first need local existence in a given time interval (t0, t1).

Theorem 3.20 (Local existence). Let 3 < r < 4 and fix some t0 < t1. Then there
exist C1, C2 > 0 such that the following holds. If (h0, q0)> ∈ Hr(2) = Hr(2) ×
Hr−1(2) satisfies

ρ := ‖(h0, q0)>‖Hr(2) ≤ C1,

then there exists a unique local solution

(h, q)> ∈ Kr+1((t0, t1), 2) = Kr+1((t0, t1), 2)×Kr((t0, t1), 2)

of IBL (2.18) with
‖(h, q)>‖Kr+1((t0,t1),2) ≤ C2ρ (3.7)

and (h, q)>|t=t0 = (h0, q0)>. Moreover, for t0 < t̃0 < t1and any m ∈ N we have
(h, q)> ∈ Kr+m((t̃0, t1), 2), and there exists C3 = C3(t̃0,m) such that

‖(h, q)>‖Kr+m((t̃0,t1),2)
≤ C3ρ. (3.8)

To prove this theorem we need to apply maximal regularity results based on
Laplace transform. First we solve the linearized problem with inhomogeneous right-
hand side and zero initial condition. This requires resolvent estimates for the linear
operator A. Due to the periodic coefficients, these cannot be shown by applying
Fourier transform in space. Instead, we have to test in x-space with appropriate
test functions. This is carried out in detail in §3.3. The higher regularity in the
time interval [t̃0, t1] then follows from a bootstrapping argument in §3.4; i.e., since
(3.7) yields (h(t̃), q(t̃))> ∈ Hr+1 for almost every t̃ ∈ (t0, t1), we can start again at
t = t̃. This gives (h, q)> ∈ Kr+2, and iterating this argument shows (3.8).

3.3. Resolvent estimates. The resolvent equation is obtained by Laplace trans-
form with respect to time of the linear inhomogeneous equation (∂t −A(∂x))u = g
and reads (λ−A(∂x))u = g with g ∈ Hr−1×Hr−2 and the linear operator A from
(2.17); i.e.,

λ

(
h
q

)
−
(

0 −∂x

a10 + a11∂x + a12∂
2
x + a13∂

3
x a20 + a21∂x + a22∂

2
x

)(
h
q

)
=
(
g1
g2

)
.

(3.9)
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Theorem 3.21. Let r ≥ 2. Then there exist C, a > 0 such that for all g =
(g1, g2)> ∈ Hr−1 × Hr−2 and all λ with Reλ ≥ a the resolvent equation (λ −
A(∂x))(h, q)> = g has a unique solution, which satisfies

‖h‖Hr+1 + |λ|(r+1)/2‖h‖L2 + ‖q‖Hr + |λ|r/2‖q‖L2

≤ C
(
‖g1‖Hr−1 + |λ|(r−1)/2‖g1‖L2 + ‖g2‖Hr−2 + |λ|(r−2)/2‖g2‖L2

)
.

(3.10)

For the proof we give separate estimates for q and h, and moreover first restrict
to r = 2.

Estimates for q. From the first equation in (3.9) we obtain

h =
−∂xq + g1

λ
, (3.11)

and plugging this into the second equation yields

(λ+a0)q+a1∂xq+a2∂
2
xq+a3∂

3
xq+a4∂

4
xq = g2 +

1
λ

(a10 +a11∂x +a12∂
2
x +a13∂

3
x)g1.

(3.12)
The γ-periodic coefficients are given by

a0 = −a20, a1 = −a21+
a10

λ
, a2 = −a22+

a11

λ
, a3 =

a12

λ
, a4 =

a13

λ
. (3.13)

To solve (3.12) we define on H2 ×H2 the bilinear form

b(q, ϕ) :=
∫

R

(
(λ+ a0)qϕ̄+ a1∂xq ϕ̄+ a2∂

2
xq ϕ̄− ∂xa3 ∂

2
xq ϕ̄− a3∂

2
xq ∂xϕ̄

+ ∂2
xa4 ∂

2
xq ϕ̄+ 2∂xa4 ∂

2
xq ∂xϕ̄+ a4∂

2
xq ∂

2
xϕ̄
)
dx.

Using integration by parts, q ∈ H2 is a weak solution of (3.12) if and only if

b(q, ϕ) =
∫

R

(
g2 +

1
λ

(a10 + a11∂x + a12∂
2
x + a13∂

3
x)g1

)
ϕ̄ dx (3.14)

for all ϕ ∈ H2. To prove the existence of a unique weak solution we apply the
Lemma of Lax-Milgram. Therefore, we have to show that the bilinear form b is
continuous and elliptic. Since all coefficients of b are in L∞, the continuity is
obvious. To verify the ellipticity of b we have to estimate b(q, q), which reads

b(q, q) =
∫

R
(λ+ a0)|q|2 dx+

∫
R
a1∂xq q̄ dx−

∫
R
a2|∂xq|2 dx−

∫
R
∂xa2 ∂xq q̄ dx

−
∫

R
∂xa3 ∂

2
xq q̄ dx−

∫
R
a3∂

2
xq ∂xq̄ dx+

∫
R
∂2

xa4 ∂
2
xq q̄ dx

+ 2
∫

R
∂xa4 ∂

2
xq ∂xq̄ dx+

∫
R
a4|∂2

xq|2 dx

=
∫

R
(λ+ a0)|q|2 dx−

∫
R
a2|∂xq|2 dx+

∫
R
a4|∂2

xq|2 dx

+
∫

R
(a1−∂xa2) ∂xq q̄ dx+

∫
R

(
∂2

xa4−∂xa3

)
∂2

xq q̄ dx

+
∫

R
(2∂xa4−a3) ∂2

xq ∂xq̄ dx.

(3.15)
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We begin with estimating the real part of the first three integrals on the right-hand
side of (3.15), related to the H2-norm of q, and which for Reλ large enough also
absorb the mixed terms. For Reλ ≥ ‖a20‖L∞ we have

Re
∫

R
(λ+ a0)|q|2 dx ≥ (Reλ− ‖a20‖L∞)‖q‖2L2 . (3.16)

Since Re(1/λ) = Reλ/|λ|2 we obtain from (2.8) −Re a2 ≥ 9
2R −

Re λ
|λ|2 ‖a11‖L∞ . For

Reλ ≥ (4R/9)‖a11‖L∞ the second integral in (3.15) can be estimated by

− Re
∫

R
a2|∂xq|2 dx ≥ 9

4R
‖∂xq‖2L2 . (3.17)

By (2.8) we obtain a4 = a13
λ = 5W

6λ
fs

1+κfs
, and since κ is small we have C1 :=

minx∈[0,γ] a13(x) > 0, and therefore Re a4 ≥ C1 Reλ/|λ|2. Thus,

Re
∫

R
a4|∂2

xq|2 dx ≥ C1
Reλ
|λ|2

‖∂2
xq‖2L2 . (3.18)

Next, we estimate the mixed terms in (3.15) by applying Young’s inequality ab ≤
ε
2a

2 + 1
2εb

2 for ε > 0. Looking at (3.16)-(3.18) we find that in case |λ| → ∞ the
inequalities for ‖q‖2L2 , ‖∂xq‖2L2 , and ‖∂2

xq‖2L2 get worse the more derivatives we have.
Thus, we have to choose ε with care such that the mixed terms can be absorbed by
(3.16)-(3.18) without losing the positive coefficients. Therefore, we start with the
integral containing the highest derivatives; i.e.,∣∣∣∣∫

R
(2∂xa4 − a3) ∂2

xq ∂xq̄ dx
∣∣∣∣ ≤ 1

2ε

∫
R
|2∂xa4 − a3|2|∂2

xq|2 dx+
ε

2

∫
R
|∂xq|2 dx.

Choosing ε = 9/(8R), we obtain

1
2ε
|2∂xa4 − a3|2 ≤

1
|λ|2

4R
9
‖2∂xa13 − a12‖2L∞ =: C2

1
|λ|2

,

and thus, ∣∣∣∣∫
R

(2∂xa4 − a3) ∂2
xq ∂xq̄ dx

∣∣∣∣ ≤ C2
1
|λ|2

‖∂2
xq‖2L2 +

9
16R

‖∂xq‖2L2

≤ C1
Reλ
4|λ|2

‖∂2
xq‖2L2 +

9
16R

‖∂xq‖2L2

for Reλ ≥ 4C2/C1. Analogously, for Reλ ≥ ‖∂2
xa13 − ∂xa12‖2L∞/(C1‖a20‖L∞) =:

C3/C1 we obtain∣∣∣∣∫
R

(
∂2

xa4 − ∂xa3

)
∂2

xq q̄ dx
∣∣∣∣ ≤ C1

Reλ
4|λ|2

‖∂2
xq‖2L2 + ‖a20‖L∞‖q‖2L2 . (3.19)

Finally, for the fourth integral in (3.15) we use the inequality

‖a1 − ∂xa2‖L∞ ≤ ‖ − a21 + ∂xa22‖L∞ +
1
|λ|
‖a10 − ∂xa11‖L∞

≤ ‖ − a21 + ∂xa22‖L∞ +
1

‖a20‖L∞
‖a10 − ∂xa11‖L∞ =:

√
9

4R
C4

for Reλ ≥ ‖a20‖L∞ . Using again ε = 9/(8R) in Young’s inequality, we obtain∣∣ ∫
R

(a1−∂xa2) ∂xq q̄ dx
∣∣ ≤ 1

2ε
‖a1−∂xa2‖2L∞‖q‖2L2 +

ε

2
‖∂xq‖2L2
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≤ C4‖q‖2L2 +
9

16R
‖∂xq‖2L2 .

Altogether, we have

Re b(q, q) ≥ (Reλ− 2‖a20‖L∞ −C4)‖q‖2L2 +
9

8R
‖∂xq‖2L2 +

C1 Reλ
2|λ|2

‖∂2
xq‖2L2 (3.20)

for all λ with

Reλ ≥ max
{
2‖a20‖L∞ + C4,

4R
9
‖a11‖L∞ ,

4C2

C1
,
C3

C1

}
.

This shows the ellipticity of b; i.e., there exist a,C > 0 such that for all λ with
Reλ ≥ a we have

C Re b(q, q) ≥ (Reλ− a/2)‖q‖2L2 + ‖∂xq‖2L2 +
Reλ
|λ|2

‖∂2
xq‖2L2 .

Thus, by the Lax-Milgram Lemma, there exists a unique weak solution q ∈ H2 of
(3.12) if Reλ ≥ a. Furthermore, from the weak formulation (3.14) we obtain the
estimate

(Reλ−a/2)‖q‖2L2 +‖∂xq‖2L2 +
Reλ
|λ|2

‖∂2
xq‖2L2 ≤ C‖g2‖L2‖q‖L2 +C

Reλ
|λ|2

‖g1‖H1‖q‖H2 .

