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VARIATIONAL APPROACH FOR WEAK QUASIPERIODIC
SOLUTIONS OF QUASIPERIODICALLY EXCITED

LAGRANGIAN SYSTEMS ON RIEMANNIAN MANIFOLDS

IGOR PARASYUK, ANNA RUSTAMOVA

Abstract. We apply a variational method to prove the existence of weak Besi-
covitch quasiperiodic solutions for natural Lagrangian system on Riemannian
manifold with time-quasiperiodic force function. In contrast to previous pa-
pers, our approach does not require non-positiveness condition for sectional
Riemannian curvature. As an application of obtained results, we find condi-
tions for the existence of weak quasiperiodic solutions in spherical pendulum
system under quasiperiodic forcing.

1. Introduction

Let M be a smooth complete connected m-dimensional Riemannian manifold
equipped with an inner product 〈·, ·〉 on fibers TxM of tangent bundle TM as
well as with Levi-Civita connection ∇. A natural system on M is a Lagrangian
system with Lagrangian density of the form L

∣∣
TxM

= 1
2 〈ẋ, ẋ〉 − Π(t, x) where the

terms 1
2 〈ẋ, ẋ〉 and Π(t, x) stand for kinetic and potential energy respectively. In

this paper, we consider the special case of potential energy represented as Π :=
−W (ωt, x) where W (ωt, x) is ω-quasiperiodic force function generated by a function
W (·, ·) ∈ C0,2(Tk × M, R) (W (·, ·) is continuous together with W ′′

xx(·, ·)); here
Tk = Rk/2πZk is k-dimensional torus and ω = (ω1, . . . , ωk) ∈ Rk is a frequencies
vector with rationally independent components. The problem is to detect in such
a system ω-quasiperiodic oscillations.

In local coordinates (x1, . . . , xm), i = 1, . . . ,m, the system is governed by the
equations

d
dt

( m∑
j=1

gij(x)ẋj

)
=

∂W (ωt, x)
∂xi

, i = 1, . . . ,m,

where gij is a metric tensor. When M is a Euclidean space Em, and hence,
gij(x) = δij (the Kronecker symbol), the above mentioned problem has been studied
even in more general case of almost periodic second order systems. Non-local exis-
tence results for such systems are usually obtained using topological principles and
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methods of nonlinear analysis under certain monotonicity, convexity and coercivity
conditions (see, e.g., [12, 30, 9, 13, 14, 11]).

In periodic case, variational methods of finding and constructing periodic solu-
tions have been developed in details (see, e.g., [28, 15, 27, 24, 22]). Blot in his
series of papers [5, 6, 7, 8] applied variational method to establish the existence of
weak almost periodic solutions for systems in Em. Later, this method was used in
[3, 20, 32, 2, 25, 1, 19] to prove the existence of weak and classical almost periodic
solutions for various systems of variational type. In [33, 34], weak and classical
quasiperiodic solutions were found for natural mechanical systems in convex com-
pact subsets of Riemannian manifolds with non-positive sectional curvature. The
goal of the present paper is to extend these results to natural systems on arbitrary
Riemannian manifolds.

This paper is organized as follows. In Sections 2–4 we improve results an-
nounced in [26] on variational approach for searching weak quasiperiodic solutions
of quasiperiodically excited Lagrangian systems on Riemannian manifold. In partic-
ular, in Sect. 2 we define the weak quasiperiodic solution as Besicovitch quasiperi-
odic function generated by extremal point of functional J (see (2.2)). Here we
also discuss about the difficulties that occur in application of variational approach
when we reject the requirements of non-positiveness of Riemannian curvature. In
Section 3 we show how one can ensure convexity properties of functional J by
means of geodesics of conformally equivalent metric associated with inner product
eV (x)〈·, ·〉

∣∣
TxM

where V (·) : M → R is appropriately chosen function. The con-
ditions we impose on this auxiliary function are less restrictive that of [26]. At
the same time, with respect to the force function W (·, ·), the function V (·) plays
a role which is, to some extent, analogous to that of guiding function in [18, 21].
In Section 4 we give the proof of the main existence theorem based on variational
approach. In Section 5 we describe a searching procedure for weak quasiperiodic so-
lution; the latter one is associated with a minimum point of the mean W̄ (x) of force
function W (ωt, x), while the oscillating part W̃ (ωt, x) := W (ωt, x) − W̄ (x) plays
a role of perturbation. Finally, in Section 6 we show how the developed approach
works when studying quasiperiodic forcing of natural systems on hypersurfaces of
Euclidean space. In particular, we consider quasiperiodic forcing of physical pen-
dulum and derive simple sufficient condition for the existence of weak quasiperiodic
solutions to corresponding Lagrangian system.

2. Variational approach

One can interpret a natural system on M as a natural system in Euclidean
space En (of appropriate dimension n) with holonomic constraint. Namely, by
famous Nash theorem, for some natural number n, there exists a smooth isometric
embedding ι : M→ En. Denote by Ŵ (·, ·) ∈ C0,2(Tk × En, R) an extension of the
function W (·, ·). Let the set ι(M) play the role of holonomic constraint for natural
system in En with kinetic energy K = 1

2 〈ẏ, ẏ〉En and potential energy −Ŵ (tω, y).
Then the Lagrangian density of the above natural system on M is represented in
the form 1

2 〈ι∗ẋ, ι∗ẋ〉En + Ŵ (tω, ι(x)) (here ι∗ stands for the tangent map generated
by ι).

In what follows we shall use identical notations for M and ι(M), for vectors
ξ ∈ TM and ι∗ξ ∈ En, for inner product 〈·, ·〉En of En and the induced inner



EJDE-2012/66 VARIATIONAL APPROACH FOR WEAK QUASIPERIODIC SOLUTIONS 3

product
〈·, ·〉 = ι∗〈·, ·〉En := 〈ι∗·, ι∗·〉En

as well as for the function W (·, ·) on Tk ×M and its extension Ŵ (·, ·) on Tk ×En.
Denote by H(Tk, En) := L2(Tk, En) the space of En-valued functions on k-torus

which are integrable with the square of Euclidean norm ‖ · ‖ :=
√
〈·, ·〉. Define

on H(Tk, En) the standard scalar product 〈·, ·〉0 = (2π)−k
∫

Tk〈·, ·〉dϕ and the corre-
sponding semi-norm ‖ · ‖0 :=

√
〈·, ·〉0. By H1

ω(Tk, En) denote the space of functions
f(·) ∈ H(Tk, En) each of which has weak (Sobolev) derivative Dωf(·) ∈ H(Tk, En)
in the direction of vector ω. Recall that Dωf(·) is characterized by the following
property∫

Tk

〈Dωf(ϕ), g(ϕ)〉dϕ = −
∫

Tk

〈f(ϕ), Dωg(ϕ)〉dϕ ∀g(·) ∈ C1(Tk, En),

where Dωg(ϕ) :=
∑k

j=1
∂g(ϕ)
∂ϕj

ωj . Recall also that a function u(·) ∈ H(Tk, En) with
Fourier series

∑
n∈Zk unein·ϕ has a weak derivative if and only if the series

∑
n∈Zk |n·

ω|2‖un‖2 converges and the Fourier series of Dωu(·) is
∑

n∈Zk i(n · ω)unein·ϕ (see,
e.g., [10, 29]).

The space H1
ω(Tk, En) is equipped with the semi-norm ‖ · ‖1 generated by the

scalar product 〈Dω·, Dω·〉0 + 〈·, ·〉0. After identification of functions coinciding a.e.,
both spaces H(Tk, En) and H1

ω(Tk, En) becomes Hilbert spaces with norms ‖ · ‖0
and ‖ · ‖1 respectively.

To any function u(·) ∈ H(Tk, En) with Fourier series
∑

n∈Zk unein·ϕ, one can put
into correspondence a Besicovitch quasiperiodic function x(t) := u(tω) defined by
its Fourier series

∑
n∈Zk unei(n·ω)t (see, e.g., [10, 29]). If u(·) ∈ H1

ω(Tk, En) then
ẋ(t) denotes a Besicovitch quasiperiodic function Dωu(tω).

We define weak solution of Lagrangian system on M with density L = 1
2 〈ẋ, ẋ〉+

W (tω, x) in a slightly different way then in [32]. First, for any bounded subset
A ⊆M, put

SA := C∞(Tk,A).
Observe that if uj(·) ∈ SA is a sequence bounded in H1

ω(Tk, En) and convergent
to a function u(·) by norm of the space H(Tk, En) (recall that we consider the set
A ⊆M also as a subset of En), then for any n ∈ Zk the sequence of Fourier series
coefficients uj,n converges to un and for some K > 0 we have∑

|n|≤N

|n · ω|2‖un‖2 = lim
j→∞

∑
|n|≤N

|n · ω|2‖uj,n‖2

≤ lim inf
j→∞

∑
n∈Zk

|n · ω|2‖uj,n‖2 ≤ K ∀N ∈ N,

where |n| := maxi |ni|. Hence, u(·) ∈ H1
ω(Tk, En) and

‖Dωu‖0 ≤ lim inf
j→∞

‖Dωuj‖0.

