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INTEGRAL EQUATIONS OF FRACTIONAL ORDER WITH
MULTIPLE TIME DELAYS IN BANACH SPACES

MOUFFAK BENCHOHRA, DJAMILA SEBA

Abstract. In this article, we give sufficient conditions for the existence of
solutions for an integral equation of fractional order with multiple time delays
in Banach spaces. Our main tool is a fixed point theorem of Mönch type
associated with measures of noncompactness. Our results are illustrated by an
example.

1. Introduction

Fractional differential and integral equations play an important role in charac-
terizing many chemical, physical, viscoelasticity, control and engineering problems.
For more details, see [6, 11, 13, 16, 19], and references therein. In consequence, the
subject of fractional differential and integral equations is gaining much importance
and attention; see, for instance, the monograph of Abbas et al. [2], Kilbas et al.
[15], and the papers of Abbas and Benchohra [1], Agarwal et al. [3], Banas̀ and
Zaja̧c [8], Benchohra and Seba [9, 10], Vityuk and Golushkov [20] and the references
therein.

Ibrahim and Jalab [14] studied the existence of solutions of the fractional integral
inclusion

u(t)−
m∑

i=1

bi(t)u(t− τi) ∈ IαF (t, u(t)), t ∈ [0, T ],

where τi < t ∈ [0, T ], bi : [0, T ] → R, i = 1, . . . , n are continuous functions, and
F : [0, T ] × R → P(R) is a given multivalued map. Motivated by their work, we
study the fractional integral equation

u(x, y) =
m∑

i=1

gi(x, y)u(x− ξi, y − µi) + Ir
θf(x, y, u(x, y)),

(x, y) ∈ J := [0, a]× [0, b];

(1.1)

u(x, y) = Φ(x, y), (x, y) ∈ J̃ := [−ξ, a]× [−µ, b]\(0, a]× (0, b], (1.2)

where a, b > 0, θ = (0, 0), ξi, µi ≥ 0; i = 1, . . . ,m, ξ := maxi=1,...,m{ξi}, µ :=
maxi=1,...,m{µi}, f : J×E → E is a function satisfying some assumptions specified
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later, Ir
θ is the left-sided mixed Riemann-Liouville integral of order r = (r1, r2) ∈

(0,∞)× (0,∞), gi : J → E; i = 1, . . . m, are continuous functions, Φ : J̃ → E is a
continuous function such that

Φ(x, 0) =
m∑

i=1

gi(x, 0)Φ(x− ξi,−µi), x ∈ [0, a],

Φ(0, y) =
m∑

i=1

gi(0, y)Φ(−ξi, y − µi), y ∈ [0, b],

and E is a real Banach space with norm ‖ · ‖.
Using properties of the Kuratowski measure of noncompactness and a fixed point

theorem of Mönch type, we prove the existence of solutions to (1.1)-(1.2). Let us
note here that the technique of measures of noncompactness is a very important
tool for finding solutions for differential and integral equations; for more details see
[4, 9, 10] and references therein.

2. Preliminaries

In this section, we collect a few auxiliary results which will be needed in the
sequel. By C(J,E) we denote the Banach space of continuous functions u : J → E,
with the norm

‖u‖∞ = sup
(x,y)∈J

‖u(x, y)‖.

Let L1(J,E) be the space of Lebesgue integrable functions u : J → E with the
norm

‖u‖L1 =
∫ a

0

∫ b

0

‖u(x, y)‖dxdy.

Let C([−ξ, a]× [−µ, b], E) be a Banach space endowed with the norm

‖u‖C = sup
(x,y)∈[−ξ,a]×[−µ,b]

‖u(x, y)‖.

Definition 2.1 ([20]). Let r = (r1, r2) ∈ (0,∞) × (0,∞), θ = (0, 0) and u ∈
L1(J,E). The left-sided mixed Riemann-Liouville integral of order r of u is defined
by

(Ir
θu)(x, y) =

1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t)dtds.

In particular,

(Iθ
θ u)(x, y) = u(x, y), (Iσ

θ u)(x, y) =
∫ x

0

∫ y

0

u(s, t)dtds;

for almost all (x, y) ∈ J , where σ = (1, 1). For instance, Ir
θu exists for all r1, r2 ∈

(0,∞), when u ∈ L1(J,E). Note also that when u ∈ C(J,E), then (Ir
θu) ∈ C(J,E),

moreover
(Ir

θu)(x, 0) = (Ir
θu)(0, y) = 0, x ∈ [0, a], y ∈ [0, b].

Now we recall some fundamental facts of the notion of Kuratowski measure of
noncompactness.
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Definition 2.2 ([5, 7]). Let F be a Banach space and let ΩF be the family of
bounded subsets of F . The Kuratowski measure of noncompactness is the map
α : ΩF → [0,∞] defined by

α(B) = inf{ε > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ε}, here B ∈ ΩE .

The Kuratowski measure of noncompactness satisfies the following properties
(For more details see [5, 7]).

