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EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR
FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL
BOUNDARY CONDITIONS

JINGFU JIN, XIPING LIU, MEI JIA

ABSTRACT. This article shows the existence of a positive solution for the sin-
gular fractional differential equation with integral boundary condition

“DPu(t) = An(1) f(t,u(t), tE€ (0,1),
1
u(0) — au(l) = /0 go(s)u(s)ds,
1
W (0) = bCDTu(1) = /0 g1(s)u(s) ds,

u"(O) — ’LL”I(O) .= u(nfl)(o) =0,

where A is a parameter and the nonlinear term is allowed to be singular at
t = 0,1 and v = 0. We obtain an explicit interval for A such that for any A
in this interval, existence of at least one positive solution is guaranteed. Our
approach is by a fixed point theory in cones combined with linear operator
theory.

1. INTRODUCTION

We consider the singular integral boundary-value problem involving Caputo frac-
tional derivative:
“DPu(t) = M(t)f(t,u(t)), te(0,1),

1
u(0) — au(1) = / go(s)u(s) ds,
° (1.1)
W (0) — bCDI(1) = / a1 (s)u(s) ds,

u//(()) — u///(o) - .= u(n—l)(o) — 07

where “D is the standard Caputo derivative, n > 3 is an integer, p € (n — 1,n),
0<g¢g<l0<a<1 0<b<TI(2-gq) are real numbers. f € C([0,1] x
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(0, +00), [0, +00)), and f(t,u) may be singular at u = 0. go, g1 € C[0, 1] are given
functions. h € C((0,1),[0,400)), h(t) is allowed to be singular at ¢t = 0, 1.

There exist a great number of important applications using fractional differential
equations in many areas, such as physics, mechanics, chemistry, engineering, etc.
Due to this, the study of related problems has attracted much attention of the
researchers, especially most recently [2], B, 21 [T 20, Bl [7, 14} 15], 16, 19]. Also, as
another important factor, singularity is sometimes inevitable in the mathematical
models of modern science and technology areas. Among the studies of the existence
of positive solutions for singular boundary-value problems, extensive work has been
done for the singular integer order differential equations with integral boundary
conditions; see [10, 111, 18, O, 13, 12, 17, K], and the references therein. On the
other hand, for fractional differential equations, however, most results on singular
boundary-value problems are only restricted to the two-point boundary conditions
[2, B, 211 [ 20, [5]. For example, with the assumptions of 1 < o < 2 and f(¢,z,y) is
singular at = = 0, [I] discussed existence and multiplicity of positive solutions for
the two-point boundary-value problem :

Dg u(t) + f(t,u(t), D*u(t)) =0, te(0,1),
u(0) = u(l) =0,
where > 0 and o — pu > 1, D, is the standard Riemann-Liouville derivative.

When 2 < a < 3, the two-point boundary-value problems and are

studied in [2] and [20] respectively:
Dy u(t) + f(t,u(t)) =0, te(0,1),
u(0) = /(1) = u"(0) =0,
D%u(t) + f(t,u(t),u'(t), D*u(t)) = 0,
and (1.4)
u(0) =0, «/(0) = /(1) = 0.
In , f is assumed to be singular at ¢ = 0, and Dg, is the standard Caputo
derivative. In , f(t,x,y, z) may be singular at the value 0 of all variables z, y, 2
and D®u(t) is the standard Riemann-Liouville fractional derivative.

In the literature, results on singular integral boundary-value problems of the
fractional differential equations are relatively rare. In this paper, we first give
the Green function of boundary-value problem (BVP) and prove some of
its properties. Then, applying a fixed-point theorem with linear operator theory
analysis, we obtain some sufficient conditions on the existence of positive solutions
of . An explicit interval for A is derived such that for any A in this interval,
the existence of at least one positive solution is guaranteed.

(1.2)

(1.3)

2. PRELIMINARIES

In this section, we introduce definitions and preliminary facts which are used
throughout this paper.