Moreover, uj(·) converges to u(·) weakly in H1
ω(Tk, En). In fact, there exists K1 > 0

such that ‖uj‖1 ≤ K1 and for any g(·) ∈ H1
ω(Tk, En) and ε > 0 there exists a

trigonometric polynomial p(·) such that ‖g − p‖1 < ε. Then, since uj,n → un, we
have

lim
j→∞

|〈uj − u, g〉1| ≤ lim
j→∞

|〈uj − u, p〉1|+ (K + ‖u‖1)ε = (K + ‖u‖1)ε.
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Hence, 〈uj − u, g〉1 → 0. Besides, it is well known that if in addition ‖Dωuj‖0 →
‖Dωu‖0, then uj(·) converges to u(·) strongly in H1

ω(Tk, En).
Next, for any bounded subset A ⊆M define a functional space HA in a following

way: u(·) ∈ HA if and only if there exists a sequence uj(·) ∈ SA bounded in
H1

ω(Tk, En) and convergent to u(·) by norm of the space H(Tk, En) (recall that we
consider the set A ⊆ M both as a subset of En). As it was noted above HA ⊂
H1

ω(Tk, En). We shall say that h(·) ∈ H1
ω(Tk, En) is a vector field along the map

u(·) ∈ HA defined in the above sens by a sequence uj(·) if there exists a sequence
hj(·) ∈ C∞(Tk, TM) such that hj(ϕ) ∈ Tuj(ϕ)M, the sequences maxϕ∈Tk ‖hj(ϕ)‖,
‖hj‖1 are bounded, and limj→∞ ‖h− hj‖1 = 0.

Definition 2.1. A Besicovitch quasiperiodic function t → x(t) := u(tω) generated
by a function u(·) ∈ HA is called a weak quasiperiodic solution of the natural
system on M if u(·) satisfies the equality

〈Dωu(ϕ), Dωh(ϕ)〉0 + 〈W ′
x(ϕ, u(ϕ)), h(ϕ)〉0 = 0 (2.1)

for any vector field h(·) along u(·).

This definition is natural since the equality (2.1) holds true for any classical
quasiperiodic solution u(tω) and continuous vector field h(ϕ) along u(·) with con-
tinuous derivative Dωh(·). It should be also noted the following fact. Let ∇ξ

stands for the covariant differentiation of Levi-Civita connection in the direction
of vector ξ ∈ TM, and let ∇f stands for gradient vector field of a scalar function
f(·) : M → R, i.e 〈∇f(x), ξ〉 = df(x)(ξ) for any ξ ∈ TxM. Then for any smooth
u(·) : Tk → M one can consider υ(t) := d

dtu(tω) = Dωu(tω) as a tangent vector
field along the curve x = u(tω) and h(tω) — as a vector fields along this curve.
Hence there holds the equality

〈Dωu(tω), Dωh(tω)〉 = 〈Dωu(tω),∇υ(t)h(tω)〉 ∀t ∈ R
which yields

〈Dωu(ϕ), Dωh(ϕ)〉 = 〈Dωu(ϕ),∇Dωu(ϕ)h(ϕ)〉 ∀ϕ ∈ Tk

From this it follows that for a classical solution the equality (2.1) in terms of inner
geometry can be rewritten in the form

〈Dωu(ϕ),∇Dωu(ϕ)h(ϕ)〉0 + 〈∇W (ϕ, u(ϕ)), h(ϕ)〉0 = 0

where ∇W (ϕ, x) denotes the gradient of function W (ϕ, ·) : M→ R when ϕ ∈ Tk

is fixed.
The application of variational approach for searching a weak quasiperiodic solu-

tion consists in finding a function u∗(·) ∈ HA which takes values in appropriately
chosen bounded subset A ⊂ M and which is a strong limit in H(Tk, En) of mini-
mizing sequence for the functional (the averaged Lagrangian)

J [u] =
∫

Tk

[
1
2
‖Dωu(ϕ)‖2 + W (ϕ, u(ϕ))]dϕ (2.2)

restricted to SA. It is naturally to expect that the first variation of J at u∗(·)
vanishes, i.e.

J ′[u∗](h) := 〈Dωu∗(ϕ), Dωh(ϕ)〉0 + 〈W ′
x(ϕ, u∗(ϕ)), h(ϕ)〉0 = 0 (2.3)

for any vector field h(·) along u∗(·). In such a case u∗(tω) is a weak quasiperiodic
solution.
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To guarantee the convergence of a minimizing sequence uj(·) ∈ SA for J
∣∣
SA

by
norm ‖·‖0 it is naturally to impose some convexity conditions both on the set A and
on the functional J . Usually, such conditions are formulated by means of geodesics.
But in the case where (M, 〈·, ·〉) is not a Riemannian manifold of non-positive
sectional curvature, we are not able to determine whether the functional of averaged
kinetic energy, namely J1[u] := 1

2

∫
Tk ‖Dωu(ϕ)‖2dϕ, is convex using geodesics of

Levi-Civita connection∇. To clarify this fact consider a pair of functions ui(·) ∈ SA,
i = 0, 1. Under certain conditions imposed on A, for any fixed ϕ ∈ Tk, one can
define a smooth homotopy [0, 1] × R 3 (s, t) → γ(s, t) ∈ A between two functions
t → ui(ϕ+tω), i = 0, 1, in such a way that γ(i, t) = ui(ϕ+tω) for all t ∈ R, i = 0, 1,
and for any fixed t the mapping γ(·, t) : [0, 1] → A is a minimal geodesic connecting
u0(ϕ + tω) with u1(ϕ + tω). Obviously that ∂

∂t

∣∣
t=0

γ(i, t) = Dωui(ϕ). The problem
is whether the function g(s) := ‖ ∂

∂t

∣∣
t=0

γ(s, t)‖2 is convex. Put η(s, t) := ∂
∂tγ(s, t)

and ξ(s, t) := ∂
∂sγ(s, t). Then

d2

ds2
‖η‖2 = 2

d
ds
〈∇ξη, η〉 = 2[〈∇2

ξη, η〉+ ‖∇ξη‖2].

In view of geodesic equation ∇ξξ = 0 and equalities

∇ηξ = ∇ξη, ∇η∇ξξ −∇ξ∇ηξ = R(η, ξ)ξ (2.4)

where R is the Riemann curvature tensor of (M, 〈·, ·〉), we have ∇2
ξη = −R(η, ξ)ξ.

This implies

d2

ds2
‖η‖2 = 2[‖∇ξη‖2 − 〈R(η, ξ)ξ, η〉]

= 2[‖∇ξη‖2 −K(σx(ξ, η))(‖η‖2‖ξ‖2 − 〈η, ξ〉2)]
where σx(ξ, η) is a plane defined by vectors ξ, η ∈ TxM and K(σx(ξ, η)) is a sec-
tional curvature in direction σx(ξ, η) [17]. In general case, it may happen that
∇ξη = 0 for some s. Thus, one can guarantee the convexity of g(s) if (M, 〈·, ·〉) is
a Riemannian manifold of non-positive sectional curvature. It is this case that was
considered in [33, 34].

To overcome the above difficulty we introduce a conformally equivalent inner
product of the form 〈·, ·〉V

∣∣
TxM

:= eV (x)〈·, ·〉
∣∣
TxM

with appropriately chosen smooth
function V (·) : M→ R. With this approach we succeed in establishing a required
convexity properties of averaged Lagrangian under certain convexity conditions
imposed on functions V (·) and W (ϕ, ·).

3. Convexity of averaged Lagrangian

It is easily seen that if V (·) ∈ C∞(M, R) is a bounded function on M then the
Riemannian manifold (M, 〈·, ·〉V ) equipped with corresponding Levi-Civita con-
nection is complete. In fact, by definition, the standard distance between any two
points x, y ∈ (M, 〈·, ·〉) is defined as

ρ(x, y) := inf{l(c) : c ∈ Cx,y},
where Cx,y is the set of all piecewise differentiable paths c : [0, 1] →M connecting
x with y, and l(c) is the length of c on (M, 〈·, ·〉). If we denote by lV (c) the length
of path c on (M, 〈·, ·〉V ), then

inf
x∈M

√
eV (x)l(c) ≤ lV (c) ≤ sup

x∈M

√
eV (x)l(c).
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Hence, the metric ρ(·, ·) and the metric ρV (·, ·) of (M, 〈·, ·〉V ) are equivalent. Now
it remains only to apply the Hopf-Rinow theorem (see, e.g., [17, sect. 5.3]).

To distinguish geodesics of metrics ρ and ρV we shall call them ρ-geodesic and
ρV -geodesic respectively.

For x ∈ M, let expx(·) : TxM→ M denotes the exponential mapping for
Riemannian manifold (M, 〈·, ·〉) with Levi-Civita connection ∇ and let expV

x (·) :
TxM →M be the analogous mapping for Riemannian manifold (M, 〈·, ·〉V ) with
corresponding Levi-Civita connection ∇V . Note that since both manifolds are com-
plete the domains of both exponential mappings coincide with entire TxM.

Recall that for the function V (·), the Hesse form HV (x) at point x (see, e.g.,
[17]) is defined by the equality

〈HV (x)ξ, η〉 := 〈∇ξ∇V (x), η〉 ∀ξ, η ∈ TxM.

Let us introduce yet another quadratic form

〈GV (x)ξ, ξ〉 := 〈HV (x)ξ, ξ〉 − 1
2
〈∇V (x), ξ〉2 ∀ξ ∈ TxM,

and the notation

λV (x) := min
ξ∈TxM\{0}

〈HV (x)ξ, ξ〉/‖ξ‖2,

µV (x) := min
ξ∈TxM\{0}

〈GV (x)ξ, ξ〉/‖ξ‖2,

D := {x ∈M : λV (x) +
1
2
‖∇V (x)‖2 > 0}.