To estimate the H2-norm of q, we can use Reλ− a/2 ≥ a/2. Thus, the coefficient
in front of ‖q‖2L2 can be estimated from below independently of λ. However, the
coefficient of ‖∂2

xq‖2L2 converges to zero for |λ| → ∞. Therefore, it is necessary to
test the resolvent equation (3.12) not only with q itself, but also with ∂2

xq. However,
since g1 is only in H1, on the right-hand side of the weak formulation (3.14) there
occurs the integral

∫
R ∂xg1 ∂

4
xq̄ dx, for instance. This can only be estimated with

the help of ‖q‖H4 , which is not helpful for estimating ‖q‖H2 . Therefore, we split q
into q = q0 + q̃, where the two components are supposed to fulfill

(λ+a0)q0 + (a1∂x+a2∂
2
x+a3∂

3
x+a4∂

4
x)q0 =

1
λ

(a10+a11∂x+a12∂
2
x+a13∂

3
x)g1, (3.21)

(λ+a0)q̃ + (a1∂x+a2∂
2
x+a3∂

3
x+a4∂

4
x)q̃ = g2. (3.22)

Since the right-hand side of (3.21) has a leading factor 1/λ, it is sufficient to test
with q0. In (3.22), the right-hand side is in L2, thus it can be tested with ∂2

xq̃,
which leads to an estimate of ‖q̃‖H2 independent of λ.

We begin with estimating q0. By the considerations above we find a unique weak
solution q0 of (3.21) with

(Reλ− a/2)‖q0‖2L2 + ‖∂xq0‖2L2 +
Reλ
|λ|2

‖∂2
xq0‖2L2 ≤ C

Reλ
|λ|2

‖g1‖H1‖q0‖H2

for Reλ ≥ a. Since (Reλ− a/2)/Reλ ≥ 1/2 and since |λ|2/Reλ ≥ |λ|, we obtain

|λ|2‖q0‖2L2 + |λ|‖∂xq0‖2L2 + ‖∂2
xq0‖2L2 ≤ C‖g1‖H1‖q0‖H2 . (3.23)

As |λ| ≥ a is bounded from below, it follows that

‖q0‖H2 ≤ C‖g1‖H1 . (3.24)

In particular, together with (3.23) this leads to |λ|2‖q0‖2L2 ≤ C‖g1‖H1‖q0‖H2 ≤
C‖g1‖2H1 ; i.e.,

|λ|‖q0‖L2 ≤ C‖g1‖H1 . (3.25)
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Next, we look for the corresponding estimates for q̃. Exactly as for q0, by testing
(3.22) with q̃ and taking the real part we obtain

(Reλ− a/2)‖q̃‖2L2 + ‖∂xq̃‖2L2 +
Reλ
|λ|2

‖∂2
xq̃‖2L2 ≤ C‖g2‖L2‖q̃‖L2 (3.26)

for Reλ ≥ a. Testing (3.22) with ∂2
xq̃; i.e., b(q̃, ∂2

xq̃) =
∫

R g2 ∂
2
x
¯̃q dx, and integration

by parts leads to

− b(q̃, ∂2
xq̃)

=
∫

R
(λ+ a0)|∂xq̃|2 dx+

∫
R
(−a2+∂xa3−∂2

xa4)|∂2
xq̃|2 dx+

∫
R
a4|∂3

xq̃|2 dx

+
∫

R
∂xa0 q̃ ∂x

¯̃q dx−
∫

R
a1∂xq̃ ∂

2
x
¯̃q dx+

∫
R
(a3 − ∂xa4)∂2

xq̃ ∂
3
x
¯̃q dx.

(3.27)

Since both a3 and a4 have a leading 1/λ and since −a2 > 0 is bounded from below,
(3.27) can be estimated similarly to (3.15) by applying Young’s inequality. An
exception is the integral

∫
R ∂xa0 q̃ ∂x

¯̃q dx, which cannot be absorbed by the first
three integrals, and therefore

(Reλ− a/2)‖∂xq̃‖2L2 + ‖∂2
xq̃‖2L2 +

Reλ
|λ|2

‖∂3
xq̃‖2L2

≤ C‖g2‖L2‖∂2
xq̃‖L2 + C

∫
R
(|q̃|2 + |∂xq̃|2) dx ≤ C‖g2‖L2‖∂2

xq̃‖L2 + C‖g2‖L2‖q̃‖L2 .

(3.28)
Here, we used (3.26) in the second estimate. Combining (3.26) and (3.28) yields
the resolvent estimate

‖q̃‖H2 ≤ C‖g2‖L2 (3.29)
for Reλ ≥ a.

Remark 3.22. To test (3.22) with ∂2
xq̃ we actually have to test with smooth

functions which are dense in H2 and then extend the resulting resolvent estimates
continuously to the respective Sobolev spaces.

Finally, to estimate |λ|‖q̃‖L2 , we also have to estimate the imaginary part of
b(q̃, q̃). Using Im(1/λ) = − Imλ/|λ|2 we obtain from (3.15) and (3.22),∣∣∣∣∫

R
g2 ¯̃q dx

∣∣∣∣ ≥ Im b(q̃, q̃)

≥ (Imλ− ‖a20‖L∞)‖q̃‖2L2 +
Imλ

|λ|2

∫
R
a11|∂xq̃|2 dx− Imλ

|λ|2

∫
R
a13|∂2

xq̃|2 dx

+ Im
∫

R
(a1 − ∂xa2) ∂xq̃ ¯̃q dx+ Im

∫
R

1
λ

(
∂2

xa13 − ∂xa12

)
∂2

xq̃ ¯̃q dx

+ Im
∫

R

1
λ

(2∂xa13 − a12) ∂2
xq̃ ∂x

¯̃q dx.

(3.30)

This estimate is less powerful than the one for the real part, since a11 and a13 have
an undefined or even the wrong sign. However, since the coefficients a11, a12, and
a13 have a leading Im(1/λ), it allows for Imλ ≥ a the inequality

(Imλ− a/2)‖q̃‖2L2

≤ C
1
|λ|

(‖∂xq̃‖2L2 + ‖∂2
xq̃‖2L2) + ‖a1 − ∂xa2‖L∞

∫
R
|∂xq̃||q̃|dx+

∣∣∣∣∫
R
g2 ¯̃q dx

∣∣∣∣
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≤ C
1
|λ|

(‖∂xq̃‖2L2 + ‖∂2
xq̃‖2L2) +

Imλ

8

∫
R
|q̃|2 dx+

2
Imλ

‖a1 − ∂xa2‖2L∞
∫

R
|∂xq̃|2 dx

+
Imλ

8

∫
R
|q̃|2 dx+

2
Imλ

∫
R
|g2|2 dx

≤ C
1

Imλ
(‖∂xq̃‖2L2 + ‖∂2

xq̃‖2L2) +
Imλ

4
‖q̃‖2L2 +

2
Imλ

‖g2‖2L2 ,

where we used Young’s inequality twice. Thus,(3
4

Imλ− a/2
)
‖q̃‖2L2 ≤ C

1
Imλ

(‖∂xq̃‖2L2 + ‖∂2
xq̃‖2L2) +

2
Imλ

‖g2‖2L2 .

Since (3/4) Imλ = ((3/4) Imλ− a/2) + a/2 ≤ ((3/4) Imλ− a/2) + Imλ/2, we have
Imλ ≤ 4((3/4) Imλ− a/2), and as we have already estimated ‖q̃‖H2 in (3.29), we
obtain

Imλ ‖q̃‖2L2 ≤ C
1

Imλ
(‖∂xq̃‖2L2 + ‖∂2

xq̃‖2L2 + ‖g2‖2L2) ≤ C
1

Imλ
‖g2‖2L2 .

Considering − Im b(q̃, q̃) in (3.30) gives the same estimate for − Imλ instead of Imλ.
Thus, for | Imλ| > a we have

| Imλ| ‖q̃‖L2 ≤ C‖g2‖L2 .

By (3.26), the same estimate is true if we replace | Imλ| by Reλ, since Reλ ≤
(Reλ−a/2)+Reλ/2, which implies Reλ ≤ 2(Reλ−a/2). Altogether, for Reλ > a
we obtain

|λ|‖q̃‖L2 ≤ C‖g2‖L2 . (3.31)

Combining (3.24), (3.25), (3.29), and (3.31) yields for q = q0 + q̃ the resolvent
estimate

|λ|‖q‖L2 + ‖q‖H2 ≤ C (‖g1‖H1 + ‖g2‖L2) . (3.32)

Estimates for h. It remains to estimate the L2- and the H3-norm of h. Identity
(3.11) leads to

‖h‖L2 ≤ 1
|λ|

(‖∂xq‖L2 + ‖g1‖L2) , ‖∂xh‖L2 ≤ 1
|λ|
(
‖∂2

xq‖L2 + ‖∂xg1‖L2

)
, (3.33)

thus, by applying (3.32) we obtain

‖h‖L2 + ‖∂xh‖L2 ≤ C (‖g1‖H1 + ‖g2‖L2) . (3.34)

From the second equation in the resolvent equation (3.9) we obtain

a12∂
2
xh+ a13∂

3
xh

= −g2 + (λ−a20)q − a21∂xq − a22∂
2
xq − a10h− a11∂xh

= −g2 + (λ−a20)q − a21∂xq − a22∂
2
xq +

1
λ
a10(∂xq − g1) +

1
λ
a11(∂2

xq − ∂xg1).

(3.35)
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Since all coefficients aij are real, testing (3.35) with (−∂2
xh + ∂3

xh) yields for the
left-hand side

Re
∫

R
(a12∂

2
xh+ a13∂

3
xh)(−∂2

xh̄+ ∂3
xh̄) dx

= −
∫

R
a12|∂2

xh|2 dx+
∫

R
a13|∂3

xh|2 dx+ Re
∫

R
a12∂

2
xh ∂

3
xh̄ dx

− Re
∫

R
a13∂

3
xh ∂

2
xh̄ dx

= −
∫

R
a12|∂2

xh|2 dx+
∫

R
a13|∂3

xh|2 dx+ Re
∫

R
(a12 − a13)∂2

xh ∂
3
xh̄ dx.

(3.36)

Integration by parts leads to∫
R
(a12−a13)∂2

xh ∂
3
xh̄ dx = −

∫
R
(∂xa12−∂xa13)|∂2

xh|2 dx−
∫

R
(a12−a13)∂3

xh ∂
2
xh̄ dx,

and thus,

Re
∫

R
(a12 − a13)∂2

xh ∂
3
xh̄ dx = −1

2

∫
R
(∂xa12 − ∂xa13)|∂2

xh|2 dx.

Due to the definitions of a12, a13 in (2.17), there exist positive constants C1, C̃1

with minx∈[0,γ] a13 = C1, minx∈[0,γ](−a12) = 2C̃1. Hence, (3.36) can be estimated
by

Re
∫

R
(a12∂

2
xh+ a13∂

3
xh)(−∂2

xh̄+ ∂3
xh̄) dx

≥ 2C̃1‖∂2
xh‖2L2 + C1‖∂3

xh‖2L2 −
1
2

(‖∂xa12‖L∞ + ‖∂xa13‖L∞) ‖∂2
xh‖2L2 .