Definition 2.1 ([I9]). The fractional integral of order o > 0 of a function y :
(0, +00) — R is given by

) = g [ =97 ) s

provided that the right side is point wise defined on (0,+00), and I' denotes the
Gamma function.
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Definition 2.2 ([I9]). The fractional Caputo derivative of order oo > 0 for a
function « : (0,+00) — R is given by

C o _ 1 ¢ x(n)(s) 3
Dralt) = % ds.

I'n—« t—g)atl-n

where n = [a] + 1, provided the right integral converges.

Lemma 2.3. Suppose that y € C[0,1] and n > 3 is an integer, p € (n — 1,n),
0<g<1l,0<a<1,0<b<I'(2—gq). Then the integral boundary-value problem

“Dru(t) = y(t), te(0,1),

u(0) — au(1) = / gols)u(s) ds,

1 (2.1)
W) -5 = [ gi(s)uts) ds,
0
UN(O) _ u///(()) R u(n—l)(()) -0
is equivalent to the fractional integral equation
1
/ G(t,s) ds—|—/ O, s)u(s)ds, (2.2)
0
where
(t—s)P~! + al'(p—q)(T(2—q)=b)(1—5)P "' +bT'(2—q)T'(p) (a+t—at)(1—s)?~I~"
T'(p) (1-a)(T(2—q)—b)L'(p—q)T(p) ’
foO<s<t<l,
G(t3 S) = —1 —q—1
al(p—q)(T'(2—q)—b)(1—s)" " +bI'(2—q)I'(p) (at+t—at)(1—s)P "4
(1=a)(T'(2—¢)—b)I'(p—a)T'(p) ’
f0<t<s<l.
(2.3)
and
—aT(2 —
Bt 5) = (a+t—at)l'(2—q)gi1(s)  go(s) (2.4)

(1—a)(T(2—q)—b) 1—a

Proof. From CDPU() = y(t), t € (0,1) and the boundary conditions u”(0) =
u”(0) = - = w1 (0) = 0, we have

" (n—1)

u(t) = I y(t) + u(0) + u'(0)t + o1 =1

1t p1 ,
=107 | = ) ds (o) + w01

By properties of the Caputo derivative, we get
“Diu(t) = 17~ "y(t) +“D(u(0) + ' (0)¢)
Jot = sypmaly(s) ds Lo
T'(p—q) I'2-q)

Then

1 ' p—1 /
u(l) = @/@ (1 —5)P" y(s)ds + u(0) + u'(0),
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and
Cpiy) A=) ds o)
D) = F(p q) F(2 —q)
By the boundary conditions u(0) — fo go(s)u(s)ds and v/(0) —b“Du(1) =
fo g1(s)u(s) ds, we have
u(0) — F?p) /0 (1 —8)P"1y(s)ds — au(0) — au/(0) = /0 go(s)u(s)ds,
and
oy bl =97 y(s)ds  bu'(0)
WO T S g =, 9
Hence,
/ _ bF(2 B q) ! —s p—q—1 s)ds
YO = (=g~ Jy 0
+ F(I;(Q;)q)b/o g1(s)u(s) ds,
and
1 a [F(1 = s)P~1y(s)ds
w0 = - [ mloputs)ds + Jo L e
abl'(2 — q) fol(l —s5)P 97 y(s)ds al'(2—q) fol g1(s)u(s)ds
(I-a)(I'(2—-q)—bI'(p—q) (1-a)T(2-q —b)
We can easily obtain
1 ¢ . btI'(2 — q) fl(l — 8P~ 1y(s)ds
40 =1 /0 (= y(s)ds + (T(2 —OQ) —b)T'(p—q)
N afol(l —38)P7ly(s)ds abl'(2—¢q fo (1 —s)P~91y(s)ds
(1—a)l'(p) (1-a)('2—-q) - b)'(p—q)
b [+ TESD L AL
al'(2 - q) [, g1(s)u(s) ds
(I-a)'(2—-4q) =)
1 1
= /0 G(t,s)y(s)ds —|—/O O(t, s)u(s)ds.
The proof is complete. U
Denote