Now we state the following hypotheses concerning convexity properties of func-
tions V (·) and W (·, ·):

(H1) there exist a noncritical value v ∈ V (D) and a bounded connected compo-
nent Ω of open sublevel set V −1((−∞, v)) with the following properties:
(a) Ω̄ := Ω ∪ ∂Ω ⊆ D and for any x, y ∈ Ω the set D̄ contains at least one

ρV -geodesic segment with endpoints x, y;
(b) the second fundamental form of ∂Ω is positive at each point x ∈ ∂Ω

(i.e. for any x ∈ ∂Ω the restriction of HV (x) to Tx∂Ω is positive
definite);

(c) the function V (·) satisfies the inequality

µV (x) ≥ 2K∗(x) ∀x ∈ Ω (3.1)

where

K∗(x) := max
σx(ξ,η)

〈R(η, ξ)ξ, η〉
‖η‖2‖ξ‖2 − 〈η, ξ〉2

is the maximum sectional curvature at point x;
(H2) the function W (·, ·) satisfies the following inequalities

λW (ϕ, x) +
1
2
〈∇W (ϕ, x),∇V (x)〉 > 0 ∀(ϕ, x) ∈ Tk × Ω̄ (Ω̄ := Ω ∪ ∂Ω),

〈∇W (ϕ, x),∇V (x)〉 > 0 ∀(ϕ, x) ∈ Tk × ∂Ω

where λW (ϕ, x) is minimal eigenvalue of Hesse form HW (ϕ, x) for the func-
tion W (ϕ, ·) : M→ R.
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Remark 3.1. Let us give some arguments in order to justify the above hypotheses.
Recall that a set of a Riemannian manifold is called convex if together with any two
points x1, x2 this set contains a (unique) minimal geodesic segment connecting x1

with x2(see, e.g., [4, sect. 11.8] or [17, sect. 5.2]). It is well known that for any point
x0 an open ball of sufficiently small radius centered at point x0 is convex. A function
f : Df → R with convex domain Df ⊂M is convex if and only if its superposition
with any naturally parametrized geodesic containing in Df is convex. Now suppose
that the function V (·) reaches its local minimum at a non-degenerate stationary
point x∗ ∈ M. This implies ∇V (x∗) = 0 and λV (x∗) > 0. For sufficiently small
b > 0, there exists d > 0 such that the ball

BV (x∗; d) := {x ∈M : ρV (x, x∗) < d}
is a convex subset of (M, 〈·, ·〉V ) and there holds inequalities

λV (x) +
1
2
‖∇V (x)‖2 > 0, µV (x) > b ∀x ∈ BV (x∗; d).

Moreover, for arbitrary b > 0 one can choose a > 0 and d > 0 in such a way
that the same inequality holds true if we replace V (·) with aV (·).The inequal-
ity (3.1) is required to provide convexity of averaged kinetic energy functional
1
2

∫
Tk ‖Dωu(ϕ)‖2dϕ. The first inequality of Hypothesis (H2) is required to pro-

vide the convexity of force function, and the second one implies local growth of
W (ϕ, ·) in direction of external normal to ∂Ω.

It may happen that the direct verification of condition (a) of Hypothesis (H1)
involving ρV -geodesic is rather difficult. In such a case the following statement
which make use of ρ-geodesics might be useful.

Proposition 3.2. Set G := {x ∈ M : λV (x) > 0}. Let there exists a non-critical
value v ∈ V (G) such that the set V −1((−∞, v]) is a bounded and connected subset of
G. Suppose also that for any pair of points x0, x1 ∈ V −1(v) the closure of G contains
at least one minimal ρ-geodesic segment connecting x0, x1. Then the conditions (a)
and (b) of Hypothesis (H1) hold for Ω := V −1((−∞, v)). Moreover, any minimal
ρV -geodesic segment connecting points x, y ∈ Ω belongs to Ω̄.

Proof. It is easily seen that G ⊆ D. Let r = ρ(x0, x1) and γ(·) : [0, r] → Ḡ
be a minimal naturally parametrized ρ-geodesic segment with endpoints x0, x1 ∈
V −1(v). Then ∇γ̇(s)γ̇(s) ≡ 0 and

d2

ds2
eV ◦γ(s) = [eV (x)(〈∇V (x), ẋ〉2 + 〈HV (x)ẋ, ẋ〉)]x=γ(s)

≥ eV ◦γ(s)λV ◦ γ(s) ≥ 0.

Hence, the function exp ◦V ◦ γ(·) is convex. This imply that

eV ◦γ(θr) ≤ (1− θ)eV (x0) + θeV (x1) = ev ∀θ ∈ [0, 1],

and thus γ(s) ∈ Ω̄ for all s ∈ [0, r]. If now c(·) : [0, 1] →M is arbitrary piecewise
differentiable path with endpoints x0, x1 such that c(t) ∈ M \ Ω̄ for all t ∈ (0, 1),
then V ◦ c(t) > v for all t ∈ (0, 1) and

lV (γ) =
∫ r

0

√
eV ◦γ(s)‖γ̇(s)‖ds ≤ ev/2l(γ) ≤ ev/2l(c)

<

∫ 1

0

√
eV ◦c(t)‖ċ(t)‖dt = lV (c).
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Now consider a minimal ρV -geodesic segment γV connecting points x, y ∈ Ω. Let
us show that γV ∈ Ω̄. If we suppose that γV 6⊂ Ω̄, then γV must contain at least
one segment γ̃V with endpoints x̃0, x̃1 ∈ V −1(v) and with the property that

γ̃V \ ({x̃0} ∪ {x̃1}) ⊂M\ Ω̄.

Replace γ̃V by a minimal ρ-geodesic segment γ̃ connecting the points x̃0, x̃1. As
has been already shown above, lV (γ̃) < lV (γ̃V ), and this yields

ρV (x, y) := lV (γV ) = lV (γV \ γ̃V ) + lV (γ̃V )

> lV (γV \ γ̃V ) + lV (γ̃) = lV ([γV \ γ̃V ] ∪ γ̃).

Thus, on Riemannian manifold (M, 〈·, ·〉V ) the length of piecewise differentiable
path [γV \ γ̃V ]∪ γ̃ connecting points x, y is less than ρV (x, y). We arrive at contra-
diction with definition of metric ρV (·, ·). Hence, γV ∈ Ω̄.

Finally, the inequality λV

∣∣
∂Ω

> 0 ensures the fulfillment of condition (b). �

The next technical statement on the convexity property of the functional J plays
a key role in existence proof of weak quasiperiodic solution.

Theorem 3.3. Let the Hypotheses (H1)–(H2) hold. Then there exist positive con-
stants C, C1 and c such that for any u0(·), u1(·) ∈ C∞(Tk,Ω) one can choose a
vector field h(·) ∈ C∞(Tk, TM) along u0(·) (this implies that h(ϕ) ∈ Tu0(ϕ)M for
all ϕ ∈ Tk) in such a way that the following inequalities hold

cρ(u0(ϕ), u1(ϕ)) ≤ ‖h(ϕ)‖ ≤ C ∀ϕ ∈ Tk,

‖Dωh(ϕ)‖ ≤ C1[‖Dωu0(ϕ)‖+ ‖Dωu1(ϕ)‖] ∀ϕ ∈ Tk,

J [u1]− J [u0]− J ′[u0](h) ≥ κc2

2

∫
Tk

ρ2(u0, u1)dϕ

where κ := min{λW (ϕ, x) + 1
2 〈∇W (ϕ, x),∇V (x)〉 : (ϕ, x) ∈ Tk × Ω̄}.

The proof of this theorem needs several auxiliary statements and will be given
at the end of present Section.

Proposition 3.4. The Euler-Lagrange equation for ρV -geodesic on Riemannian
manifold (M, 〈·, ·〉) has the form

∇ẋẋ = −〈∇V (x), ẋ〉ẋ +
‖ẋ‖2

2
∇V (x), (3.2)

Proof. A ρV -geodesic segment with endpoints x0, x1 ∈ M is an extremal of func-
tional Φ[x(·)] =

∫ 1

0
eV ◦x(t)‖ẋ(t)‖2dt defined on the space C2

x0x1
of twice continuously

differentiable curves x = x(t), t ∈ [0, 1], such that x(0) = x0, x(1) = x1. We are
going to derive the Euler-Lagrange equation using the connection ∇. Consider a
variation of x(·) defined by a smooth mapping y(·, ·) : [0, 1] × (−ε, ε) → M such
that y(·, λ) ∈ C∞x0x1

for any fixed λ ∈ (−ε, ε) and y(t, 0) ≡ x(t). Put

ẏ(t, λ) :=
∂

∂t
y(t, λ), y′(t, λ) :=

∂

∂λ
y(t, λ).

Obviously, ẏ(t, 0) = ẋ(t), y(i, λ) ≡ xi and y′(i, λ) = 0, i = 0, 1. Since ∇y′ ẏ = ∇ẏy′,
we have

d
dλ

∣∣
λ=0

∫ 1

0

eV ◦y‖ẏ‖2dt =
∫ 1

0

[eV ◦y〈∇V ◦ y, y′〉‖ẏ‖2 + 2eV ◦y〈∇y′ ẏ, ẏ〉]λ=0dt
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=
∫ 1

0

[eV ◦y〈∇V ◦ y, y′〉‖ẏ‖2 + 2eV ◦y〈∇ẏy′, ẏ〉]λ=0dt.