(3.37)

On closer inspection of (2.17) we find that due to the additional x-derivative,
the coefficients ∂xa12, ∂xa13 are of the order of O(ε), where ε is proportional
to the bottom waviness. Hence, without loss of generality we may assume that
1
2 (‖∂xa12‖L∞ + ‖∂xa13‖L∞) < C̃1. Then (3.37) reads

Re
∫

R
(a12∂

2
xh+ a13∂

3
xh)(−∂2

xh̄+ ∂3
xh̄) dx ≥ C̃1‖∂2

xh‖2L2 + C1‖∂3
xh‖2L2 . (3.38)

Thus, testing (3.35) with (−∂2
xh+ ∂3

xh) yields

C̃1‖∂2
xh‖2L2 + C1‖∂3

xh‖2L2

≤
∣∣∣ ∫

R

(
− g2−

1
λ
a10g1−

1
λ
a11∂xg1+(λ−a20)q+

( 1
λ
a10−a21

)
∂xq

+
( 1
λ
a11−a22

)
∂2

xq
)
(−∂2

xh̄+ ∂3
xh̄) dx

∣∣∣
≤ C (‖g2‖L2 + ‖g1‖H1 + |λ|‖q‖L2 + ‖q‖H2)

(
‖∂2

xh‖L2 + ‖∂3
xh‖L2

)
,

together with (3.32) we obtain ‖∂2
xh‖L2 + ‖∂3

xh‖L2 ≤ C (‖g1‖H1 + ‖g2‖L2). Com-
bination with (3.34) yields

‖h‖H3 ≤ C (‖g1‖H1 + ‖g2‖L2) , (3.39)

and (3.33) finally implies

|λ|3/2‖h‖L2 ≤ C|λ|1/2(‖∂xq‖L2 + ‖g1‖L2). (3.40)
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Since integration by parts gives

|λ|‖∂xq‖2L2 = −|λ|
∫

R
q ∂2

xq̄ dx ≤ 1
2
|λ|2‖q‖2L2 +

1
2
‖∂2

xq‖2L2 ,

we have |λ|1/2‖∂xq‖L2 ≤ C(|λ|‖q‖L2 + ‖∂2
xq‖L2), and (3.40) reads

|λ|3/2‖h‖L2 ≤ C
(
|λ|1/2‖g1‖L2 + ‖g1‖H1 + ‖g2‖L2

)
. (3.41)

This proves Theorem 3.21 for r = 2. For r ≥ 3, r ∈ N, the proof works the same way
as above by testing with the respective derivatives of h, q. For non-integer values
of r, the resolvent estimate follows by interpolation theory, see [13], for instance.

Analytic semigroup. With a few additional expenses the proof of Theorem 3.21
allows to show that the linear operator A is sectorial; i.e., there exists a ϑ ∈ (0, π/2)
such that a slightly modified resolvent estimate can be extended to the sector
Sa,ϑ := {λ | 0 ≤ | arg(a− λ)| ≤ ϑ+ π/2} covering the half-plane Reλ ≥ a. Setting
X := H1 = H1 × L2, the domain of A is D(A) = H3 = H3 ×H2 ⊂ X. Moreover,
let g ∈ D(A) and Reλ′ ≥ a. By Theorem 3.21 there exists a unique solution of the
resolvent equation (λ′ −A)u = g, and from (3.32), (3.33) it follows the estimate

‖(λ′ −A)−1g‖X ≤ M

|λ′|
‖g‖X (3.42)

for aM > 0 independent of λ′ and g. It remains to extend this estimate to the sector
Sa,ϑ by a perturbation argument, which we recall for completeness in the following.
Let λ ∈ Sa,ϑ with Reλ < a, where ϑ is specified later. Setting λ′ := a + i(Imλ)
yields

λ−A = λ′ −A+ λ− λ′ = (λ′ −A)
(
Id+(λ′ −A)−1(λ− λ′)

)
. (3.43)

Choosing ϑ ∈ (0, π/2) small enough we can always ensure that

|λ− λ′|
|λ′|

≤ |λ− λ′|
| Imλ|

≤ tanϑ <
1
M
.

Hence,

‖(λ′ −A)−1(λ− λ′)‖L (X,X) ≤
M

|λ′|
|λ− λ′| < 1,

and the Neumann series(
Id+(λ′ −A)−1(λ− λ′)

)−1
=

∞∑
j=0

(
−(λ′ −A)−1(λ− λ′)

)j
converges in L (X,X). By (3.43), there exists the inverse

(λ−A)−1 =
(
Id+(λ′ −A)−1(λ− λ′)

)−1
(λ′ −A)−1 (3.44)

with

‖(λ−A)−1g‖X ≤ C‖(λ′ −A)−1g‖X ≤ C
M

|λ′|
‖g‖X ≤ C

M

|λ|
‖g‖X . (3.45)

Lemma 3.23. Let X = H1 × L2. Then the operator A : D(A) → X from (2.17)
is sectorial; i.e., there exist M,a > 0 and ϑ ∈ (0, π/2) such that the sector Sa,ϑ =
{λ | 0 ≤ | arg(a− λ)| ≤ ϑ+ π/2} is part of the resolvent set and

‖(λ−A)−1g‖X ≤ M

|λ|
‖g‖X
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for all λ ∈ Sa,ϑ and g ∈ X.

Thus, the linear operator A generates an analytic semigroup, see [11], for in-
stance.

Weighted Sobolev spaces. Since we will need some decay rate in x, which cor-
responds to some regularity with respect to the wave number in Bloch space, we
transfer the result of Theorem 3.21 to the case of weighted Sobolev spaces.

Theorem 3.24 (Resolvent estimate in weighted Sobolev spaces). Theorem 3.21
also holds for the weighted spaces Hr(2); i.e., (3.10) becomes

‖h‖Hr+1(2) + |λ|(r+1)/2‖h‖L2(2) + ‖q‖Hr(2) + |λ|r/2‖q‖L2(2)

≤ C
(
‖g1‖Hr−1(2) + |λ|(r−1)/2‖g1‖L2(2) + ‖g2‖Hr−2(2) + |λ|(r−2)/2‖g2‖L2(2)

)
.

Proof. In contrast to the proof of (3.10), we have to multiply the test functions
by %(x) = (1 + x2)1/2 before testing. Differentiating the weight leads to additional
terms in the estimates of the weak formulation. However, since derivatives of % are
of lower order, the additional mixed terms can be controlled by the terms in which
% occurs without a derivative if we choose a and C larger than in Theorem 3.21.
Details for a related problem can be found in [21, Appendix A.2], for instance. �

3.4. Maximal regularity. With the resolvent estimate from Theorem 3.24 we
are now able to prove Theorem 3.20 concerning local existence. For this purpose
we fix some times t0 < t1 and denote again by A the linear operator from (2.17).
Furthermore, let r > 2 be not an integer such that both (r + 1)/2 and r/2 are not
half integers in order to apply Theorem 3.14 and use Laplace transform in time.

The linear inhomogeneous problem. We begin with the linear inhomogeneous
equation

Mu := (∂t −A)u = g, u
∣∣
t=t0

= 0, (3.46)

where g ∈ Kr−1
0 ((t0, t1), 2) := Kr−1

0 ((t0, t1), 2) ×Kr−2
0 ((t0, t1), 2). Due to Lemma

3.2 we can identify g with its extension to [t0,∞). Thus, without loss of generality,
we can write g ∈ Kr−1

0 ((t0,∞), 2). For a σ1 > 0 chosen below we set

U(t, x) := e−σ1tu(t+ t0, x), G(t, x) := e−σ1tg(t+ t0, x). (3.47)

Then G ∈ Kr−1
0 ((0,∞), 2), and (3.46) is equivalent to solving

(∂t + σ1 −A)U = G, U
∣∣
t=0

= 0. (3.48)

Since U
∣∣
t=0

= 0, the Laplace transform of U satisfies

L(∂tv)(τ) =
1
2π

∫ ∞

0

∂tv(t)e−tτ dt = τLv(τ),

and (3.48) becomes
(τ + σ1 −A)LU(τ, x) = LG(τ, x). (3.49)

From Lemma 3.7 and Remark 3.19 it follows that LG ∈ Hr−1(2) × Hr−2(2) for
almost every τ with Re τ ≥ 0. Thus, according to Theorem 3.24, for almost every
τ with Re τ +σ1 ≥ a there exists a unique solution of the resolvent equation (3.49).
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Choosing σ1 ≥ a and setting U = (U1, U2)>, G = (G1, G2)>, we achieve the
estimate

‖LU1‖Hr+1(2) + |τ |(r+1)/2‖LU1‖L2(2) + ‖LU2‖Hr(2) + |τ |r/2‖LU2‖L2(2)

≤ C
(
‖LG1‖Hr−1(2) + |τ |(r−1)/2‖LG1‖L2(2)

+ ‖LG2‖Hr−2(2) + |τ |(r−2)/2‖LG2‖L2(2)

) (3.50)

for almost every τ with Re τ ≥ 0. To apply Theorem 3.14, which yields U ∈
Kr+1

0 ((0,∞), 2), we additionally have to show for j ∈ {1, 2} that
(i) τ 7→ LUj(τ, x) is holomorphic in the half-plane Re τ > 0 for almost every

x ∈ R,
(ii) supτ1>0

∫
R |LUj(τ1 + iτ2, x)|2 dτ2 <∞ for almost every x ∈ R.

Property (ii) immediately follows from the corresponding estimate for LG; i.e.,

sup
τ1>0

∫
R

(
|LU1(τ1 + iτ2, x)|2 + |LU2(τ1 + iτ2, x)|2

)
dτ2

≤ C sup
τ1>0

∫
R

(
‖LU1(τ1 + iτ2, ·)‖2H2(2) + ‖LU2(τ1 + iτ2, ·)‖2H2(2)

)
dτ2

≤ C sup
τ1>0

∫
R

(
‖LG1(τ1 + iτ2, ·)‖2L2(2) + ‖LG2(τ1 + iτ2, ·)‖2L2(2)

)
dτ2 <∞

due to Lemma 3.7. In order to show that LU is holomorphic, we set τ = τr + iτi
and LU = Ur + iUi, thus the resolvent equation (3.49) reads

(τr + σ1 + iτi −A)(Ur + iUi) = LG.

Differentiating with respect to τr and τi and using on the right-hand side that LG
is holomorphic, we obtain

(τr + σ1 + iτi −A) [∂τrUr − ∂τiUi + i (∂τrUi + ∂τiUr)] = 0 (3.51)

for τr > 0. Due to Theorem 3.24, there exists a unique solution of (3.51), given by

∂τrUr − ∂τiUi + i (∂τrUi + ∂τiUr) = 0. (3.52)

Thus, LU fulfills the Cauchy-Riemann differential equations for Re τ > 0. Trans-
ferring the results back to u, g proves the following lemma.

Lemma 3.25. Let r > 2 be not an integer, and fix some t1 > t0. Then there
exists a C > 0 such that for g ∈ Kr−1

0 ((t0, t1), 2) there exists a unique solution
u ∈ Kr+1

0 ((t0, t1), 2) of

Mu = (∂t −A)u = g, u
∣∣
t=t0

= 0

with ‖u‖Kr+1
0 ((t0,t1),2)

≤ C‖g‖Kr−1
0 ((t0,t1),2)

.