o = L2—q) = OI(p—q) +00'2—g)I'(p)
' 1-a)T2-q -0I(p—qT(p)
abl'(2 — q)
(1-a)T2-q -0I(p—q)
Lemma 2.4. The function G(t,s) in Lemma satisfies the following conditions:
(i) G(t,s) is continuous on [0,1] x [0, 1];
(i) G(t,s) < ka(1—s)P=97, for any (t,s) € [0,1] x [0, 1];

ko =
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(iii) G(t,8) > kao(1 — s)P797 L for any (t,s) € [0,1] x [0, 1].
Proof. Tt is easy to check that (i) holds and G(¢,s) > 0 on [0,1] x [0, 1].
(ii) For 0 < s <t < 1, denote
G1(t, s)
_adl(p—q)(T2—q) —b)(1—s)P " +bI(2— )l (p)(a+t —at)(1—s)P "
(1-a)T2—-q) - 0)L(p - )T (p)

(t —s)P~t
TR
and for 0 <t < s <1, denote
Gg(t,s)
_al(p—q)(T(2—q) —b)(1—s)" " +bI'(2—¢)T(p)(a+t —at)(1 —s)P~ 9"
(1-a)T'(2-q) -0)l'(p—qgT(p) '
For 0 < s <t <1, we have
(I—=a)(I'(2—4q) = 0)I'(p— ¢)T(p)G1(t, 5)
<(1-a)T2—q) —0I(p—q)(1—5)P " +al(p—q)(L(2—q) —b)(1 s
+ 02— )T(p)(a+t —at)(1 —s)P777!
< (=8P 17 (D(2 = q) = b)L(p — g)(1 — 5)? + bI'(2 — )T (p)(a + t — at)]
< (1 =8P (02— q) = DT (p — q) + bI'(2 — ¢)T(p)]-
(

Hence, G1(t,s) < ki(1 —s)P7971 forany 0 < s <t < 1.
For 0 <t <s <1, we have

(1=a)(I'(2-q) = 0)'(p — L' (p)G2(t, s)
=(1—5)P " al'(p— q)(T(2—q) —b)(1 — 5)! +bI'(2 — q)T(p)(a + t — at)]
< (1 =P T2 —q) —b)T(p—q) +bI'(2 — T (p)]-

Hence, Go(t,s) < ky(1 —s)P797 1,
Therefore, G(t,s) < ki1(1 — s)P~97L, for any (t,s) € [0,1] x [0,1].
(iii) Tt is easy to see for (¢,s) € [0,1] x [0, 1],

(1-a)T(2~-q) =0T (p - T (P)G(t,s) = L2 - T (p)(a+t —at)(1 - s)P 717
> abl'(2 — q)T(p)(1 — s)P7 971,
Therefore, G(t,s) > ko(1 — s)P~97 1 for any (¢,s) € [0,1] x [0, 1]. O

Denote

o= iy P Mo= i, 29

Let E = C[0,1] be the Banach space with the norm ||u| = maxo<i<1 |[u(t)], P =
{ue E:u(t) >0} and K ={ue P:u(t) > ]92(1]6;1]\/10)”,&”} be cones oiE.

Denote K, = {u € K : ||u|| <7}, 0K, ={uv € K : ||u| =r}, and K, p = {u €
K :r <Ju|| < R}, where 0 < r < R < 4o0.

Lemma 2.5 ([6, [4]). Let K be a positive cone in real Banach space E, 0 < r <
R < 400, and let S : K, p — K be a completely continuous operator and such that

(i) [1Sull < lull for v € OKR;
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(ii) There exists e € OK, such that u # Su+ me for any u € OK,., and m > 0.
Then S has a fized point in K, g.

Remark 2.6. If (i) and (ii) are satisfied for u € 0K, and e € 0Kg, respectively.
Then Lemma 2.l is still true.