(a) α(B) = 0 ⇔ B is compact (B is relatively compact).
(b) α(B) = α(B).
(c) A ⊂ B ⇒ α(A) ≤ α(B).
(d) α(A + B) ≤ α(A) + α(B)
(e) α(cB) = |c|α(B); c ∈ R.
(f) α(conv B) = α(B).

For our purpose we will need the following auxiliary results.

Theorem 2.3 ([17]). Let D be a bounded, closed and convex subset of a Banach
space such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the
implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2.4 ([12]). Let V ⊂ C(J,E) be bounded and equicontinuous on J . Then
the map (s, t) 7→ α(V (s, t)) is continuous on J and

α
( ∫

J

V (s, t) ds dt
)
≤

∫
J

α(V (s, t)) ds dt,

where V (s, t) = {u(s, t) : u ∈ V }.

3. Main Results

Definition 3.1. A function u ∈ C(J,E) is said to be a solution of (1.1)-(1.2) if u
satisfies equation (1.1) on J and condition (1.2).

Set
B = max

i=1,...m

{
sup

(x,y)∈J

‖gi(x, y)‖
}
.

Let us impose two conditions for convenience.

(H1) f : J × E → E is a continuous map.
(H2) There exists p ∈ C(J, R+), such that

‖f(x, y, u)‖ ≤ p(x, y)‖u‖, for (x, y) ∈ J and each u ∈ E.

Let p∗ = ‖p‖∞. The main result in this paper reads as follows.

Theorem 3.2. Assume that assumptions (H1) and (H2) hold. If

mB +
p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
< 1 (3.1)

then the problem (1.1)-(1.2) has at least one solution.



4 M. BENCHOHRA, D. SEBA EJDE-2012/65

Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider the
operator N : C(J,E) → C(J,E) defined by

N(u)(x, y) =
m∑

i=1

gi(x, y)u(x− ξi, y − µi) + Ir
θf(x, y, u(x, y)). (3.2)

Since f is continuous, the operator N is well defined; i.e., N maps C(J,E) into
itself. The problem of finding the solutions of equation (1.1)-(1.2) is reduced to
finding the solutions of the operator equation N(u) = u. Let R > 0 and consider
the set

DR = {u ∈ C(J,E) : ‖u‖∞ ≤ R}.
It is clear that DR is a closed bounded and convex subset of C(J,E). We shall show
that N satisfies the assumptions of Theorem 2.3. The proof will be given in three
steps. �

Step 1: N is continuous. Let {un} be a sequence such that un → u in C(J,E),
then for each (x, y) ∈ J ,

‖N(un)(x, y)−N(u)(x, y)‖

≤ 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, un)− f(s, t, u)‖ ds dt.

Let ρ > 0 be such that
‖un‖∞ ≤ ρ, ‖u‖∞ ≤ ρ.

By (H2) we have

(x− s)r1−1(y − t)r2−1‖f(s, t, un)− f(s, t, u)‖ ≤ 2ρp∗(x− s)r1−1(y − t)r2−1

which belongs to L1(J, R+). Since f is continuous, then by the Lebesgue dominated
convergence theorem we have

‖N(un)−N(u)‖∞ → 0 as n →∞.

Step 2: N maps DR into itself. For each u ∈ DR, by (H2) and (3.1) we have for
each (x, y) ∈ J ,

‖N(u)(x, y)‖

≤
m∑

i=1

‖gi(x, y)‖‖u(x− ξi, y − µi)‖

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, u(s, t))‖ ds dt

≤ mB‖u‖∞ +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1p(s, t)‖u‖∞ ds dt

≤ mBR +
p∗R

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1 ds dt

≤ mBR +
p∗R ar1br2

Γ(r1 + 1)Γ(r2 + 1)
< R.

Step 3: N(DR) is bounded and equicontinuous. By Step 2 we have N(DR) =
{N(u) : u ∈ DR} ⊂ DR. Thus, for each u ∈ DR we have ‖N(u)‖∞ ≤ R which
means that N(DR) is bounded.
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For the equicontinuity of N(DR), let (x1, y1), (x2, y2) ∈ J , x1 < x2, y1 < y2, and
u ∈ DR. Then

‖N(u)(x2, y2)−N(u)(x1, y1)‖

=
∥∥∥ m∑

i=1

[
gi(x2, y2)u(x2 − ξi, y2 − µi)− gi(x1, y1)u(x1 − ξi, y1 − µi)

]
+

1
Γ(r1)Γ(r2)

∫ x1

0

∫ y1

0

[(x2 − s)r1−1(y2 − t)r2−1 − (x1 − s)r1−1(y1 − t)r2−1]

× f(s, t, u(s, t)) ds dt

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

0

(x2 − s)r1−1(y2 − t)r2−1f(s, t, u) ds dt

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1f(s, t, u) ds dt
∥∥∥

≤
m∑

i=1

‖gi(x2, y2)u(x2 − ξi, y2 − µi)− gi(x1, y1)u(x1 − ξi, y1 − µi)‖

+
p∗R

Γ(r1)Γ(r2)