The nonlinear problem. To prove Theorem 3.20 we look for a solution u =
(h, q)> ∈ Kr+1((t0, t1), 2) of the nonlinear problem (2.18); i.e.,

∂t

(
h
q

)
= A

(
h
q

)
+N(h, q). (3.53)

As initial condition we take

u
∣∣
t=t0

= u0 = (h0, q0)> ∈ Hr(2) = Hr(2)×Hr−1(2). (3.54)
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Since the nonlinearity N contains a third derivative of h, we restrict our cal-
culations to the case r ≥ 3. According to Lemma 3.11 there exists a function
v ∈ Kr+1((t0, t1), 2) with v

∣∣
t=t0

= u0. Setting u = v + w the initial value prob-
lem (3.53), (3.54) is equivalent to ∂tv + ∂tw = Av + Aw + N(v + w) satisfied by
w ∈ Kr+1((t0, t1), 2) with homogeneous initial condition; i.e.,

Mw = N(v + w)−Mv, w
∣∣
t=t0

= 0. (3.55)

In the next step we assume that w ∈ Kr+1
0 ((t0, t1), 2). To invert the operator M on

the left-hand side of (3.55), we have to show that N(v+w)−Mv ∈ Kr−1
0 ((t0, t1), 2).

As Lemma 3.25 does not work for integers, we take r > 3 in the following. The
highest derivatives occurring in the nonlinearity N(v + w) are ∂3

xh and ∂xq. Since
v, w ∈ Kr+1((t0, t1), 2) = Kr+1((t0, t1), 2)×Kr((t0, t1), 2), Lemma 3.15 yields ∂3

xh ∈
Kr−2((t0, t1), 2) and ∂xq ∈ Kr−1((t0, t1), 2). Thus, we can apply Lemma 3.16 which
gives N(v + w) ∈ Kr−1((t0, t1), 2). Due to Lemma 3.15 the same is true for Mv,
hence

N(v + w)−Mv ∈ Kr−1((t0, t1), 2). (3.56)
According to Definition 3.13 it remains to show that

∂j
t (N(v + w)−Mv))

∣∣
t=t0

= 0 for all j < (r − 2)/2. (3.57)

Restricting the regularity to 3 < r < 4, we have to check (3.57) only for j = 0. Since
v ∈ Kr+1((t0, t1), 2) × Kr((t0, t1), 2), Lemma 3.11 additionally allows to choose
∂j

t v
∣∣
t=t0

for j < (r− 1)/2 arbitrarily. Hence we set ∂tv
∣∣
t=t0

= Au0 +N(u0), which
yields (N(v + w)−Mv)

∣∣
t=t0

= N(u0)−∂tv
∣∣
t=t0

+Au0 = 0, thus, N(v+w)−Mv ∈
Kr−1

0 ((t0, t1), 2) if w ∈ Kr+1
0 ((t0, t1), 2). Therefore, we can apply Lemma 3.25 and

write (3.55) as fixed point equation, namely

w = M−1
0 (N(v + w)−Mv) , (3.58)

where we denote the solution operator of Lemma 3.25 by M−1
0 . The choice of v is

not unique, but by applying a cut-off function in time we can always ensure that
‖v‖Kr+1((t0,t1),2) < C‖u0‖Hr(2) for a fixed C > 0. Setting ‖u0‖Hr(2) = ε2 < 1 and
assuming ‖w‖Kr+1((t0,t1),2) ≤ ε we obtain

‖M−1
0 (N(v + w)−Mv) ‖Kr+1((t0,t1),2)

≤ C‖N(v + w)−Mv‖Kr−1((t0,t1),2)

≤ C
(
‖w‖2Kr+1((t0,t1),2)

+ ‖v‖Kr+1((t0,t1),2)

)
≤ Cε2 = C‖u0‖Hr(2) < ε

(3.59)

for ε > 0 small enough. Therefore, the right-hand side of (3.58) maps a small ball
in Kr+1

0 ((t0, t1), 2) into itself if the initial condition u0 is small enough. For w1 and
w2 in this ball, additionally we have

‖M−1
0 (N(v + w1)−Mv)−M−1

0 (N(v + w2)−Mv) ‖Kr+1((t0,t1),2)

≤ C‖N(v + w1)−N(v + w2)‖Kr−1((t0,t1),2) ≤
1
2
‖w1 − w2‖Kr+1((t0,t1),2),

(3.60)

since N is at least quadratic and pure v-terms drop out.
Thus, for a sufficiently small initial condition the right-hand side of (3.58) defines

a contraction in Kr+1
0 ((t0, t1), 2), and the contraction mapping theorem yields the

existence of a w ∈ Kr+1
0 ((t0, t1), 2) satisfying (3.55). Since from (3.59) we obtain
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‖w‖Kr+1((t0,t1),2) ≤ C‖u0‖Hr(2), there exists a solution u = v + w of (3.53), (3.54)
with

‖u‖Kr+1((t0,t1),2) ≤ C‖u0‖Hr(2).

Uniqueness. To show uniqueness of u suppose there are two solutions u1, u2. Then
the difference u1 − u2 fulfills

M(u1 − u2) = N(u1)−N(u2), (u1 − u2)
∣∣
t=t0

= 0. (3.61)

Since N(u1)
∣∣
t=t0

= N(u2)
∣∣
t=t0

, we have N(u1) −N(u2) ∈ Kr−1
0 ((t0, t1), 2). Thus,

we can write u1 − u2 = M−1
0 (N(u1)−N(u2)), and similarly to (3.60) we obtain

‖u1−u2‖Kr+1((t0,t1),2) ≤ C‖N(u1)−N(u2)‖Kr−1((t0,t1),2) ≤
1
2
‖u1−u2‖Kr+1((t0,t1),2),

if the initial condition u0 is small enough. Thus, u1 = u2.

Higher regularity. The higher regularity in the time interval t ∈ [t̃0, t1] for t0 <
t̃0 < t1 follows from a bootstrapping argument, which we sketch next. As u ∈
L2((t0, t1),Hr+1(2)), there exists a t̃ ∈

[
t0+t̃0

2 , t̃0

]
with

‖u(t̃, ·)‖Hr+1(2) ≤
2

t̃0 − t0
‖u‖L2((t0,t̃0),Hr+1(2)),

since otherwise we had∫ t̃0

t0+t̃0
2

‖u(t̃, ·)‖2Hr+1(2) dt̃ > ‖u‖2L2((t0,t̃0),Hr+1(2)).

Starting again at t = t̃ yields u ∈ Kr+2((t̃, t1), 2) with

‖u‖Kr+2((t̃,t1),2)
≤ C‖u(t̃, ·)‖Hr+1(2) ≤ C‖u‖Kr+1((t0,t1),2) ≤ C‖u0‖Hr(2).

In particular, we have

‖u‖Kr+2((t̃0,t1),2)
≤ C‖u0‖Hr(2). (3.62)

Iterating this procedure for m ∈ N yields ‖u‖Kr+m((t̃0,t1),2)
≤ C‖u0‖Hr(2), and

hence the second assertion in Theorem 3.20.

Remark 3.26. In (3.57) we had to choose r < 4 in order to achieve (N(v + w)−
Mv) ∈ Kr−1

0 ((t0, t1), 2), hence it is not obvious why the bootstrapping argument
can be applied to initial conditions with higher regularity. However, considering the
two components of N(v +w)−Mv separately, condition (3.57) can be substituted
by

∂j1
t (∂tv1 + ∂xv2)

∣∣
t=t0

= 0 for all j1 < (r − 2)/2, (3.63)

∂j2
t (N2(v + w)− ∂tv2 +A2v)

∣∣
t=t0

= 0 for all j2 < (r − 3)/2, (3.64)

where A2v denotes the second component of Av. According to Lemma 3.11, we can
choose the time derivatives

∂j1
t v1

∣∣
t=t0

, ∂j2
t v2

∣∣
t=t0

arbitrarily for all j1 < r/2 and j2 < (r − 1)/2. The essential property is that the
regularities of v ∈ Kr+1 and N(v +w)−Mv ∈ Kr−1 differ by two, such that there
is always one degree of freedom left in the choice of v

∣∣
t=t0

to fulfill (3.63), (3.64).
For instance, if 5 < r < 6, we additionally have to fulfill (3.63) for j1 = 1 and (3.64)
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for j2 = 1, which is no problem since we can arbitrarily choose ∂2
t v1 and ∂2

t v2 at
t = t0. Thus, the restriction to r < 4 above is only for notational convenience.

4. Renormalization

To make the formal calculations in §2.6 rigorous and hence prove Theorem 2.8
we establish a renormalization process as in [5, 22]. Additional to iterating the
application of the local existence and uniqueness theorem, the key issue is to ex-
tract the leading order behavior formally described by the Burgers equation (2.66).
Therefore we now consider the IBL in Bloch space which is split in (2.45) for the
linearly diffusive mode α̃φ1 and in (2.46) for the linearly exponentially damped
remainder. Here rescaled Bloch spaces with different weights in ` turn out to be
useful.

4.1. Basic setup. For m ∈ N0, r, b ≥ 0, and L > 0 we set
BL(m, r, b) := Hm(ILk0 ,H

r
per(Iγ)), ‖ṽ‖BL(m,r,b)

:=
(∑

j≤m

∫
ILk0

(1+`2)b‖∂j
` ṽ(`, ·)‖

2
Hr(Iγ) d`

)1/2

,
(4.1)

where again Iδ = (−δ/2, δ/2). Note that the spaces adhere to the fixed choice of
periodicity γ = 2π/k0. Let B(m, r, b) := B1(m, r, b). Regarding the original Bloch
spaces from §2.3 we have B(m, r) = B(m, r, 0). At first view, the introduction
of weights in the `-variable seems dispensable since all norms ‖ · ‖BL(m,r,b1) and
‖ · ‖BL(m,r,b2) are equivalent due to the compact support in `. But as constants
depend on L this step is crucial in §4.2 to control nonlinear interaction without
losing powers of L−1. For L > 0 we define the renormalization operator R1/L by

R1/L : B(m, r, b) → BL(m, r, b), R1/Lṽ(`, x) := ṽ(`/L, x). (4.2)

Note that only ` is rescaled, and thus there is no matching rescaling in x-space.
For L ≥ 1 we have

L
1−2m

2 ‖ṽ‖B(m,r,b) ≤ ‖R1/Lṽ‖BL(m,r,b) ≤ L
1+2b

2 ‖ṽ‖B(m,r,b) ≤ CL
1+2b

2 ‖ṽ‖B(m,r,0).
(4.3)

We will mainly need the second inequality for b = 2, which yields an additional
factor L5/2 in the estimates.

For a fixed p ∈ (0, 1/2) we introduce the renormalized variables

αn(t, `) := RL−n α̃(L2nt, `), wn(t, `, x) := L(1−p)nRL−nw̃s(L2nt, `, x). (4.4)

Since we suppose the stable component to decay like t−1 and since time is scaled by
L2n, we blow up wn by multiplying it with L(1−p)n. The factor Lpn is needed later
to control some constants. From the IBL (2.45), (2.46) in Bloch space we obtain

∂tαn(t, `) = L2nµ1(L−n`)αn(t, `) + L2nBc
n(αn(t))(`)

+ L2nHc
n(αn(t), L−(1−p)nwn(t))(`),

(4.5)

∂twn(t, `, x) = L2nÃs(L−n`)wn(t, `, x) + L(3−p)nHs
n(αn(t), L−(1−p)nwn(t))(`, x),

(4.6)

where
Bc

n(αn) := RL−nB̃c (RLnαn) , Hc
n(αn, wn) := RL−nH̃c (RLnαn,RLnwn) ,

Hs
n(αn, wn) := RL−nH̃s (RLnαn,RLnwn) .