Define a linear operator A : E — E, by

1
Au(t):/o O(t, s)u(s)ds. (2.5)

Lemma 2.7. Suppose 0 < mg < My <1 holds. Then
(i) A is a bounded linear operator;
(ii) A(P) C P;
(iii) (I — A) is invertible and ||(I — A)~1|| <

1— Mo'

Proof. (i) It is easy to see that A is a linear operator with
1
Au(t)] = | / B(t, s)u(s) ds| < MolJu]l.
0

Therefore, ||A]| < My < 1. It follows that A is a bounded linear operator.

(ii) For each u € P, we have u € C([0,1]), u(t) > 0. Since ®(¢,s) is continuous
and nonnegative, it is easy to check that Au € C([0,1]), Au(t) > 0. This implies
that A(P) C P.

(iii) We have proved in (i) that ||A|| < My < 1, which implies that (I — A)~!
invertible.

To find the expression for (I — A)~!, we use the theory of Fredholm integral
equations. We have u(t) = (I — A)~lo(t) if and only if u(t) = v(t) + Au(t) for each

€ [0,1]. The definition of the operator A implies that

1
u(t) = v(t) + / (1, s)u(s) ds. (2.6)
0
The condition ||A| < My < 1 implies that 1 is not an eigenvalue of the kernel
d(t, s).
Hence, (2.6) has a unique solution u € F, for each v € E. By successive substi-
tutions in (2.6]), we obtain

u(t) = v(t) +/O p(t, s)v(s)ds, (2.7)

where the resolvent kernel p(¢, s) is given by

(oo}
=Y @y(ts),
j=1

where @4 (t,s) = ®(t,s), ® = fol ®;_1(r,s)dr, (j = 2,3,...). Since
0<my < B(t,s) < My <1, wehavem{)<<I> (t s) <M, (j=1,2,3,...). Hence,
we have M
Mo 0
<plts) < ——— 2.
1_m0_p(,3)_1_M7 (2.8)
and p(t, s) is continuous on [0, 1] x [0,1]. In view of ( and ., we obtain

1= 70l < 1+ [ ot oolas < 4+ 0ol = ¢

el
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That is, [|(I — A)~!| < 1/(1 — My). 0

Define a nonlinear operator T': E — E, by

1
u(t) = )\/ G(t,s)h(s)f(s,u(s))ds. (2.9)

In view of ([2.5] ., and Lemma-, we can easily prove that the existence of
solutions to l-) is equivalent to the existence of solutions to the equation
u(t) = Tu(t) + Au(t), te€]0,1]. (2.10)

It follows from Lemma[2.7)that u is a solution of (2.10)) if and only if u is a solution
of u(t) = (I—A)~'Tu(t). That is, u is a fixed point of the operator S := (I—A)~!

By and , we have
1
(Su)(t) = A / G(t, $)h(s) (s, u(s)) ds
0 (2.11)

—i—)\/o p(t,s)/o G(s,7)h(7) f(1,u()) dr ds.

We can prove the following lemma.

Lemma 2.8. A function u is a solution of (1.1)) if and only if u is a fized point of
the operator S.

We denote .
L= / (1— )P4 h(s)ds.
0
and assume the following conditions hold

(H) h e C((0,1),[0,+00)) fo s)ds < +o00 and 0 < L < +o0.
To overcome the Slngularlty, we con81der the following approximating equation of

2.11)) with boundary condition o ,
( ) h bound d f
Spu)( _A/ G(t, s)h(s) fn(s,u(s))ds
(2.12)
—|—/\/ ts/ G(s,7)h(7) fn(7,u(T)) dT ds.

where n is a positive integer and f, (¢, u) = f(¢,max{1/n,u}).

Lemma 2.9. Suppose 0 < mog < My < 1 and (H) holds. Then for each positive
integer n, we have

(i) For any 0 < r < R < 400, the operator S, rr — P is completely
com‘inuous,
(ii) Sp(Krr) C K.