∫ x1

0

∫ y1

0

[(x2 − s)r1−1(y2 − t)r2−1 − (x1 − s)r1−1(y1 − t)r2−1] ds dt

+
p∗R

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

0

(x2 − s)r1−1(y2 − t)r2−1 ds dt

+
p∗R

Γ(r1)Γ(r2)

∫ x1

0

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1 ds dt

≤
m∑

i=1

‖gi(x2, y2)u(x2 − ξi, y2 − µi)− gi(x1, y1)u(x1 − ξi, y1 − µi)‖

+
p∗R

Γ(r1 + 1)Γ(r2 + 1)
[(x2 − x1)r1(y2 − y1)r2 + x1

r1y1
r2 − x2

r1y2
r2 ]

+
p∗R

Γ(r1 + 1)Γ(r2 + 1)
[y2

r2(x2 − x1)r1 − (x2 − x1)r1(y2 − y1)r2 ]

≤
m∑

i=1

‖gi(x2, y2)u(x2 − ξi, y2 − µi)− gi(x1, y1)u(x1 − ξi, y1 − µi)‖

+
p∗R

Γ(r1 + 1)Γ(r2 + 1)
[y2

r2(x2 − x1)r1 + x1
r1y1

r2 − x2
r1y2

r2 ].

As x1 → x2, y1 → y2 the right-hand side of the above inequality tends to zero.
Now let V be a subset of DR such that V ⊂ conv(N(V ) ∪ {0}). V is bounded

and equicontinuous and therefore the function (x, y) → v(x, y) = α(V (x, y)) is
continuous on J . Using Lemma 2.4 and the properties of the measure α we have
for each (x, y) ∈ J ,

v(t) ≤ α(N(V )(x, y) ∪ {0})
≤ α(N(V )((x, y))

≤ mBα(V (x− ξi, y − µi)) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

p(s, t)α(V (s, t)) ds dt
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≤ mBv(x− ξi, y − µi) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

p(s, t)v(s, t) ds dt

≤ mB‖v‖∞ + ‖v‖∞
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

p(s, t) ds dt

≤ ‖v‖∞
(
mB +

p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)

)
.

This implies

‖v‖∞ ≤ ‖v‖∞
(
mB +

p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)

)
.

By (3.1) it follows that ‖v‖∞ = 0; that is, v(x, y) = 0 for each (x, y) ∈ J , and
then V (x, y) is relatively compact in E. In view of the Ascoli-Arzelà theorem, V is
relatively compact in DR. Applying now Theorem 2.3 we conclude that N has a
fixed point which is a solution of problem (1.1)-(1.2). �

4. An Example

As an application, we consider the infinite system of partial hyperbolic fractional
differential equations

un(x, y) =
x4y

7
un

(
x− 1

2
, y − 3

5
)

+
x5y2

12
un

(
x− 2

3
, y − 1

4
)

+
1
9
un

(
x− 2

5
, y − 1

3
)

+ Ir
θ

( 1
3ex+y+4

un(x, y)
)
,

(x, y) ∈ J := [0, 1]× [0, 1];

(4.1)

un(x, y) = Φ(x, y), (x, y) ∈ J̃ := [−2
3
, 1]× [−3

5
, 1]\(0, 1]× (0, 1], (4.2)

where n = 1, 2, . . . , n, . . . , r = (1
2 , 1

5 ), and Φ : J̃ → E is continuous with

Φ(x, 0) =
1
9
Φ

(
x− 2

3
,−3

5
)
, Φ(0, y) =

1
9
Φ

(
− 2

3
, y − 3

5
)
, x, y ∈ (0, 1] (4.3)

Let

E = l1 =
{
u = (u1, u2, . . . , un, . . . ) :

∞∑
n=1

|un| < ∞
}

with the norm

‖u‖E =
∞∑

n=1

|un|.

Set u = (u1, u2, . . . , un, . . . ) and f = (f1, f2, . . . , fn, . . . ), with

fn(x, y, un) =
1

3ex+y+4
un, (x, y) ∈ [0, 1]× [0, 1],

g1(x, y) =
x4y

7
, g2(x, y) =

x5y2

12
, g3(x, y) =

1
9
.

Then problem (4.1)–(4.2) can be written as (1.1)–(1.2). In which case, we have

|fn(x, y, un)| ≤ 1
3ex+y+4

|un|, for (x, y) ∈ [0, 1]× [0, 1], and un ∈ R. (4.4)
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Hence conditions (H1) and (H2) are satisfied with p(x, y) = 1
3ex+y+4 . Condition

(3.1) holds with a = b = 1. Indeed

mB +
p∗ar1br2

Γ(r1 + 1)Γ(r2 + 1)
=

3
7

+
1

3e4Γ(r1 + 1)Γ(r2 + 1)
< 1

which is satisfied for each (r1, r2) ∈ (0, 1]×(0, 1]. Consequently, Theorem 3.2 implies
that (4.1)–(4.2) has a solution defined on [− 2

3 , 1]× [− 3
5 , 1].
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