(4.7)



EJDE-2012/61 SELF-SIMILAR DECAY 37

Thus, solving (2.45), (2.46) with the initial condition (α̃, w̃s)
∣∣
t=1

= (α0, w0) is
equivalent to iterating the following renormalization process: For n ∈ N solve (4.5),
(4.6) for t ∈ [1/L2, 1] with the initial condition

αn(1/L2, `) = αn−1(1, `/L), wn(1/L2, `, x) = L1−pwn−1(1, `/L, x). (4.8)

We take (αn, wn) ∈ XLn(2, r, b), where

XLn(m, r, b) := BLn(m, r, b)×BLn(m, r, b),

BLn(m, r, b) := BLn(m, r, b)×BLn(m, r−1, b),
(4.9)

with r ≥ 3 and b > 0 to be chosen later. Note that the value of r does not play any
role in the critical component α̃ since α̃ is independent of x. We introduce

K̃r
L((t0, t1),m, b) := Hr/2((t0, t1), BL(m, 0, b)) ∩ L2((t0, t1), BL(m, r, b)). (4.10)

Finally, let

K̃r+1
L ((t0, t1),m, b) := K̃r+1

L ((t0, t1),m, b)× K̃r
L((t0, t1),m, b), (4.11)

X r+1
L ((1/L2, 1), 2, 2) := K̃r+1

L ((1/L2, 1), 2, 2)× K̃r+1
L ((1/L2, 1), 2, 2). (4.12)

Then, due to Theorem 3.20 concerning local existence in the original system, we
expect local solutions of (4.5), (4.6) in the space X r+1

Ln ((1/L2, 1), 2, 2).

Theorem 4.1 (Local existence in the renormalized system). Let 3 < r < 4.
There exist L0 > 1 and C1, C2 > 0 such that for all L > L0 the following holds. Let

ρn−1 := ‖(αn−1(1), wn−1(1))‖XLn−1 (2,r,2) ≤ C1L
−5/2.

Then there exists a unique local solution (αn, wn) ∈ X r+1
Ln ((1/L2, 1), 2, 2) of (4.5),

(4.6) with
‖(αn, wn)‖X r+1

Ln ((1/L2,1),2,2) ≤ C2L
5/2ρn−1. (4.13)

Moreover, for any m ∈ N we have (αn, wn) ∈ X r+m
Ln ((1/2, 1), 2, 2) and there exists

a C3 > 0 such that

‖(αn, wn)‖X r+m
Ln ((1/2,1),2,2) ≤ C3L

5/2ρn−1.

Proof. The proof can be adapted from Theorem 3.20. The crucial point is to have
C2, C3 independent of n, which depends on suitable resolvent estimates of the linear
parts L2nµ1(L−n`) and L2nÃs(L−n`), and on estimates for the nonlinearities. The
latter is worked out in detail in §4.2 in a slightly different form suitable to obtain
more detailed asymptotics. Thus, here we only sketch the main ideas. First, we
consider the linear inhomogeneous system

∂tαn − L2nµ1(L−n`)αn = gn,1, (4.14)

∂twn − L2nÃs(L−n`)wn = gn,2. (4.15)

Since (4.14) is independent of x no smoothing properties are needed, and hence, as
well as (4.5), it can be solved by the variation-of-constants formula. For (4.15) we
find resolvent estimates for λ − L2nÃs(L−n`) which correspond to Theorem 3.24
transferred to Bloch space. Since we are in the stable part, we can choose a = 0
independently of n, which yields

‖(αn, wn)‖X r+1
Ln ((1/L2,1),2,2) ≤ C2‖(gn,1, gn,2)‖X r−1

Ln ((1/L2,1),2,2) (4.16)

with C2 independent of n. Note that (4.16) could be improved by choosing a =
−L2nσ0/2, but to show the local existence result (4.13), a = 0 is sufficient here.
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The estimates for the nonlinearities, see §4.2, together with Banach’s fixed point
theorem and (4.3) then yield the first result, while the higher regularity follows as
in Theorem 3.20 by a bootstrapping argument. �

The local existence Theorem 4.1 turns out to be a fundamental step in the proof
of the following nonlinear stability result.

Theorem 4.2. Let p ∈ (0, 1/2) and 3 < r < 4. In the spectrally stable case, cf. As-
sumption 2.3, there exist C1, C2 > 0 such that the following holds. If ‖α0‖B(2,r,2) +
‖w0‖B(2,r,2) ≤ C1, then there exists a unique global solution w̃ = α̃φ1 + w̃s of the
IBL (2.45), (2.46) in Bloch space with (α̃, w̃s)

∣∣
t=1

= (α0, w0). Moreover, we have∥∥(`, x) 7→ (
w̃(t, t−1/2`, x)− χ(t−1/2`)f̂z0(`)φ

1(0, x)
)∥∥

B√t(2,r,1)
≤ C2t

−(1−p)/2,

(4.17)
where f̂z0 is the Fourier transformed profile from (2.53), φ1 is the eigenvector to the
critical eigenvalue λ1, see (2.35), and ln(z0 + 1) = 2π d

c2
α0(0) with d from (2.64).

Theorem 4.2 is proved in §4.2 and §4.3 by an iteration scheme for the renormal-
ized system. Here, we translate (4.17) back to x-space in order to show Theorem
2.8.

Proof of Theorem 2.8. We have

(h, q)>(t, x) =
∫ 1/2k0

−1/2k0

ei`x(h̃, q̃)>(t, `, x) d` =
∫ 1/2k0

−1/2k0

ei`(x+c1t)w̃(t, `, x) d`

= t−1/2

∫ 1/2k0
√

t

−1/2k0
√

t

ei`t−1/2(x+c1t)w̃(t, t−1/2`, x) d`.

With the inverse Fourier transform fz0(t
−1/2(x + c1t)) =

∫
R ei`t−1/2(x+c1t)f̂z0(`) d`

we obtain

(h, q)>(t, x)− t−1/2fz0(t
−1/2(x+ c1t))φ1(0, x)

= t−1/2

∫ 1/2k0
√

t

−1/2k0
√

t

ei`t−1/2(x+c1t)
(
w̃(t, t−1/2`, x)− χ(t−1/2`)f̂z0(`)φ

1(0, x)
)

d`

− t−1/2

∫
R

ei`t−1/2(x+c1t)f̂z0(`)
(
1− χ(t−1/2`)

)
d` φ1(0, x).

(4.18)
The first integral on the right-hand side of (4.18) can be estimated by

t−1/2 sup
x∈R

∣∣∣ ∫ 1/2k0
√

t

−1/2k0
√

t

ei`t−1/2(x+c1t)
(
w̃(t, t−1/2`, x)− χ(t−1/2`)f̂z0(`)φ

1(0, x)
)

d`
∣∣∣

≤ t−1/2

∫ 1/2k0
√

t

−1/2k0
√

t

sup
x∈[0,γ]

|w̃(t, t−1/2`, x)− χ(t−1/2`)f̂z0(`)φ
1(0, x)|d`

≤ Ct−1+p/2.

Since fz0 is analytic, the Fourier transform f̂z0 is exponentially decaying. Thus,
the second integral in (4.18) can be estimated as

t−1/2 sup
x∈R

∣∣∣ ∫
R

ei`t−1/2(x+c1t)f̂z0(`)
(
1− χ(t−1/2`)

)
d` φ1(0, x)

∣∣∣ ≤ Ct−1.
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Altogether, this proves Theorem 2.8. Thus, it remains to prove Theorem 4.2.

4.2. Estimates. We write the solution of the renormalized IBL (4.5), (4.6) in Bloch
space with the help of the variation-of-constants formula; i.e.,

αn(t, `)

= e(t−L−2)L2nµ1(L
−n`)αn−1(1, L−1`)

+ L2n

∫ t

L−2
e(t−s)L2nµ1(L

−n`)
(
Bc

n(αn(s))(`) +Hc
n(αn(s), L−(1−p)nwn(s))(`)

)
ds,

(4.19)

wn(t, `, x)

= L1−pe(t−L−2)L2nÃs(L−n`)wn−1(1, L−1`, x)

+ L(3−p)n

∫ t

L−2
e(t−s)L2nÃs(L−n`)Hs

n(αn(s), L−(1−p)nwn(s))(`, x) ds,

(4.20)

where etL2nÃs(L−n`) stands for the analytic semigroup generated by L2nÃs(L−n`),
cf. Lemma 3.23, which clearly transfers from Ãs(`) to L2nÃs(L−n`). To prove
existence of a solution for t ∈ [1/L2, 1] we need estimates of the linear semigroups
and the nonlinearities. These are shown in Lemma 4.3, Lemma 4.8, and Lemma
4.9, respectively.

Lemma 4.3. For 0 ≤ b1 ≤ b2, 0 ≤ j ≤ 2 there exists a C > 0 such that for
α ∈ BLn(2, r, b1) independent of x we have

‖etL2nµ1(L
−n·)α‖BLn (2,r,b2) ≤ Cmax{1, t−(b2−b1)/2}‖α‖BLn (2,r,b1) (4.21)

in the critical part. The stable part is linearly exponentially damped; i.e., there
exists a σ1 > 0 such that for u ∈ BLn(2, r − j, b)×BLn(2, r − 1− j, b) we have

‖etL2nÃs(L−n·)u‖BLn (2,r,b)×BLn (2,r−1,b)

≤ Ce−σ1tL2n

max{1, (L2nt)−j/2}‖u‖BLn (2,r−j,b)×BLn (2,r−1−j,b).
(4.22)

Proof. Estimate (4.21) follows from the locally parabolic shape of L2nµ1(L−n`) =
−c2`2 +O(L−n`3) around ` = 0, see Assumption 2.3. Since Reµn(`) = Reλn(`) <
−σ0 for all n ≥ 2 and ` ∈ (−k0/2, k0/2) and since Reµ1(`) < −σ0 for all |`| > 4rχ,
the real part of the spectrum of Ãs is bounded from above by −σ0. Thus, we have
inequality (4.22) for a σ1 < σ0, which avoids the treatment of Jordan blocks. �

To control the integral in (4.20) we use the following lemma.

Lemma 4.4. There exists a C > 0 such that for t0 ∈ [1/L2, 1] and 0 ≤ j ≤
1 we have

∫ 1

t0
e−σ1(1−s)L2n

(1−s)−j/2ds≤CL−(2−j)n. For 0 ≤ j ≤ 2 we obtain∫ 1/2

1/L2 e−σ1(1−s)L2n

(1− s)−j/2ds≤CL−2n.

The next lemma exploits the role of leading `’s in the critical part of the nonlin-
earity, cf. [16, Lemma 14]. Remember again that k0 := 2π/γ, where γ denotes the
bottom periodicity.

Lemma 4.5. Let β ∈ C2([−k0/2, k0/2), C2((0, γ),C)) with ‖β(`, ·)‖C2((0,γ),C) ≤
C`b2−b1 for a b1 ∈ [0, b2]. Then there exists a C > 0 such that for all L > 1 we
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have

‖(R1/Lβ)u‖BL(2,r,b1) ≤ CL−(b2−b1)‖β‖C2([−k0/2,k0/2),C2((0,γ),C))‖u‖BL(2,r,b2).