Proof. (i) Suppose D C K, g is a bounded set. Then there exists r; > 0 such that
|lu]] <7y for any u € D. Denote

My = max{f(t,max{1/n,u}) : (t,u) € [0,1] x [%, % + ]}

By (2-8) and Lemma [2.4] for any u € D and ¢ € [0, 1], we have
[Snu(t)]
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|)\/ G(t,s)h(s)fn(s,u(s ))ds-i—)\/ ts/GST 7) fn (7, u(r)) dr ds

§/\k1/0 (1—s)P79™ 1h(s)j"n(s,u(s))ds

Motk f* p—q—1
+ 1— M, /0 (1=s) h(s)fn(s,u(s))ds

_ M ' — s)P74 1 p(s) f(s, max{1/n, u(s s
_1_M0/0<1 )P~ 1 () £ (s, max{1/n, u(s)}) d

Therefore, S, (D) is uniformly bounded.

We can also prove that S, (D) is equicontinuous. For t;,t, € [0,1] and u € D,
we have

((Swr) (t1) — (Sot)(t2)]
— A / (1, 5) — Gtz 3))h(s) fuls, u(s)) ds

+)\/ (p(t1, ) — p(ta, ) / Gls, )h(r) fo (7 u(r)) dr ds|
<, / G(t1,5) — Glta, 5)|h(s) ds
+k;1/0 |p(t1,8)—p(t2,s)|/0 (1 — )1 h(r) dr ds)
g)\Ml(/O |G(t1,s)—G(tg,s)|h(s)ds+k1L/0 p(t1, s) — plta, )|ds)

Since G(t, s) and p(¢, s) are continuous on [0, 1] x [0, 1], we can get G(t, s) and p(t, s)
are uniformly continuous on [0, 1] x [0, 1], it follows that |(S,u)(t2) — (Spu)(t1)] — 0
as |ta—t1| — 0. Hence, S, (D) is equicontinuous. Using the Ascoli-Arzela’s theorem,
Sn(D) is relatively compact. Therefore, S, : K, r — P is compact.

Now we show that S, is continuous. Suppose u,u,, € D, (m =1,2,3,...) with
[|ttm, — ul]] — 0 as m — oo. Then there exists 7o > 0 such that [|u,,| < r2 and
l[ull < rs.

For t € [0,1],

(St (£) — (Sw)(8)
) / G(t, $Y(5) (fa(s, um(5)) — fals, u(s))) ds
—|—)\/ (t,s / G(s,7) fn(T U, (7)) —fn(Tau(T))> dr ds

< )\kl/o (1—8)P"9 h(s |fn S, U (8)) —fn(s,u(s))|ds
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M [ 1= o RS () — () s
= Ak ' p—q—1 B
=1 —Mo/o (1—29) h(8)| (8, um(s)) = fuls,u(s))|ds.

Since f, (s, u) is continuous on [0,1] x [+, L 4 ry], we can get f,(s,u) is uniformly

continuous on [0,1] x [+, 1 +r,]. Hence, we have

T (5.t (5)) — s, () | = 0.

It is easy to see
lim ||Sytm — Spull = 0.
m—0o0

Therefore, S, is continuous on P.
(ii) For any u € K, g, t € [0,1], we have

Spu(t

—)\/ G(t,s)h(s) fn(s,u(s ))ds-i—)\/ ts/GST T) fn(T,u(r)) dr ds

< )\kl/ (1 — 5P~ h(s) fu(s,u(s)) ds
0

MoXkq

1— M

_ M 1 — 5)P4p(s s,u(s))ds
=2 [ O e (o) s

This implies that ||S,ul < 1)"2}10 fo $)P=97 L h(s) fr (s, u(s)) ds.
On the other hand, for ¢ € [0, 1],

Spu(t —)\/ G(t, s)h(s) fn(s,u(s))ds

/O (1= $)7=9Lh(s) fu(s, u(s)) ds

/ (t,s / G (s, T)h(7) fr(T,u(T))d7r ds

2/\k2/0 (1= $)P=9=1h(s) fu(s, uls)) ds

> /\kg HS ul|
k
,ju sl
Therefore S, (K, r) C K. O

3. MAIN RESULTS AND PROOF

Denote
f = lim Sup max f(t7 U) ) foo = liminf min f(t7 U) )
u—0+ t€[0,1] u u—+0o0 te[0,1] u
and
f°° = limsup max (t,u)’ fo = liminf min f(t,u).