Taking into account that
∂

∂t
eV ◦y〈y′, ẏ〉 = eV ◦y〈∇V ◦ y, ẏ〉〈y′, ẏ〉+ eV ◦y〈∇ẏy′, ẏ〉+ eV ◦y〈y′,∇ẏ ẏ〉

and eV ◦y〈y′, ẏ〉
∣∣
t=0,1

= 0, we obtain∫ 1

0

eV ◦y〈∇ẏy′, ẏ〉dt = −
∫ 1

0

eV ◦y[〈∇V ◦ y, ẏ〉〈y′, ẏ〉+ 〈y′,∇ẏ ẏ〉]dt.

From this it follows that the first variation on functional Φ is
d
dλ

∣∣∣
λ=0

Φ[y(·, λ)] = Φ′[x(·)](y′(·, 0))

=
∫ 1

0

[eV (〈∇V, y′〉‖ẋ‖2 − 2〈∇V, ẋ〉〈ẋ, y′〉 − 2〈∇ẋẋ, y′〉)]
∣∣
x=x(t),λ=0

dt,

and the Euler-Lagrange equation is exactly (3.2). �

Proposition 3.5. Let Hypothesis (H1) hold. If a ρV -geodesic segment connecting
points x, y ∈ Ω belongs to D̄, then this segment belongs to Ω.

Proof. Let x(·) ∈ C2
x0x1

satisfies (3.2) and let x(t) ∈ D̄ for all t ∈ [0, 1]. Then

d2

dt2
eV

∣∣∣
x=x(t)

= [eV (〈∇ẋ∇V, ẋ〉+ 〈∇V,−〈∇V, ẋ〉ẋ + ‖ẋ‖2∇V/2〉+ 〈∇V, ẋ〉2)]
∣∣
x=x(t)

= [eV (〈∇ẋ∇V, ẋ〉+ ‖ẋ‖2‖∇V ‖2/2)]
∣∣
x=x(t)

≥ [eV ‖ẋ‖2(λV + ‖∇V ‖2/2)]
∣∣
x=x(t)

≥ 0.

Hence, eV ◦x(·) is convex and this implies V ◦ x(t) < v for all t ∈ [0, 1]; i.e., x(t) ∈ Ω
for all t ∈ [0, 1]. �

Corollary 3.6. For any solution x(·) : [0, 1] → D of equation (3.2), the function
eV ◦x(·) has positive second derivative.

Proposition 3.7. Under Hypothesis (H1) the set Ω contains a unique non-de-
generate minimum point of function V (·), and there are no other stationary points
of this function in Ω. The domain Ω is simply connected.

Proof. Under Hypothesis (H1) ∇V (x) 6= 0 on ∂Ω. Hence, V (·), as well as eV (·),
has at least one minimum point x∗ ∈ Ω. The inequality λV (x∗) > 0 yields that
this point is non-degenerate. Any other stationary point y∗ ∈ Ω, if it exists, is also
a non-degenerate minimum point. But this is impossible, since, as it follows from
Corollary (3.6), the function eV (·) is strictly convex along ρV -geodesic segment
connecting x∗ with y∗ and containing in Ω ⊆ D. Hence, x∗ is unique, and the
domain Ω can be shrunk to x∗ by means of the flow of vector field −∇V/‖∇V ‖2. �

Proposition 3.8. Under Hypotheses (H1), any two points x, y ∈ Ω are the end-
points of unique ρV -geodesic segment containing in Ω.

Proof. It is known (see. [17, sect. 3.6]) that the sectional curvature in direction
σx(ξ1, ξ2) on Riemannian manifold (M, eV 〈·, ·〉) is represented in the form

KV (σx(ξ1, ξ2))
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= e−V [K(σx(ξ1, ξ2))−
1
2

2∑
i=1

[〈HV (x)ξi, ξi〉 −
1
2
〈∇V (x), ξi〉2]−

1
4
‖∇V (x)‖2]

where ξ1, ξ2 is an orthonormal basis of the plane σx(ξ1, ξ2), and the inequality (3.1)
yields that this curvature is non-positive for any x ∈ Ω̄. Under Hypothesis (H1),
taking into account Proposition 3.5, there exists a ρV -geodesic segment γV ⊂ Ω
connecting x, y ∈ Ω. By the Morse-Schoenberg theorem [17, sect. 6.2] any ρV -
geodesic segment which belongs to Ω̄, in particular γV , does not contain conjugate
points. Hence, the image of the set

Zx := {ξ ∈ TxM : expV
x (sξ) ∈ Ω ∀s ∈ [0, 1]}

under the mapping expV
x (·) coincides with Ω, and this mapping is a local diffeo-

morphism at any point of the closure Z̄x. Let us show, that the set Z̄x is bounded.
It follows from the proof of Proposition 3.5 that for arbitrary ξ ∈ Zx \ {0}

d2

dt2
exp[V ◦ expV

x (tξ/‖ξ‖V )] ≥ min
x∈Ω̄

eV (x)(λV (x) + ‖∇V (x)‖2/2) =: σ > 0

while tξ/‖ξ‖V ∈ Z̄x, and thus for such t we have

exp[V ◦ expV
x (tξ/‖ξ‖V )] ≥ σt2

2
− t max

x∈Ω̄
‖∇V (x)‖V + min

x∈Ω̄
eV (x).

This yields that there exist T > 0 and sufficiently small ε > 0 with the property that
for any ξ ∈ Zx one can point out tε(ξ) ∈ (0, T ] such that V ◦ expV

x (tε(ξ)ξ/‖ξ‖V ) =
v + ε. Hence, ‖ξ‖V < T .

Now it is not hard to see that for any y ∈ Ω the set Zx ∩ [expV
x ]−1(y) is finite.

In fact, otherwise there would exist a sequence ξk ∈ Zx converging to ξ∗ ∈ Z̄x such
that ξi 6= ξk, i 6= k, and expV

x (ξk) = expV
x (ξ∗) = y. But this is impossible since

expV
x (·) is local diffeomorphism at ξ∗.
From the above reasoning it is clear that any point y ∈ Ω has a neighborhood U

such that [expV
x ]−1(U) is a finite disjoint union of open sets of Zx each of which is

mapped diffeomorphically onto U by expV
x (·), i.e. U is evenly covered by the map

expV
x (·). Hence, expV

x (·) : Zx → Ω is a finite-fold covering mapping. This mapping
is bijection since Ω is simply connected (Proposition 3.7) and Zx is path-connected
(see., e.g., [31, sect. 3.23]). Thus, for any point y ∈ Ω, there exists a unique ζ ∈ Zx

such that expV
x (ζ) = y, and then Ω contains a unique ρV -geodesic segment, namely

∪s∈[0,1]{expV
x (sζ)}, with endpoints x, y. �

As a corollary of above proposition and the implicit function theorem we obtain
the following statement.

Proposition 3.9. Under Hypotheses (H1) there exist a smooth mapping ζ(·, ·) :
Ω× Ω → TM and a constant T > 0 such that ζ(x, y) ∈ TxM and

expV
x (ζ(x, y)) = y, ρV (x, y) ≤ eV (x)/2‖ζ(x, y)‖ ≤ T,

expV
x (tζ(x, y)) ∈ Ω ∀t ∈ [0, 1].

(3.3)

If we define the mapping

γV (·, ·, ·) : [0, 1]× Ω× Ω → Ω, γV (t, x, y) := expV
x (tζ(x, y)),

then for any x, y ∈ D the mapping γV (·, x, y) : [0, 1] → D satisfies the equation (3.2)
together with boundary conditions γV (0, x, y) = x, γV (1, x, y) = y. The following
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scalar differential equation

dτ

ds
= exp(V ◦ γV (τ, x, y))

∫ 1

0

exp(−V ◦ γV (t, x, y))dt.

has a unique strictly monotonically increasing solution

τ(·, x, y) : [0, 1] → [0, 1], τ(0, x, y) = 0, τ(1, x, y) = 1. (3.4)

By means of reparametrization t = τ(s, x, y) we define a smooth mapping

χ(·, ·, ·) : [0, 1]× Ω× Ω → Ω, χ(s, x, y) := γV (τ(s, x, y), x, y)

which plays an important role in subsequent reasoning. In [33] χ(·, ·, ·) is called the
connecting mapping.

Proposition 3.10. For any x, y ∈ Ω the mapping χ(·, x, y) : [0, 1] → Ω is a solution
of boundary value problem

∇x′x
′ =

‖x′‖2

2
∇V (x), χ(0, x, y) = x, χ(1, x, y) = y (3.5)

where x′ = dx
ds .

Proof. The boundary conditions follow from definition of γV and (3.4). Let us show
that (3.5) is obtained from (3.2) after the change of independent variable t = τ(s).
In fact, let χ(s) = x ◦ τ(s). Then (3.2) takes the form

1
τ ′
∇χ′(

1
τ ′

χ′) = − 1
(τ ′)2

〈∇V ◦ χ, χ′〉χ′ + ‖χ′‖2

2(τ ′)2
∇V ◦ χ,

or

−τ ′′

τ ′
χ′ +∇χ′χ

′ = −[
d
ds

V ◦ χ]χ′ +
‖χ′‖2

2
∇V ◦ χ.

From this it follows (3.5) since τ ′′/τ ′ = (V ◦ χ)′. �

Proposition 3.11. Under Hypothesis (H1) the following inequality is valid

d2

ds2
‖Dωχ(s, u0(ϕ), u1(ϕ))‖2 ≥ 0 ∀s ∈ [0, 1], ∀ϕ ∈ Tk, ∀ui(·) ∈ SΩ, i = 0, 1.