The idea of the lemma is as follows. If the nonlinearity in (4.5) exhibits, e.g.,
a leading (`/Ln)j , j > 0, we can extract the factor `b2−b1/L(b2−b1)n, b2 − b1 ≤ j.
While in (4.19) the factor `b2−b1 can be balanced by the linear semigroup in Lemma
4.3, the factor L−(b2−b1)n increases the degree of irrelevance. However, according
to the term t−(b2−b1)/2 in (4.21) this is only possible as long as b2 − b1 is bounded
from above by, e.g., 2− p.

As products in x-space correspond to convolutions in Bloch space, the nonlin-
earities in (4.7) produce terms of the type RL−1(RLu ∗ RLv). Thus, we define an
adapted convolution operator ∗L for u, v ∈ BL(m, r, b) as follows:

u ∗L v :=
∫ Lk0/2

−Lk0/2

u(`−m)v(m)dm = LRL−1 ((RLu) ∗ (RLv)) . (4.23)

To estimate convolutions we use the following lemma, based on standard Sobolev
embeddings.

Lemma 4.6. Let b2 > 1/2, b2 ≥ b1 ≥ 0. There exists a C > 0 such that, for all
L ≥ 1,

‖u ∗L v‖BL(2,r,b1) ≤ C‖u‖BL(2,r,b1)‖v‖BL(2,r,b2).

Remark 4.7. Before estimating the nonlinearities in detail we want to summarize
the different effects in a descriptive way. By combining (4.23) and Lemma 4.6,
each convolution produces a factor L−n. Due to the rescaling in (4.4), each factor
wn gives a further L−(1−p)n. In the critical component, a factor RL−n(`b2−b1) in
the renormalized nonlinearity leads to an additional factor L−(b2−b1)n as long as
b2 − b1 ≤ 2− p.

Lemma 4.8. Let r ≥ 3. For p ∈ (0, 1/2) there exists a C > 0 such that for all
(αn, wn) ∈ XLn(2, r, 2) = BLn(2, r, 2) × BLn(2, r, 2) with (αn, wn)XLn (2,r,2) ≤ 1 we
have

L2nHc
n(αn, L

−(1−p)nwn) = s1 + s2 + s3

with

‖s1‖BLn (2,r,p) ≤ CL−(1−p)n‖αn‖2BLn (2,r,2), (4.24)

‖s2‖BLn (2,r,1) ≤ CL−(1−p)n‖αn‖BLn (2,r,2)‖wn‖BLn (2,r,2), (4.25)

‖s3‖BLn (2,r,1) ≤ CL−2(1−p)n‖wn‖2BLn (2,r,2). (4.26)

Proof. By construction we have

Hc
n(αn, L

−(1−p)nwn)

= RL−nH̃c(RLnαn, L
−(1−p)nRLnwn)

= RL−nẼ∗c

(
B̃((RLnαn)φ1 + L−(1−p)nRLnwn)

)
−RL−n

(
B̃c(RLnαn)

)
+RL−nẼ∗c

(
G̃((RLnαn)φ1 + L−(1−p)nRLnwn)

)
,

(4.27)

see (2.45) and (2.58). We start with the estimates of the first two terms on the
right-hand side of (4.27). Since they are quadratic, we split them according to the
multiplicities of αn and wn.
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1. Terms quadratic in αn. In the formal derivation of the Burgers equation in §2.6
we obtained

Ẽ∗c

(
B̃((RLnαn)φ1)

)
(`)− B̃c(RLnαn)(`) = β(`)(RLnαn)∗2(`)

with β(`) = O(`2), cf. (2.65). Therefore, we have to estimate

RL−n(β(RLnαn)∗2) = (RL−nβ)RL−n((RLnαn)∗2).

Applying (4.23), Lemma 4.5, and Lemma 4.6 we obtain

‖RL−n(β(RLnαn)∗2)‖BLn (2,r,p) = L−n‖(RL−nβ)(αn ∗Ln αn)‖BLn (2,r,p)

≤ CL−(3−p)n‖αn‖2BLn (2,r,2).

Thus, the terms considered in this part can be assigned to s1. Note that here we
only used β(`) = O(`2−p) instead of β(`) = O(`2), since otherwise the missing
weight in ` could not be balanced by the linear semigroup in (4.21).

2. Mixed terms in αn, wn. The terms in

Ẽ∗c

(
B̃(α̃φ1 + w̃s)

)
(`) = χ(`)

∫ γ

0

B2(α̃(`)φ1(`) + w̃s(`))(x)ψ̄1
2(`, x)dx

which contain both α̃ and w̃s are all of the type

N(α̃, w̃s)(`) = χ(`)
∫ γ

0

[
(α̃(·)(∂x+i·)kcφ1

i (·, x)) ∗ ((∂x+i·)ksw̃s,j(·, x))
]
(`)ψ̄1

2(`, x)dx

with kc, ks ∈ {1, 2, 3} and i, j ∈ {1, 2}. Applying (4.23) yields

RL−nN(RLnαn, L
−(1−p)nRLnwn)

= L−(1−p)nRL−n

(
χ

∫ γ

0

[
((RLnαn)(∂x+i·)kcφ1

i ) ∗ ((∂x+i·)ks(RLnwn,j))
]
ψ̄1

2dx
)

= L−(1−p)nRL−n

(
χ

∫ γ

0

[
RLn

(
αn(∂x+i

·
Ln

)kcRL−nφ1
i

)
∗ RLn

(
(∂x+i

·
Ln

)kswn,j

) ]
ψ̄1

2dx
)

= L−(2−p)n

∫ γ

0

[(
αn(∂x+i

·
Ln

)kcRL−nφ1
i

)
∗Ln

(
(∂x+i

·
Ln

)kswn,j

)]
RL−n(χψ̄1

2)dx,

where χ(`)ψ̄1
2(`) = O(`), cf. (2.41). If u ∈ BLn(2, r, 1) is independent of x, we have

‖u‖BLn (2,r,1) = ‖u‖BLn (2,0,1). Thus, we obtain

‖RL−nN(RLnαn, L
−(1−p)nRLnwn)‖BLn (2,r,1)

≤ L−(2−p)n

∫ γ

0

∥∥∥((αn(∂x+i
·
Ln

)kcRL−nφ1
i

)
∗Ln

(
(∂x+i

·
Ln

)kswn,j

))∥∥∥
BLn (2,0,1)

dx

≤ CL−(3−p)n‖αn(∂x+i
·
Ln

)kcRL−nφ1
i ‖BLn (2,0,2)‖(∂x+i

·
Ln

)kswn,j‖BLn (2,0,2)

≤ CL−(3−p)n‖αn‖BLn (2,r,2)‖wn‖BLn (2,r,2).

Therefore, the mixed terms in αn, wn can be assigned to s2.

3. Terms quadratic in wn. The estimates for the terms in Ẽ∗c
(
B̃(L−(1−p)nRLnwn)

)
are the same as for the mixed terms, except that we have an additional factor
L−(1−p)n due to the scaling of wn, which yields the estimate for s3 in (4.26).
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It remains to estimate the third term in (4.27). We have

Ẽ∗c

(
G̃((RLnαn)φ1)

)
(`) = O(`2)(RLnαn)∗2(`) +

∑
j≥3

O(`)(RLnαn)∗j(`), (4.28)

where the O(`2)-terms are due to the quadratic terms in the IBL with a factor ∂xq.
Since (αn, wn)XLn (2,r,2) ≤ 1 we have ‖αn‖j

BLn (2,r,2) ≤ ‖αn‖2BLn (2,r,2) for j ≥ 3, thus
the terms in (4.28) belong to s1 and can be estimated as stated in (4.24). By the
same considerations, all other terms in Ẽ∗c

(
G̃((RLnαn)φ1 + L−(1−p)nRLnwn)

)
are

absorbed by s2 and s3 and can be estimated as specified in (4.24) and (4.26). �

To prove estimates for the stable part of the nonlinearity, which in contrast
to the critical part depends on x, we have to split Hs

n according to the different
regularities in space. Moreover, lowering the weight in ` is not useful in this case.
On the one hand, this is because we do not gain an additional factor ` by applying
the mode filter Es. On the other hand, the linear semigroup in (4.22) could not
balance the missing weight without losing powers of L−n.

Lemma 4.9. Let r ≥ 3. For p ∈ (0, 1/2) there exists a positive constant C such
that Hs

n(αn, L
−(1−p)nwn) can be split according to the order of x-derivatives in the

form

L(3−p)nHs
n(αn, L

−(1−p)nwn) =
3∑

j=0

(
0

hs
n,j(αn, L

−(1−p)nwn)

)
,

where

‖hs
n,j(αn, L

−(1−p)nwn)‖BLn (2,r−j,2)

≤ C
(
L(2−p)n‖αn‖2BLn (2,r,2) + Ln‖αn‖BLn (2,r,2)‖wn‖BLn (2,r,2)

+ Lpn‖wn‖2BLn (2,r,2)

) (4.29)

for all (αn, wn) ∈ XLn(2, r, 2) with (αn, wn)XLn (2,r,2) ≤ 1.

Proof. The proof works along similar lines as for the critical part. Again, it is
sufficient to estimate the quadratic terms. The appropriate estimates for higher
order terms follow a fortiori since each convolution yields an additional factor L−n.
Moreover, every wn gives a factor L−(1−p)n. We only have to pay attention to
the different regularities in space. Since in (2.18) the highest derivative ∂3

xh occurs
only linearly (i.e., the IBL is quasilinear), the second component of Hs

n maps to
BLn(2, r − j, 2), j ∈ {0, 3} due to Lemma 4.6. Inequality (4.29) then follows by
counting the respective powers of L−n. �

Remark 4.10. At first view, estimate (4.29) for the stable part seems worse than
those for the critical part in Lemma 4.9, since the powers of L in the coefficients do
not converge to zero for n→∞. However, applying the linear semigroup in (4.20)
yields an additional factor L−2n, which in §4.3 allows to prove that the stable
component decays polynomially for t → ∞ . Furthermore, the nonlinearity hs

n,3

only lies in BLn(2, r − 3, 2). But since in the second component the phase space is
BLn(2, r − 1, 2), this can be smoothed out by the linear semigroup.
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4.3. Splitting, iteration, and conclusion. The result of the formal calculation
in §2.6 was

∂tα̃(t, `) = −c2`2α̃(t, `) + id`χ(`)α̃∗2(t, `) + h.o.t. (4.30)

Since α̃ is independent of x, (4.30) is reminiscent of the Fourier transform ∂tv̂ =
−c2`2v̂ + id`v̂∗2 + h.o.t. of the Burgers equation. According to §2.5, the higher
order perturbations are asymptotically irrelevant, and the renormalized solution
t1/2v(t, t1/2x) converges for t→∞ towards fz(x), see (2.54). In Fourier space, this
corresponds to v̂(t, t−1/2`) → f̂z(`). If we consider the initial condition v(1, x) =
v0(x), the parameter z is given by ln(z + 1) = d

c2

∫
R v0(x) dx = 2π d

c2
v̂0(0).

Transferring this result to (4.30), we expect the rescaled critical component
α̃(t, t−1/2`) to converge towards f̂z0(`) for t→∞, where

ln(z0 + 1) = 2π
d

c2
α̃(1, 0). (4.31)

Thus, for fixed times t = L2n, n ∈ N, the renormalized solution αn(1, `) =
α̃(L2n, L−n`) is expected to converge towards f̂z0(`) for n→∞.