u——+oo t€[0,1] U u—0t te[0,1] U



10 J. JIN, X. LIU, M. JIA EJDE-2012/63

Theorem 3.1. Suppose 0 < mg < My < 1 and (H) holds. If

0<f0< 1];2‘[0 and 0< k21 < foo < 00, (3.1)
then has at least one positive solution for \ € (m, i:}}{g)
Proof. For \ € (ksz , ,il_LA;{% ), there exists € > 0 such that
1 1— M,
fe 20 R S S R
By , there exist r > 0 and Ry > 0, such that
ft,u) < (fO+e)u, forte[0,1], 0<u<r (3.2)

ftu) > (foo —€)u, forte[0,1], u> Ro.
For any u € 0K, and n > [mz(fiiMo)] + 1 =: ng, we have
’I“kg(l _MO) 1

k M,
r=lul 2 u(t) > Ay = TR 20) s 2

It follows that
fu(t u(t)) = f(t,max{1/n,u(t)}) = f(t,ut)) < (f° +e)u (3.4)
from . Hence,

1
Il = e A [ Gt s)h(5) 5. u(5) s

s

/ (t,s / G(s, T)h(7) fr(7,u(T)) d7 ds|

gAkl/ (1= 8)P=1=1h(s) fu (s, u(s)) ds

0
Mok,
1— My
Ak '
=2 [ A= e g () ds
Ay (f° !
< 11(101\;;8)/0 (1 — )P~ h(s)u(s)ds
< M1 L(f0 +¢)
=T M,
We can get [|Spul| < ||ul|, for each u € OK,.

Let R = maX{QT,%} and e(t) = 1 for t € [0,1]. Then R > r and
e(t) € K1 ={u € K : |Ju|| < 1}. Subsequently, we can show u # S,u + me, for any
m >0 and u € 0Kg.

Otherwise, there exists ug € 0Kgr and mq > 0 such that ug = S,ug + mie. We
notice that for any s € [0, 1],

/0 (1 —8)P"97 h(s) fuls,u(s)) ds

[l < Jull

k
up(s) > min ug(s) > —2(1 — My)R > Ry.
s€[0,1] k1
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From (3.3)), it follows that
Jn(t,uo(t)) = f(t, max{1/n,uo(t)}) = f(t,uo(t)) > (foo — &)uo(t).

Let £ = mingcpo,1) uo(t). Consequently, for any ¢ € [0, 1], we have
)\/ G(t,8)h(s) fn(s,up(s))ds
/ (t,s / G(s, T)(T) fr (T, uo(T)) dT ds + mye(t)

> )\/0 G(t,8)h(s) fn(s,uo(s)) ds + mye(t)

/ P79 h(s) ds + my
>E&+mg >E.

This implies that & > £, which is a contradiction.

It follows that for n > ng = [m] + 1, the operator S,, has a fixed point

up, in K with 7 < |lu,|| < R, from Lemma [2.5] Hence,

—)\/ G(t,s)h(s)fn(s,un(s ))ds—i—)\/ ts/GST T) fn (T, un (7)) d7 ds,

for ¢ € [0,1]. Since u,, € K, we have

k‘g(l — Mo) ’I"k‘g(l — Mo) 1
k1

n(t) 2 Juall = = > L0, ve o)

and
fatun(t) = f(& max{1/n,u,(t)}) = f(t,un(t)), t€][0,1].

It is easy to see that

1 1 1
) [ Gt (s un()ds + A [ ptts) [ Gls, (7)) drds,
0 0 0
for t € [0,1]. By Lemma we obtain that u, is a positive solution of (L.I). O

By proof similar to the one for Theorem we can show the following theorem.
Theorem 3.2. Suppose 0 < mg < My < 1 and (H) holds. If
=0 and fs = +o0,
then has at least one positive solution for A € (0,+00).