Proof. For any fixed ϕ ∈ Tk put

η(s, t) :=
∂

∂t
χ(s, u0(ϕ + tω), u1(ϕ + tω)) ≡ Dωχ(s, u0(ϕ + tω), u1(ϕ + tω)),

ξ(s, t) :=
∂

∂s
χ(s, u0(ϕ + tω), u1(ϕ + tω)).

Then in view of (2.4) and (3.5), we have

∇2
ξη = ∇η∇ξξ −R(η, ξ)ξ

= 〈∇ηξ, ξ〉∇V ◦ χ +
‖ξ‖2

2
∇η∇V ◦ χ−R(η, ξ)ξ

and hence
d2

ds2
‖η‖2

= 2[〈∇2
ξη, η〉+ ‖∇ξη‖2]

= 2‖∇ξη‖2 + 2〈∇ξη, ξ〉〈∇V ◦ χ, η〉+ ‖ξ‖2〈∇η∇V ◦ χ, η〉 − 2〈R(η, ξ)ξ, η〉
≥ 2‖∇ξη‖2 − 2‖∇ξη‖‖ξ‖|〈∇V ◦ χ, η〉|+ ‖ξ‖2〈∇η∇V ◦ χ, η〉 − 2K∗ ◦ χ‖ξ‖2‖η‖2.
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Once Hypothesis (H1) holds, we obtain

d2

ds2
‖η‖2 ≥ 2‖ξ‖2‖η‖2[r2 − |〈∇V ◦ χ, e〉|r +

1
2
〈∇e∇V ◦ χ, e〉 −K∗ ◦ χ] ≥ 0

where r := ‖∇ξη‖
‖ξ‖‖η‖ . �

Now we are in position to prove Theorem 3.3. Let ui(·) ∈ SΩ, i = 0, 1. By means
of connecting mapping we obtain the following representation

J [χ(s, u0, u1)] = J [u0] + sJ ′[u0](χ′s(0, u0, u1)) +
s2

2
d2

ds2

∣∣∣
s=θ

J [χ(s, u0, u1)] (3.6)

with some θ ∈ (0, 1). To estimate from below the term with second derivative we
make use of Proposition 3.11 which together with Hypothesis (H3) implies

d2

ds2
[
1
2
‖Dωχ(s, u0(ϕ), u1(ϕ))‖2 + W (ϕ, χ(s, u0, u1))]

≥ d
ds
〈∇W (ϕ, χ), χ′s〉

= 〈∇χ′s∇W (ϕ, χ), χ′s〉+ 〈∇W (ϕ, χ),∇χ′sχ
′
s〉

= 〈∇χ′s∇W (ϕ, χ), χ′s〉+
‖χ′s‖2

2
〈∇W (ϕ, χ),∇V (χ)〉 ≥ κ‖χ′s‖2.

By the definition of χ we have

χ′s(s, u0, u1)

= τ ′(s)γ̇V (τ(s), u0, u1)

= exp(V ◦ γV (τ(s), u0, u1))
∫ 1

0

exp(−V ◦ γV (t, u0, u1))dtγ̇V (τ(s), u0, u1).

Since γV (t, x, y) is ρV−geodesic, then exp(V ◦ γV )‖γ̇V ‖2 does not depend on t and

eV (x)/2‖γ̇V (0, x, y)‖ = eV (x)/2‖ζ(x, y)‖.

Hence

‖χ′s(s, u0, u1)‖2

= [
∫ 1

0

exp(−V ◦ γV (t, u0, u1))dt]2 exp(V ◦ γV (τ(s), u0, u1))eV (u0)‖ζ(u0, u1)‖2,

and (3.3) implies that there exist positive constants C, c dependent only on V (·)
and Ω such that

cρ(u0, u1) ≤ ‖χ′s(s, u0, u1)‖ ≤ C. (3.7)

Define h(ϕ) := χ′s(0, u0(ϕ), u2(ϕ)). Then (3.6) with s = 1 yields

J [u1]− J [u0]− J ′[u0](χ′s(0, u0, u1)) ≥
κc2

2

∫
Tk

ρ2(u0, u1)dϕ.

Finally, since the set Ω is bounded and the mapping χ is smooth, there exists
positive constant C1 such that

‖Dωh(ϕ)‖ ≤ C1[‖Dωu0(ϕ)‖+ ‖Dωu1(ϕ)‖] ∀ϕ ∈ Tk.

The proof is complete.
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4. Main existence theorem

Now we proceed to the main result of this paper.

Theorem 4.1. Let hypotheses (H1) and (H2) hold. Then the natural system on
Riemannian manifold (M, 〈·, ·〉) with Lagrangian density L = 1

2 〈ẋ, ẋ〉 + W (tω, x)
has a weak quasiperiodic solution.

Proof. The proof consists of three steps.
Step 1. Construction of a projection mapping and its smooth approximation.

Put Ω+δ = (∪xεΩB(x; δ)) where B(x; δ) stands for an open ball of radius δ centered
at x ∈ M on Riemannian manifold (M, 〈·, ·〉). Since by Hypothesis (H1) v is a
noncritical value, then ∂Ω = V −1(v) is a regular hypersurface with unit normal
field ν := ∇V

‖∇V ‖ . As is well known (see, e.g., [4, sect. 8.1]), for sufficiently small
δ > 0, one can correctly define the projection mapping PΩ : Ω + δ → Ω̄ such that
PΩx ∈ Ω̄ is the nearest point to x ∈ Ω+δ. If x = X(q), q ∈ Q ⊂ Rm−1, is a smooth
local parametric representation of ∂Ω in a neighborhood of a point x0 ∈ ∂Ω, then
for sufficiently small δ0 > 0 the mapping

Q× (−δ0, δ0) 3 (q, z) → expX(q)(zν ◦X(q))

introduces local coordinates with the following properties: local equation of ∂Ω is
z = 0; each naturally parametrized ρ-geodesic

γ(s) = expX(q)(sν ◦X(q))

is orthogonal to each hypersurface z = const; the Riemannian metric takes the
form

∑m−1
i,j=1 bij(q, z)dqidqj +dz2, where B(q, z) = {bij(q, z)}m−1

i,j=1 is positive definite
symmetric matrix; the function V (·) is represented in the form V (q, z) = v+a(q)z+
b(q, z)z2; the mapping PΩ has the form

PΩ(q, z) :=

{
(q, 0) if z ∈ (0, δ0),
(q, z) if z ∈ (−δ0, 0].

The projection mapping is continuous on Ω + δ and continuously differentiable on
(Ω + δ)\∂Ω. Moreover, it turns out that for sufficiently small δ > 0 the derivative
PΩ∗ is contractive on (Ω + δ)\∂Ω; i.e.

‖PΩ∗ξ‖ ≤ ‖ξ‖ ∀ξ ∈ TxM, x ∈ (Ω + δ)\∂Ω. (4.1)

It is sufficiently to prove this inequality for any x ∈ (Ω + δ)\∂Ω. Let q = q(s),
z = z(s) be natural equations of ρ-geodesic which starts at a point x0 = (q0, 0) ∈ ∂Ω
in direction of vector η =(q̇0, 0) ∈ Tx0∂Ω. The hypothesis (H1) implies that

〈∇η∇V (x0), η〉 =
d2

ds2

∣∣∣
s=0

V (q(s), z(s)) > 0 ⇔ a(q0)z̈(0) > 0.

Since a(q0) > 0 (ν is external normal to ∂Ω) and z-component of geodesic equations
is

z̈ =
1
2

∂

∂z

m−1∑
i,j=1

bij(q, z)q̇2
i q̇2

j ,

then the matrix B′
z(q0, 0) is positive definite. From this it follows that B(q, z1) >

B(q, z2) for all q from a neighborhood of q0 and all z1, z2 ∈ (−δ, δ), z1 > z2 if
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δ ∈ (0, δ0) is sufficiently small. Let ξ = (q̇, ż) be a tangent vector at point (q, z)
where z ∈ (0, δ). Then

‖ξ‖2 =
m−1∑
i,j=1

bij(q, z)q̇iq̇j + ż2 ≥
m−1∑
i,j=1

bij(q, z)q̇iq̇j

≥
m−1∑
i,j=1

bij(q, 0)q̇iq̇j = ‖(q̇, 0)‖2 = ‖PΩ∗ξ‖2.

Let us introduce a smooth approximation of projection mapping in the following
way. For ε ∈ (0, δ), define

$ε(z) :=

{
exp(1/z − 1/(z + ε)), z ∈ (−ε, 0),
0, z ∈ R \ (−ε, 0),

Zε(z) :=
∫ z

−ε

∫ 0

s
$ε(t)dt∫ 0

−ε
$ε(t)dt

ds− ε, z ∈ (−δ0, δ0).