Splitting. The formal considerations above give reason to split αn into

αn(t, `) = α(z)
n (t, `) + L−(1−p)nγn(t, `)

with the Fourier transformed profile

α(z)
n (t, `) := χ(L−n`)v̂z0(t, `) = χ(L−n`)f̂z0(t

1/2`).

Then, according to (4.5), the correction term γn satisfies

∂tγn = L2nµ1(L−n·)γn + L(3−p)n
(
Bc

n(αn)−Bc
n(α(z)

n )

+Hc
n(αn, L

−n(1−p)wn)
)

+ L(1−p)nResn,
(4.32)

where Resn := −∂tα
(z)
n + L2nµ1(L−n·)α(z)

n + L2nBc
n(α(z)

n ).

Lemma 4.11. Let |z0| < 1. Then there exists a C > 0 such that

sup
t∈[L−2,1]

‖Resn‖BLn (2,r,2) ≤ CL−n|z0|.

Proof. By construction we have L2nBc
n(α(z)

n )(`) = id`χ(L−n`)(α(z)
n ∗α(z)

n )(`), while
the renormalization of the largest eigenvalue reads

L2nµ1(L−n`) = −c2`2 +O(L−n`3).

As v̂z0 is an exact solution of ∂tv̂z0(t, `) = −c2`2v̂z0(t, `) + id`(v̂z0 ∗ v̂z0)(t, `), we
obtain

Resn(`) = id`χ(L−n`)
(
(α(z)

n ∗ α(z)
n )(`)− (v̂z0 ∗ v̂z0)(`)

)
= id`χ(L−n`)

∫ Ln/2

−Ln/2

(
χ

(
`−m

Ln

)
χ
( m
Ln

)
− 1
)
v̂z0(`−m)v̂z0(m) dm.

This can be estimated in BLn(2, r, 2) by CL−n|z0| since the first factor in the inte-
gral is zero for both `−m and m small, and since v̂z0 is a smooth and exponentially
decaying function. �
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Next we study the evolution of γn at the fixed wave number ` = 0. Due to
the definition of the critical mode filter Ẽ∗c we obtain α̃(t, 0) = 〈w̃(t, 0, ·), ψ1(0, ·)〉
where w̃ = e−i`c1t(h̃, q̃)>, see (2.36) and (2.42). Since according to (2.41) we have
ψ1(0, x) = (c0, 0)>, we obtain

α̃(t, 0) = c0

∫ γ

0

h̃(t, 0, x) dx = c0

∫ γ

0

∑
j∈Z

eijk0xFh(t, k0j) dx

= c0γFh(t, 0) =
1
2π
c0γ

∫
R
h(t, x) dx.

The perturbation’s mass
∫

R h dx is conserved in the IBL, cf. §2.2. Thus, we have
α̃(t, 0) = α̃(1, 0) for all t ≥ 1, which yields

L−(1−p)nγn(t, 0) = αn(t, 0)− α(z)
n (t, 0) = α̃(L2nt, 0)− f̂z0(0)

= α̃(1, 0)− c2
2πd

ln(z0 + 1) = 0

for all t ∈ [L−2, 1], cf. (4.31). The following lemma shows a contraction property
of the rescaled linear semigroup when acting on the remainder γn with γn(0) = 0,
and explains why we require some regularity in ` in the spaces B(m, r, b).

Lemma 4.12. Let g ∈ H2(2) with g(0) = 0. Then

‖e(1−L−2)L2nµ1(L
−n·)R1/Lg‖H2(2) ≤ CL−1‖g‖H2(2).

Proof. We state here only the estimates for the L2(2)-norm, as the additional factor
L−1 coming from d

d` (R1/Lg)(`) = L−1g′(L−1`) leads to easier estimates in case of
derivatives. Since g(0) = 0, we have for a ˜̀∈ [0, L−1`]

|g(L−1`)| = L−1`g′(˜̀) ≤ L−1`‖g‖C1 ≤ CL−1`‖g‖H2(2)

due to standard Sobolev embedding. Thus, we obtain

‖e(1−L−2)L2nµ1(L
−2n·)R1/Lg‖2L2(2)

=
∫

R
e2(1−L−2)L2nµ1(L

−n`)(g(L−1`))2(1 + `)2 d`

≤ CL−2‖g‖2H2(2)

∫
R

e2(1−L−2)L2nµ1(L
−n`)`2(1 + `)2 d`,

where the integral can be estimated independently of n since L2nµ1(L−n`) =
−c2`2 +O(L−n`3). �

Let

gn,c(`) := γn(1, `), ρn,c := ‖gn,c‖BLn (2,r,2),

gn,s(`, x) := wn(1, `, x), ρn,s := ‖gn,s‖BLn (2,r,2),

ρn := ‖αn(1)‖BLn (2,r,2) + ‖wn(1)‖BLn (2,r,2).

Hence, ρn ≤ L−(1−p)nρn,c + ‖α(z)
n (1)‖H2(2) + ρn,s, and to prove Theorem 4.2 we

will show that both ρn,c and ρn,s are bounded for n→∞.
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Proof of Theorem 4.2. Taking L0 and C1 from Theorem 4.1, we assume the
initial condition (α0, w0) to be small enough to fulfill

ρ0 ≤ L−m0−1, L−m0 ≤ C1L
−5/2, (4.33)

where L > L0 and m0 ∈ N are specified later. In particular, this yields

|z0| ≤ C‖α(z)
0 (1, ·)‖H2(2) ≤ CL−m0−1. (4.34)

By (4.32) we have

γn(t, `) = e(t−L−2)L2nµ1(L
−n`)γn(L−2, `)

+ L(3−p)n

∫ t

L−2
e(t−s)L2nµ1(L

−n`)
(
Bc

n(αn(s))(`)−Bc
n(α(z)

n (s))(`)
)

ds

+ L(3−p)n

∫ t

L−2
e(t−s)L2nµ1(L

−n`)Hc
n(αn(s), L−(1−p)nwn(s))(`) ds

+ L(1−p)n

∫ t

L−2
e(t−s)L2nµ1(L

−n`)Resn(s, `) ds,

(4.35)
while wn is obtained from (4.20). In order to apply an iteration scheme, we now
assume

ρn−1 ≤ L−m0 , ρn−1,c ≤ L−m0 , (4.36)

which is obviously true for n = 1. Since ρn−1 ≤ C1L
−5/2, Theorem 4.1 implies

‖(αn, wn)‖X r+1
Ln ((1/L2,1),2,2) ≤ CL5/2ρn−1,

‖(αn, wn)‖X r+2
Ln ((1/2,1),2,2) ≤ CL5/2ρn−1

for a C > 0. Due to Corollary 3.12, these estimates yield

sup
t∈[L−2,1]

‖αn‖BLn (2,r,2) ≤ CL5/2ρn−1, (4.37)

sup
t∈[L−2,1]

‖wn‖BLn (2,r,2) ≤ CL5/2ρn−1, (4.38)

sup
t∈[1/2,1]

‖wn‖BLn (2,r+1,2) ≤ CL5/2ρn−1. (4.39)

First, we show an a-priori estimate for supt∈[L−2,1] ‖γn(t, ·)‖BLn (2,r,2) by estimat-
ing (4.35). We start with the first term on the right-hand side of (4.35). The initial
condition (4.8) yields

γn(L−2, `) = L(1−p)n
(
αn−1(1, L−1`)− χ(L−n`)f̂z0(L

−1`)
)

= L1−pγn−1(1, L−1`) + L(1−p)n
(
χ(L−(n−1)`)− χ(L−n`)

)
f̂z0(L

−1`).

Since χ(L−(n−1)`) − χ(L−n`) = 0 for |`| ≤ Ln−1rχ and since f̂z0 decays exponen-
tially, we obtain

‖γn(L−2, ·)‖BLn (2,r,2) ≤ CL1−pL5/2‖γn−1(1, ·)‖BLn−1 (2,r,2) + CL−1|z0|

≤ CL7/2−pρn−1,c + CL−1|z0|,
(4.40)

where the factor L5/2 comes from the different scalings of γn−1 and γn, see (4.3).
Next we estimate the first integral in (4.35). Due to the definitions of B̃c in (2.48)
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and of the convolution ∗Ln in (4.23) we have L2nBc
n(αn)(`) = id`χ(`)(αn∗Lnαn)(`),

and thus

L(3−p)n
(
Bc

n(αn)−Bc
n(α(z)

n )
)

(`)

= L(1−p)nid`χ(`)
(
L−2(1−p)nγn ∗Ln γn + L−(1−p)nγn ∗Ln α(z)

n

)
(`).

Therefore,

L(3−p)n sup
t∈[L−2,1]

‖Bc
n(αn)−Bc

n(α(z)
n )‖BLn (2,r,1)

≤ CL−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖2BLn (2,r,2) + C|z0| sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2).

The missing weight in ` can be balanced by the linear semigroup in Lemma 4.3,
which gives

L(3−p)n sup
t∈[L−2,1]

∥∥∥∫ t

L−2
e(t−s)L2nµ1(L

−n·)
(
Bc

n(αn(s))−Bc
n(α(z)

n (s))
)

ds
∥∥∥

BLn (2,r,2)

≤ L(3−p)n sup
t∈[L−2,1]

‖Bc
n(αn)−Bc

n(α(z)
n )‖BLn (2,r,1) sup

t∈[L−2,1]

∫ t

L−2
(t− s)−1/2 ds

≤ CL−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖2BLn (2,r,2) + C|z0| sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2).

(4.41)
Similarly, we can estimate the second integral in (4.35) by applying Lemma 4.8 and
the estimates for αn, wn in (4.37), (4.39), which gives

L(3−p)n sup
t∈[L−2,1]

‖Hc
n(αn(t), L−(1−p)nwn(t))‖BLn (2,r,p) ≤ C(L5/2ρn−1)2.

Using the properties of the linear semigroup in Lemma 4.3 yields

L(3−p)n sup
t∈[L−2,1]

∥∥∥∫ t

L−2
e(t−s)L2nµ1(L

−n·)Hc
n(αn(s), L−(1−p)nwn(s)) ds

∥∥∥
BLn (2,r,2)

≤ CL5ρ2
n−1.

(4.42)
Finally, by Lemma 4.11, we obtain

L(1−p)n sup
t∈[L−2,1]

∥∥∥∫ t

L−2
e(t−s)L2nµ1(L

−n`)Resn(s, `) ds
∥∥∥

BLn (2,r,2)
≤ CL−pn|z0|.

(4.43)
Combining (4.35) and (4.40)-(4.43), we achieve

sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2)

≤ CL7/2−pρn−1,c + CL−1|z0|+ CL−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖2BLn (2,r,2)

+ C|z0| sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2) + CL5ρ2
n−1 + CL−pn|z0|.

(4.44)

By choosing m0 large enough we obtain C|z0| ≤ CL−m0−1 ≤ 1/3, and thus

L−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2)
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≤ sup
t∈[L−2,1]

‖αn(t, ·)− α(z)
n (t, ·)‖BLn (2,r,2)

≤ C(L5/2ρn−1 + |z0|) ≤ CL5/2L−m0 + CL−m0−1 ≤ 1/(3C).