Remark 3.3. In Theorem if f9 =0 or fo = +00, we can obtain conclusions
similar to Theorems B.1] and .21
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Theorem 3.4. Suppose 0 < mg < My < 1 and (H) holds. If

EJDE-2012/63

o 1—M, 1
0< f*< L and O<kL<f0<+oo (3.5)
then ) has at least one positive solution for \ € (kQLf()? kllLA]f[fo).
Proof. For A € (kszO, IJILA;[OC) there exists € > 0 such that
1 1— M,
—e>0, —— <A< —— 9
f (fo—€)kaL kiL(f>* +¢)
By (3.5)), there exist r > 0 and Rg > 1, such that
ft,u) > (fo—e)u, forte[0,1], 0 <u<r. (3.6)
flt,u) < (f° +¢e)u, fortel0,1], u> Ryp. (3.7)
Take R > max{r, Ry, kkliRO} For u € KR and n > [%] + 1 =: ng, we
have
ko(1 — M, Rko(1 — M,
u(t) = %HUH = % > Ry.

From (3.7, we have

fa(t,u(t)) = f(t, max{1/n,u(t)}) = f(t,u(t)) < (f* +e)u.

Hence,

ISl = |>\/ G(t, $)h(3) fu(s, u(s)) ds

/ (t,s) / G (s, T)h(T) fr(7,u(T)) d7 ds|

< Moy / (1= 8)P~97 R(s) fu (s, u(s)) ds

Mok 1
1 - ML /O (1= )P~ h(s) fu(s, u(s)) ds
_ )‘kl 1 s p—q—1 s s uls s
71—M0/0(1 YU (s) fu(s, u(s)) d
o0 1
< %Aﬁ i (1- s)p_q_lh(s)u(s) ds
< A <

We can get [|Spul| < ||ul|, for each u € 0K k.

Let e(t) = 1, ¢t € [0,1]. Then e(t) € 0K;, and we can prove u # Spu + me, for
any m > 0, and u € K,. Otherwise there exists ug € K, and m; > 0 such that
ug = Spug + mie. Let n = min{ug(¢) : ¢t € [0, 1]}, for ¢ € [0,1], by (3.6), we have

)\/ G(t,8)h(s) fn(s,up(s))ds

/ (t,s) / G (s, T)(T) fn(T,uo(7)) d7 ds + mae(t)
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>\ / G(t, s)h(s) fn(s,uo(s))ds +ma

2)\/0 ka(1 — 8)P~97 h(s)(fo — €)up(s) ds +my

1
> %/ (1 —8)P"9 h(s)ds +mq = n+m;.
0

This is a contradiction. It follows from Lemma [2.5] that S,, has a fixed point u,, in
K with r < ||u,|| < R. Hence,

= )\/ G(t,s)h(s) fn(s,un(s))ds

1
—+A/’paw> G5, T 7, (7)) 7 s,
0 0
for t € [0,1]. Since u, € K, for n > m, we have

k ko(1 — M, 1
un(t) 2 By = TR0 S s e o,y

and
[t un(t)) = f(t, max{1/n,un(t)}) = f(t,un(t)), t€10,1].

It is easy to see that

£ = / G(t, 5)h(s) f (5, un(s)) ds

—1-)\/ (t,s / G(s, T)h(T) f(T,un (7)) d7r ds,
for t € [0,1]. By Lemma we can get u,, is a positive solution of (L.1)). O
Similarly to the proof of Theorem we can obtain the following theorem.

Theorem 3.5. Suppose 0 < mg < My < 1 and (H) holds. If
=0 and fy= oo,
then (1.1)) has at least one positive solution for A € (0, 400).

Remark 3.6. In Theorem [3.4] if f* = 0 or fy = +o0o, we can obtain similar
conclusions as those in Theorems B4 and Bl
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