Obviously the function Zε(·) is smooth, its derivative, Z ′
ε(z), equals 1 for z ∈

(−δ0,−ε], monotonically decreases from 1 to 0 on [−ε, 0], and equals 0 for z ≥ 0.
From this it follows that Zε(z) equals z for z ∈ (−δ0,−ε] monotonically increases
from −ε to Zε(0) ∈ (−ε, 0) on [−ε, 0], and equals Zε(0) for z ∈ [0, δ0). Now locally
define

Pε,Ω(q, z) :=

{
(q, Zε(0)) if z ∈ (0, δ0),
(q, Zε(z)) if z ∈ (−δ0, 0]

and for each point x ∈ Ω such that B(x; δ) ⊂ Ω put Pε,Ω(x) = x. Since Zε(0) < 0,
then

Pε,Ω(Ω + δ) ⊂ Ω
and since |Z ′

ε(z)| ≤ 1, then for any z ∈ (−δ, δ), and for any tangent vector ξ = (q̇, ż)
at point (q, z) we have

‖ξ‖2 =
m−1∑
i,j=1

bij(q, z)q̇iq̇j + ż2 ≥
m−1∑
i,j=1

bij(q, Zε(z))q̇iq̇j + (Z ′
ε(z)ż)2

= ‖(q̇, Z ′
ε(z)ż)‖2 = ‖Pε,Ω∗ξ‖.

From this it follows that

‖Pε,Ω∗ξ‖ ≤ ‖ξ‖ ∀x ∈ Ω + δ, ∀ξ ∈ TxM. (4.2)

Also, Hypothesis (H2) implies

W (ϕ, Pε,Ωx) ≤ W (ϕ, x) ∀ϕ ∈ Tm, ∀x ∈ Ω + δ (4.3)

for sufficiently small δ and ε ∈ (0, δ).
Step 2. Minimization of functional J on SΩ+δ. Obviously that the functional J

restricted to SΩ+δ is bounded from below. Let us show that

J∗ := inf J [SΩ+δ] = inf J [SΩ]. (4.4)

In fact, if vj(·) ∈ SΩ+δ is such a sequence that J [vj ] monotonically decreases to J∗,
then (4.2) and (4.3) implies

J∗ ≤ J [Pε/j,Ωvj ] ≤ J [vj ].
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Hence, the sequence uj(·) := Pε/j,Ωvj(·) is minimizing both for J
∣∣
SΩ

and for J
∣∣
SΩ+δ

.
Step 3. Convergence of minimizing sequence to a weak solution. Let uj(·) ∈ SΩ

be a minimizing sequence for J
∣∣
SΩ

. Without loss of generality, we may consider
that

‖Dωuj‖20 ≤ M :=
2

(2π)k
sup
x∈Ω

∫
Tk

W (ϕ, x)dϕ− 2
(2π)k

∫
Tk

inf
x∈Ω

W (ϕ, x)dϕ. (4.5)

Let hj(·) ∈ C∞(Tk, TM) be a sequence of smooth mappings such that hj(ϕ) ∈
Tuj(ϕ)M for any ϕ ∈ Tk and besides there exist positive constants K, K1 such
that

‖hj‖1 ≤ K1, ‖hj(ϕ)‖ ≤ K ∀ϕ ∈ Tk, ∀j = 1, 2, . . . (4.6)

Let us show that
lim

j→∞
J ′[uj ](hj) = 0. (4.7)

On one hand, J [uj ] decreases to J∗ := inf J [SΩ]. On the other hand, for sufficiently
small s0 ≤ 1 and for any j ∈ N there exists a number θj ∈ [−s0, s0] such that

J [expuj
(shj)] = J [uj ] + sJ ′[uj ](hj) +

s2

2
d2

ds2

∣∣∣
s=θj

J [expuj
(shj)]

for aa s ∈ [−s0, s0] and all j ∈ N; and, there exists a constant K2 > 0 such that

| d2

ds2
J [expuj

(shj)]| ≤ K2 ∀s ∈ [−s0, s0], ∀j ∈ N.

If now we suppose that lim supj→∞ |J ′[uj ](hj)| > 0 then one can choose j and
sj ∈ [−s0, s0] in such a way that

expuj
(sjhj) ∈ SΩ+δ, J [expuj

(sjhj)] < J∗.

Thus, in view of (4.4), we arrive at a contradiction with definition of J∗.
Now by Theorem 3.3 for any pair ui+j(·), uj(·) there exists a vector field hij(·)

along uj(·) such that

J [ui+j ]− J [uj ]− J ′[uj ](hij) ≥
κc2

2

∫
Tk

ρ2(uj , ui+j)dϕ ≥ (2π)kκc2

2
‖ui+j − uj‖20.

Since (4.7) implies J ′[uj ](hij) → 0 as j →∞, then the sequence uj(·) is fundamental
in H(Tk, En) and in view of (4.5) converges to a function u∗(·) strongly in H(Tk, En)
and weakly in H1

ω(Tk, En). Without loss of generality we may consider that u∗(·)
is defined by a minimizing sequence which converges a.e.

Now it remains only to prove that u∗(·) is a weak solution; i.e., that there holds
(2.3). Let h(·) be a vector field along u∗(·). By definition, there exists a sequence of
smooth mappings hj(ϕ) ∈ Tuj(ϕ)M which satisfies (4.6) and (4.7). Then, in view
of (4.5), we obtain

lim
j→∞

|〈Dωu∗, Dωh〉0 − 〈Dωuj , Dωhj〉0|

≤ lim
j→∞

|〈Dω(u∗ − uj), Dωh〉0|+
√

M lim
j→∞

‖Dω(h− hj)‖0 = 0.

As was noted above, we may consider that uj(·) is a minimizing sequence that
converges to u∗(·) a.e. on Tk. Then W (ϕ, uj(ϕ)) converges to W (ϕ, u∗(ϕ)) for
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almost all ϕ ∈ Tk. By definition of SΩ, each function uj(·) takes values in bounded
domain Ω. For this reason

|W (ϕ, uj(ϕ))| ≤ max
(ϕ,u)∈Tk×Ω̄

|W (ϕ, u)|.

By the dominated convergence Lebesgue theorem, the function ϕ → W (ϕ, u∗(ϕ))
is integrable on Tk and

lim
j→∞

∫
Tk

[W (ϕ, uj(ϕ))−W (ϕ, u∗(ϕ))]dϕ = 0.

Hence, J ′[u∗](h) = limj→∞ J ′[uj ](hj) = 0. �

5. Searching for weak quasiperiodic solutions by means of averaged
force function

There naturally arise a question of how to choose a conformally equivalent metric.
One of the ways is to seek the function V (·) in the form V (·) = Y ◦ W̄ (·) where

W̄ (x) :=
1

(2π)k

∫
Tk

W (ϕ, x)dϕ

is the averaged force function and Y (·) ∈ C∞(W̄ (M), R) is an unknown function.
Here we suppose that W̄ (·) is smooth, otherwise we replace this function by a
smooth approximation.

A searching procedure for quasiperiodic solutions can be as follows.
Step 1. Searching for non-degenerate points of local minimum for W̄ (·). Let x∗

be one of such points. Without loss of generality, we assume that W̄ (x∗) = 0. A
minimal eigenvalue of quadratic form 〈HW̄ (x∗)ξ, ξ〉 on Tx∗M is λW̄ (x∗) > 0. Let

E := {x ∈M : λW̄ (x) > 0, ∇W̄ 6= 0 ∀x 6= x∗},

and for the sake of definiteness consider the case where K∗(x) > 0 for all x ∈ E .
Denote by Θw a connected component of sublevel set W̄−1((−∞, w)) such that
x∗ ∈ Θw, and put

w1 := sup{w > 0 : Θ̄w ⊂ E}. (5.1)

Step 2. Constructing a smooth function Y (·) in order to satisfy (3.1) with V (·) =
Y ◦ W̄ (·).

Lemma 5.1. Put p(w) := maxx∈Θ̄w

‖∇W̄ (x)‖2
λW̄ (x) , q(w) := maxx∈Θ̄w

2K∗(x)
λW̄ (x) . Let z(·) :

[0, w2) → R+, where w2 ∈ (0, w1], be a smooth function satisfying the inequalities

z′ ≥ z2

2
+

q(w)− z

p(w)
, ∀w ∈ (0, w2), z ≥ q(w) ∀w ∈ [0, w2), (5.2)

and let Y (w) =
∫ w

0
z(s)ds. Then µY ◦W̄ (x) ≥ 2K∗(x) for all x ∈ Θw and all

w ∈ (0, w2).

Proof. If V (·) = Y ◦W (·) then ∇V (x) = Y ′ ◦ W̄ (x)∇W̄ (x) and

〈HV (x)ξ, ξ〉 = Y ′ ◦ W̄ (x)〈HW̄ (x)ξ, ξ〉+ Y ′′ ◦ W̄ (x)〈∇W̄ (x), ξ〉2,

〈GV (x)ξ, ξ〉 = Y ′ ◦ W̄ (x)〈HW̄ (x)ξ, ξ〉+ [Y ′′ − 1
2
(Y ′)2] ◦ W̄ (x)〈∇W̄ (x), ξ〉2,
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for ξ ∈ TxM. Any ξ ∈ TxM, ‖ξ‖ = 1, can be represented in the form ξ =
cos αη + sinας where ς := ∇W̄ (x)

‖∇W̄ (x)‖ and η ∈ TxM is such that ‖η‖ = 1, 〈η, ς〉 = 0.
Then it is not hard to show that

µY ◦W̄ (x) ≥ λW̄ (x)Y ′ ◦ W̄ (x) + [Y ′′ − 1
2
(Y ′)2] ◦ W̄ (x)‖∇W̄ (x)‖2 sin2 α

≥ λW̄ (x)Y ′ ◦ W̄ (x) cos2 α

+ ([Y ′′ − 1
2
(Y ′)2] ◦ W̄ (x)‖∇W̄ (x)‖2 + λW̄ (x)Y ′ ◦ W̄ (x)) sin2 α

≥ 2K∗(x)

for all x ∈ Θw, w ∈ (0, w2). �

Remark 5.2. Observe that p(w) → +0 when w → +0, the functions p(·) and
q(·) are non-decreasing, and the roots z±(w) of equation z2