Finally, (4.44) yields the a-priori estimate

1/3 sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2)

≤ CL7/2−pρn−1,c + CL−1|z0|+ CL5ρ2
n−1 + CL−pn|z0|.

(4.45)

Iteration. To conclude ρn ≤ L−m0 and ρn,c ≤ L−m0 from assumption (4.36), the
first term on the right-hand side of (4.45) is not yet small enough. Thus, we have
to use (4.35) once more for the fixed time t = 1. In this case, as γn−1(t, 0) = 0, we
can apply Lemma 4.12. In contrast to (4.40), we achieve

‖e(1−L−2)L2nµ1(L
−n·)γn(L−2, ·)‖BLn (2,r,2)

≤ CL−p‖γn−1(1, ·)‖BLn−1 (2,r,2) + CL(1−p)n−1‖

×
(
χ(L−(n−2)·)− χ(L−(n−1)·)

)
f̂z0‖H2(2)

≤ CL−pρn−1,c + CL−1‖f̂z0‖H2(2) ≤ CL−pρn−1,c + CL−1|z0|.

Similar to (4.44), we obtain

ρn,c ≤ CL−pρn−1,c + CL−1|z0|+ CL−(1−p)n sup
t∈[L−2,1]

‖γn(t, ·)‖2BLn (2,r,2)

+ C|z0| sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2) + CL5ρ2
n−1 + CL−pn|z0|.

(4.46)

From (4.45) we obtain

sup
t∈[L−2,1]

‖γn(t, ·)‖BLn (2,r,2)

≤ C
(
L7/2−pL−m0 + L−1L−m0−1 + L5−2m0 + L−pnL−m0−1

)
≤ CL7/2−p−m0 ,

and plugging this estimate into (4.46) yields

ρn,c ≤ C
(
L−pL−m0 + L−1L−m0−1 + L−(1−p)nL7−2p−2m0 + L−m0−1L7/2−p−m0

+ L5L−2m0 + L−pnL−m0−1
)
.

Choosing now L > L0 such that C ≤ Lp/18, we obtain

ρn,c ≤
1
18

(
L−m0 + L−m0−1 + L7−2m0 + L3/2−2m0 + L5−2m0 + L−m0−1

)
.

Choosing finally m0 > 7 such that L7−m0 ≤ 1 leads to

ρn,c ≤
1
3
L−m0 . (4.47)

Next, we estimate the stable part ρn,s. From (4.20) we obtain

gn,s(`, x) = L1−pe(1−L−2)L2nÃs(L−n`)gn−1,s(L−1`, x)

+ L(3−p)n

∫ 1

L−2
e(1−s)L2nÃs(L−n`)Hs

n(αn(s), L−(1−p)nwn(s))(`, x) ds.

(4.48)
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Applying Lemma 4.3 we can estimate the first term on the right-hand side of (4.48)
as

L1−p‖e(1−L−2)L2nÃs(L−n·)RL−1gn−1,s‖BLn (2,r,2)

≤ L1−pe−σ1(1−L−2)L2n

‖gn−1,s‖BLn−1 (2,r,2)

≤ CL−1ρn−1,s.

To estimate the integral in (4.48) we use Lemma 4.9, which gives

L(3−p)n
∥∥∥∫ 1

L−2
e(1−s)L2nÃs(L−n·)Hs

n(αn(s), L−(1−p)nwn(s)) ds
∥∥∥
BLn (2,r,2)

≤
3∑

j=0

∥∥∥∫ 1

L−2
e(1−s)L2nÃs(L−n·)

(
0

hs
n,j(αn, L

−(1−p)nwn)

)
ds
∥∥∥
BLn (2,r,2)

=:
3∑

j=0

‖Ij‖BLn (2,r,2).

For the integrals I0 and I1, the smoothing properties of the linear semigroup are
not required since BL(m, r, b) := BL(m, r, b) × BL(m, r − 1, b); i.e., the regularity
needed for the second component is only r − 1. Applying Lemma 4.3 and Lemma
4.4 we achieve

‖Ij‖BLn (2,r,2) ≤ C

∫ 1

L−2
e−σ1(1−s)L2n

‖hs
n,j‖BLn (2,r−j,2) ds

≤ CL(2−p)n(L5/2ρn−1)2
∫ 1

L−2
e−σ1(1−s)L2n

ds ≤ CL−pnL5ρ2
n−1

for j ∈ {0, 1}. For the estimate of I2, the linear semigroup has to smooth out one
x-derivative, which yields

‖I2‖BLn (2,r,2) ≤ C

∫ 1

L−2
e−σ1(1−s)L2n

(1 + L−n(1−s)−1/2)

× ‖hs
n,2(αn(s), L−(1−p)nwn(s))‖BLn (2,r−2,2) ds

≤ CL(2−p)n(L5/2ρn−1)2
∫ 1

L−2
e−σ1(1−s)L2n

(1 + L−n(1−s)−1/2) ds

≤ CL−pnL5ρ2
n−1.

Treating I3 the same way would lead to factor (1 − s)−1 and therefore to a non-
integrable singularity. Thus, we split I3 into

I3 =
∫ 1/2

L−2
. . .ds+

∫ 1

1/2

. . .ds.

While on the first time interval [L−2, 1/2] the singularity does not occur, we can
use the higher regularity of wn on the second time interval as stated in (4.39). Note
again that αn is independent of x, thus the value of r plays no role in the spaces
for αn. We obtain

‖I3‖BLn (2,r,2) ≤ C

∫ 1/2

L−2
e−σ1(1−s)L2n

(1+L−n(1−s)−1)

× ‖hs
n,3(αn(s), L−(1−p)nwn(s))‖BLn (2,r−3,2) ds
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+ C

∫ 1

1/2

e−σ1(1−s)L2n

(1+L−n(1−s)−1/2)

× ‖hs
n,3(αn(s), L−(1−p)nwn(s))‖BLn (2,r−2,2) ds

≤ CL−pnL5ρ2
n−1.

Collecting the estimates for Ij gives

ρn,s ≤ CL−1ρn−1 + CL−pnL5ρ2
n−1

≤ CL−1L−m0 + CL−pL5L−2m0 ≤ 1
3
L−m0 .

(4.49)

Combining (4.34), (4.47), and (4.49), we finally obtain

ρn = ‖αn(1)‖BLn (2,r,2) + ‖wn(1)‖BLn (2,r,2) ≤ L−(1−p)nρn,c + C|z0|+ ρn,s ≤ L−m0 .

Conclusion. So far we have shown that if ρ0 ≤ L−m0−1, then ρn,c, ρn,s, and ρn

stay smaller than L−m0 for all n ∈ N. In order to prove (4.17), we estimate

(`, x) 7→ w̃(t, t−1/2`, x)− χ(t−1/2`)f̂z0(`)φ
1(0, x)

at the discrete times t = L2n, n ∈ N; i.e.,

w̃(L2n, L−n`, x)− χ(L−n`)f̂z0(`)φ
1(0, x)

= α̃(L2n, L−n`)φ1(L−n`, x) + w̃s(L2n, L−n`, x)− χ(L−n`)f̂z0(`)φ
1(0, x)

= αn(1, `)φ1(L−n`, x) + L−(1−p)nwn(1, `, x)− χ(L−n`)f̂z0(`)φ
1(0, x)

=
(
αn(1, `)− χ(L−n`)f̂z0(`)

)
φ1(0, x) + αn(1, `)

(
φ1(L−n`, x)− φ1(0, x)

)
+ L−(1−p)nwn(1, `, x)

= L−(1−p)nγn(1, `)φ1(0, x) + αn(1, `)
(
φ1(L−n`, x)− φ1(0, x)

)
+ L−(1−p)nwn(1, `, x).

(4.50)

Taking the B√t(2, r, 2)-norm at t = L2n, the first term on the right-hand side of
(4.50) yields

‖(`, x) 7→ γn(1, `)φ1(0, x)‖BLn (2,r,2)

=
( 2∑

j=0

∫ 1/2k0Ln

−1/2k0Ln

(1 + `2)2|∂j
`γn(1, `)|2‖φ1(0, ·)‖2Hr(Iγ) d`

)1/2

≤ C‖γn(1, ·)‖BLn (2,r,2) ≤ CL−m0 .

The second term in (4.50) is estimated as follows. We have

‖(`, x) 7→ αn(1, `)
(
φ1(L−n`, x)− φ1(0, x)

)
‖BLn (2,r,1)

=
( 2∑

j=0

∫ 1/2k0Ln

−1/2k0Ln

(1 + `2)
∥∥ dj

d`j
[αn(1, `)

(
φ1(L−n`, ·)− φ1(0, ·)

)
]
∥∥2

Hr(Iγ)
d`
)1/2

.

(4.51)
We now have to distinguish between terms in which the eigenvector φ1 is differen-
tiated with respect to ` and those in which only αn is differentiated. For the first
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group, we obtain estimates of the type∫ 1/2k0Ln

−1/2k0Ln

(1 + `2)|∂j1
` αn(1, `)|2

∥∥∥ dj2

d`j2
φ1(L−n`, ·)

∥∥∥2

Hr(Iγ)
d`

≤ L−2n

∫ 1/2k0Ln

−1/2k0Ln

(1 + `2)|∂j1
` αn(1, `)|2

∥∥∥ dj2−1

d`j2−1
(∂`φ

1(L−n`, ·))
∥∥∥2

Hr(Iγ)
d`

≤ CL−2n‖αn(1, ·)‖2BLn (2,r,2),

where j2 is at least one. For the terms without a derivative of φ1 we can use Taylor
expansion, which leads to

φ1(L−n`, x)− φ1(0, x) = L−n`∂`φ
1(˜̀(`), x),

where |˜̀(`)| ≤ L−n|`|. Thus, in (4.51) there also occur terms of the type∫ 1/2k0Ln

−1/2k0Ln

(1 + `2)‖∂j
`αn(1, `)L−n`∂`φ

1(˜̀(`), ·)‖2Hr(Iγ) d`

≤ L−2n

∫ 1/2k0Ln

−1/2k0Ln

(1 + `2)2|∂j
`αn(1, `)|2‖∂`φ

1(˜̀(`), ·)‖2Hr(Iγ) d`

≤ CL−2n‖αn(1, ·)‖2BLn (2,r,2).

Note that the additional factor ` in this estimate is the reason why we have to
lower the weight in ` from B√t(2, r, 2) to B√t(2, r, 1) in Theorem 4.2. Altogether,
we obtain

‖(`, x) 7→ αn(1, `)
(
φ1(L−n`, x)− φ1(0, x)

)
‖BLn (2,r,1) ≤ CL−n‖αn(1, ·)‖BLn (2,r,2)

≤ CL−m0L−n.

The BLn(2, r, 2)-norm of third term on the right-hand side of (4.50) can be easily
estimated by L−(1−p)nρn,s. Combining all these estimates, we obtain

‖(`, x) 7→ w̃(L2n, L−n`, x)− χ(L−n`)f̂z0(`)φ
1(0, x)‖BLn (2,r,1) ≤ CL−(1−p)n.

This is (4.17) for t = L2n, and the local existence Theorem 4.1 yields the result for
all t ∈ [L2n, L2(n+1)].
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