2 + q(w)−u
p(w) = 0 have

asymptotic representations

z+(w) :=
1

p(w)
[1 +

√
1− 2p(w)q(w)] =

2
p(w)

− q(w) + O(p(w)),

z−(w) :=
1

p(w)
[1−

√
1− 2p(w)q(w)] = q(w) + O(p(w)),

as w → +0. Set w3 := sup{w ∈ (0, w1) : 2p(w)q(w) < 1}. One can show that
z+(·) is non-increasing, z−(·) is non-decreasing, z+(w) > z−(w) > q(w) for all
w ∈ (0, w3), and integral curves of the the equation

z′ =
z2

2
+

q(w)− z

p(w)
(5.3)

have negative slope in the domain bounded by the graphs of z−(·), z+(·), and the
ordinate axis. If w3 = w1, then we can put w2 = w1 and z(w) ≡ 1

p(w2)
. Let now

w3 < w1. For any w0 ∈ (0, w3], let z(·;w0) : (0, w4) → R be a non-continuable
solution of (5.3) satisfying the initial condition z(w0;w0) = z−(w0) > q(w0). It is
naturally to choose w0 in such a way that

w5 := sup{w ∈ (w0, w4) : z(s;w0) ≥ q(s) ∀s ∈ (w0, w)}
be maximally large. One can put w2 := min{w1, w5} and take for the solution
of deferential inequality (5.2) the following function: z(·)

∣∣
[0,w0]

is a non-decreasing
smooth function satisfying the conditions

z−(w) < z(w) < z+(w) ∀w ∈ [0, w0),

z(i)(w0) =
∂i

∂wi

∣∣∣
w=w0

z(w;w0) ∀i = 0, 1, 2, . . . ,

and z(w)
∣∣
(w0,w2)

:= z(w;w0).

Finally, let w∗ ∈ (0, w2) be a number arbitrarily close to w2. Define V (·)
∣∣
Θw∗

:=
Y ◦ W̄ (·) and smoothly extend this function on the entire M in such a way that
V (x) ≥ Y (w∗) for all x ∈M \Θw∗ .

Step 3. Choosing w∗ to ensure ρV -convexity of Θw∗ . Observe that

λY ◦W̄ (x) ≥ µY ◦W̄ (x) ≥ 2K∗(x) > 0

if x ∈ Θw∗ . By propositions 3.2 and 3.8, in order that Θw∗ be ρV -convex it is
sufficient that w∗ ∈ (0, w∗) be such a number that for any x0, x1 ∈ ∂Θw∗ the set
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Θ̄w∗ contains at least one minimal ρ-geodesic segment with endpoints x0, x1. Such
a choice of w∗ is always possible (see Remark 3.1).

So we managed to construct a function V (·) for which Hypothesis (H1) holds
true with v := Y (w∗) and D = Ω = Θw∗ .

Finally, to prove the existence of weak quasiperiodic solution by means of The-
orem 4.1, it remains to verify Hypothesis (H2). Let W̃ (ϕ, x) := W (ϕ, x) − W̄ (x).
In order that Hypothesis (H2) holds it is sufficient that the force function satisfies
the following two conditions:

min
(ϕ,x)∈Tk×∂Θw

[λW (ϕ, x) +
z(w)

2
(‖∇W̄ (x)‖2 + 〈∇W̄ ,∇W̃ (ϕ, x)〉)] > 0

∀w ∈ [0, w∗),
(5.4)

‖∇W̄ (x)‖ > ‖∇W̃ (ϕ, x)‖ ∀(ϕ, x) ∈ Tk × ∂Θw∗ , (5.5)

where z(·) is the function defined in Lemma 5.1 and λW (ϕ, ·) is the minimal eigen-
value of Hesse form of function W (ϕ, ·) : M→ R for each ϕ ∈ Tk. Thus we arrive
at the following result.

Theorem 5.3. Let z(·) and V (·) be the functions constructed above and let the
force function W (·, ·) satisfy the inequalities (5.4), (5.5). Then the natural system
on Riemannian manifold (M, 〈·, ·〉) with Lagrangian density L = 1

2 〈ẋ, ẋ〉+W (tω, x)
has a weak quasiperiodic solution.

6. Quasiperiodic forcing of natural system on hypersurface

In coordinate Euclidean space En, consider a natural conservative system which
undergo quasiperiodic forcing. The Lagrangian density of such a system has the
form

L :=
‖ẏ‖2

2
+ U(y) + 〈f(tω), y〉

where U(·) ∈ C∞(En, R), f(·) ∈ C(Tk, En),
∫

Tk f(ϕ)dϕ=0. Suppose that the sys-
tem is constrained to a regular connected compact hypersurface represented as a
level set M := F−1(0) of a smooth function F (·) : En → R such that grad F (y) 6= 0
for any y ∈ M. Let us show how one can verify the inequalities of Hypotheses
(H1)–(H2) in the case where W̄ (·) = U(·)

∣∣
M and W̃ (ϕ, ·) = 〈f(ϕ), ·〉

∣∣
M.

In the rest of this article, we shall use the notation gradU(y) and Hess U(y),
respectively, for gradient and Hessian matrix of function U(y) in En, while ∇U(x)
and HU (x) will denote the same for the restriction of U(·) to M (let us agree to
denote current point of the hypersurface M by x).

Determine the normal vector field and the second fundamental form of hyper-
surface M:

νx :=
gradF (x)
‖ gradF (x)‖

,

IIx(ξ, η) := 〈dνx(ξ), η〉 =
〈Hess F (x)ξ, η〉
‖ gradF (x)‖

ξ, η ∈ TxM.

Taking into account that the metric tensor and the Levi-Civita connection for M
are induced by scalar product of En, we have

∇U(x) = gradU(x)− 〈gradU(x), νx〉νx,

〈HU (x)ξ, ξ〉 := 〈∇ξ∇U(x), ξ〉 = 〈Hess U(x)ξ, ξ〉 − 〈gradU(x), νx〉IIx(ξ, ξ),
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λU (x) = min{〈HU (x)ξ, ξ〉 : ξ ∈ En, 〈νx, ξ〉 = 0, ‖ξ‖ = 1}.
Put

κF (x) := max{|IIx(ξ, ξ)| : ξ ∈ TxM, ‖ξ‖ = 1}.
At each point x ∈ M, we split the vector f(ϕ) into its tangential and normal
components with respect to TxM, namely

f(ϕ) = f>(ϕ, x) + f⊥(ϕ, x), f>(ϕ, x) := f(ϕ)− 〈f(ϕ), νx〉νx,

f⊥(ϕ, x) := 〈f(ϕ), νx〉νx,

Since in our case W̃ (ϕ, y) = 〈f(ϕ), y〉 and

∇W̃ (ϕ, x) = f>(ϕ, x), 〈HW̃ (ϕ, x)ξ, ξ〉 = −〈f(ϕ), νx〉IIx(ξ, ξ) ξ ∈ TxM,

we obtain

‖∇W̃ (ϕ, x)‖ = ‖f>(ϕ, x)‖, ‖HW̃ (ϕ, x)‖ ≤ κF (x)|〈f(ϕ), νx〉|. (6.1)

Finally, let us determine K∗(x). It is known (see, e.g., [17, sect. 3.7]) that

K∗(x) = max
{ ∣∣∣∣IIx(ξ1, ξ1) IIx(ξ1, ξ2)

IIx(ξ1, ξ2) IIx(ξ2, ξ2)

∣∣∣∣ :

ξi ∈ En, 〈ξi, νx〉 = 0, 〈ξi, ξj〉 = δij , i, j = 1, 2
}

From this it follows that if κi(x), i = 1, . . . , n− 1, are n− 1 principal curvatures of
hypersurface M at point x, then

K∗(x) = max
1≤i<j≤n−1

κi(x)κj(x).

Thus, we have determined all the functions involved in searching procedure for weak
quasiperiodic solutions. After having found the function z(·) from Lemma 5.1 and
the number w∗, it remains only to verify the inequalities (5.4) and (5.5). In order
for these inequalities hold it is sufficient that

2λU (x) + z(w)(‖∇U(x)‖2 + 〈∇U(x), f>(ϕ, x)〉) ≥ 2κF (x)|〈f(ϕ), νx〉|

∀(ϕ, x) ∈ Tk × ∂Θw, ∀w ∈ [0, w∗],

‖∇U(x)‖ >
√
‖f(ϕ)‖2 − 〈f(ϕ), νx〉2 ∀x ∈ Tk × ∂Θw∗ .

(6.2)

As an application of the technique developed, we consider the motion of spherical
pendulum under quasiperiodic forcing. The spherical pendulum is a natural system
on 2-D sphere with functions F (·) and U(·) of the form

F (x) = x2
1 + x2

2 + x2
3 − 1, U(y) = g · (1− y3), g = const > 0.

Restrict our study to the case where the forcing function is f(tω) = a(tω)b where

b = (b1, b2, b3) ∈ E3 b3 > 0, max
ϕ∈Tk

|a(ϕ)| = 1,

∫
Tk

a(ϕ)dϕ = 0. (6.3)

Theorem 6.1. Let the following inequality hold:

g ≥ 2.42 max{
√

b2
1 + b2

2, b3}+ b3. (6.4)

Then the spherical pendulum system with forcing function t → f(tω) := a(tω)b
satisfying the conditions (6.3) has a weak quasiperiodic solution containing in the
upper hemisphere.
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Proof. In the case under consideration we have

gradU = (0, 0,−g), νx = (x1, x2, x3),

∇U(x) = gradU(x)− 〈gradU(x), νx〉νx = g · (x1x3, x2x3, x
2
3 − 1),

‖∇U(x)‖ = g
√

1− x2
3, IIx(ξ, ξ) = 〈ξ, ξ〉, 〈HU (x)ξ, ξ〉 = gx3〈ξ, ξ〉,

λU (x) = gx3, κF (x) = K∗(x) = 1,

〈∇U(x), f>(ϕ, x)〉 = 〈gradU(x), f(ϕ)〉 − 〈f(ϕ), νx〉〈gradU(x), νx〉
= ga(ϕ)[x3〈b, x〉 − b3],

‖f>(ϕ, x)‖2 = a2(ϕ)[‖b‖2 − 〈b, x〉2].
For the stationary point x∗ = (0, 0, 1) of U(x) we have λU (x∗) = g > 0. The set E
in our case is the upper hemisphere, and w1 = g (see (5.1)). Further,

p(w) = g max
1−w/g≤x3≤1

(
1− x2

3

x3
) =

2gw − w2

g − w
,

q(w) =
2
g

max
1−w/g≤x3≤1

1
x3

=
2

g − w
.

Hence, the inequalities of Lemma 5.1 take the form

z′ ≥ z2

2
+

2− (g − w)z
2gw − w2

, z ≥ 2
g − w

.

The natural solution of these inequalities is z(w) = 2
g−w . Since ρ-geodesics on the

sphere are great circles, then the spherical cap

Θw = U−1((−∞, w)) = {x ∈ R3 :
3∑

i=1

x2
i = 1, x3 > 1− w/g}

is ρ-convex for any w ∈ (0, g). For this reason one can put w∗ = w∗ where w∗ ∈
(0, g) is a number arbitrarily close to g.

Further, the parametric representation of boundary ∂Θw is

x1 =
√

1− x2
3 cos α, x2 =

√
1− x2

3 sinα, x3 = 1− w/g.

On this curve, we have

|〈b, x〉| ≤
√

(b2
1 + b2

2)(1− x2
3) + b3x3,

and it is easily seen that the inequalities (6.2) hold once

g ≥ 2x3(
√

(b2
1 + b2

2)(1− x2
3) + b3x3) + b3 ∀x3 ∈ [1− w∗/g, 1],

g
√

1− (1− w∗/g)2 >
√

b2
1 + b2

2 + b2
3.

To complete the proof it remains only to observe that

max
x3∈[0,1]

x3(
√

(b2
1 + b2

2)(1− x2
3) + b3x3) ≤ 1.21 max{

√
b2
1 + b2

2, b3},

and to choose w∗ sufficiently close to g. �

Acknowledgements. The authors want to thank an anonymous referee for his
or her helpful comments and suggestions which improved the presentation of this
article.



EJDE-2012/66 VARIATIONAL APPROACH FOR WEAK QUASIPERIODIC SOLUTIONS 21

References

[1] M. Ayachi; Variational methods and almost periodic solutions of second order functional
differential equations with infinite delay, Commun. Math. Anal., 9 (2010), no. 1, 15–31.

[2] M. Ayachi, J. Blot; Variational methods for almost periodic solutions of a class of neutral
delay equations, Abstr. Appl. Anal., 2008 (2008), Article ID 153285, 13 pp.

[3] M. S. Berger, Luping Zhang; A new method for large quasiperiodic nonlinear oscillations
with fixed frequencies for nondissipative second order conservative systems of second type,
Commun. Appl. Nonlinear Anal., 3 (1996), no. 1, 25–49.

[4] R. L. Bishop, R.J. Crittenden; Geometry of manifolds, Academic Press, New York - London
(1964).

[5] J. Blot; Calculus of variations in mean and convex Lagrangians, J. Math. Anal. Appl., 134
(1988), no. 2, 312–321.

[6] J. Blot; Calculus of variations in mean and convex Lagrangians. II, Bull. Aust. Math. Soc.,
40 (1989), 457–463.

[7] J. Blot; Calculus of variations in mean and convex Lagrangians III, Israel J. Math., 67
(1989), no. 3, 337–344.

[8] J. Blot; Almost periodically forced pendulum, Funkcial. Ekvac., 36 (1993), 235–250.
[9] J. Blot, P. Cieutat, J. Mawhin; Almost-periodic oscillations of monotone second-order sys-

tems, Adv. Differential Equations, 2 (1997), 693–714.
[10] J. Blot, D. Pennequin; Spaces of quasi-periodic functions and oscillations in differential

equations, Acta. Appl. Math, 65 (2001), 83–113.
[11] D. Cheban, C. Mammana; Invariant manifolds, almost periodic and almost automorphic

solutions of second-order monotone equations, Int. J. Evol. Equ., 1 (2005), no. 4, 319–343.
[12] V. M. Cheresiz; Stable and conditionally stable almost-periodic solutions of V-monotone

systems, Sib. Math. J., 15 (1974), no. 1, 116–125.
[13] P. Cieutat; Almost periodic solutions of second-order systems with monotone fields on a

compact subset, Nonlin. Anal., 53 (2003), no. 6, 751–763.
[14] P. Cieutat; Bounded and almost periodic solutions of convex Lagrangian systems, J. Differ-

ential Equations, 190 (2003), 108–130.
[15] David C. Clark; Periodic solutions of variational systems of ordinary differential equations,

J. Differential Equations, 28, no. 3, 1978, 354–368.
[16] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov; Modern Geometry. Methods and Applications,

Springer-Verlag, GTM 93, Part 1, (1984).
[17] D. Gromol, W. Klingenberg, W. Meyer; Riemannsche geometrie im grossen, Springer-Verlag,

Heidelberg-New York (1968).
[18] M. A. Krasnosel’skii, P. P. Zabreiko; Geometrical Methods of Nonlinear Analysis, Berlin-

Heidelberg-New York-Tokio: Springer-Verlag, A Series of Comprehensive Studies in Mathe-
matics, 263 (1984), 409 pp.

[19] J. Kuang; Variational approach to quasi-periodic solution of nonautonomous second-order
Hamiltonian systems, Abstr. Appl. Anal., 2012 (2012), Article ID 271616, 14 pp.

[20] J. Mawhin; Bounded and almost periodic solutions of nonlinear differential equations: vari-
ational vs nonvariational approach, in: Calculus of Variations and Differential Equations
(Haifa, 1998), Chapman & Hall/CRC Research Notes in Mathematics, 410, Boca Raton,
Raton, FL, 2000, 167–184.

[21] J. Mawhin, James R. Ward, Jr.; Guiding-like functions for periodic or bounded solutions of
ordinary differential equations, Discrete Contin. Dyn. Syst., 8 (2002), 39–54.

[22] I. Meghea, V. Stanciu; Existence of the solutions of forced pendulum equation by variational
methods, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 71 (2009), no. 4,
115–124.

[23] J. Nash; The imbedding problem for Riemannian manifolds, Ann. of Math. 63, no. 1 (1956),
2063.

[24] A. Nowakowski and A. Rogowski; Periodic solutions of Lagrange equations, Topol. Methods
Nonlinear Anal., 22 (2003), 167–180.

[25] R. Ortega; The pendulum equation: from periodic to almost periodic forcings, Differential
Integral Equations, 22 (2009), no. 9–10, 801–814.

[26] I. Parasyuk, A. Rustamova; Existence theorem for weak quasiperiodic solutions of Lagrangian
systems on Riemannian manifolds,arXiv:1112.1550v1 [math-ph] (2011), 14 p.



22 I. PARASYUK, A. RUSTAMOVA EJDE-2012/66

[27] A. I. Perov, T. I. Smagina, V. L. Khatskevich, Variational approach to the periodic solutions
problem, Sib. Math. J., 25 (1984), no. 1, 88–100.

[28] P. Rabinowitz; Periodic solutions of Hamiltonian systems, Comm. Pure. Appl. Math, 31
(1978), 157–184.

[29] A. M. Samoilenko; Elements of the mathematical theory of multi-frequency oscillations,
Kluwer Academic Publishers, Dordrecht (1991).

[30] Yu. V. Trubnikov, A. I. Perov; Differential equations with monotone nonlinearities, Nauka i
Tekhnika, Minsk (1986) (in Russian).

[31] F. W. Warner; Foundations of differentiable manifolds and Lie groups, Berlin-Heidelberg-
New York-Tokio: Springer-Verlag (1968).

[32] S. F. Zakharin, I. O. Parasyuk; Generalized and classical almost periodic solutions of La-
grangian systems, Funkcial. Ekvac., 42 (1999), 325–338.

[33] S. F. Zakharin, I. O. Parasyuk; Generalized quasiperiodic solutions of Lagrangian systems
on Riemannian manifolds of nonpositive curvature, Bull. Kyiv. Univ. (Visnyk Kyiv. Univ.),
(1999), Iss. 3, 15–20. (in Ukrainian)

[34] S. F. Zakharin, I. O. Parasyuk; On smoothness of generalized quasiperiodic solutions of
Lagrangian systems on Riemannian manifolds of nonpositive curvature, Nonlinear Oscil.
(Nelinijni Kolyvannya), 2 (1999), no. 2, 180-193. (in Ukrainian)

7. Addendum posted on December 28, 2012

In this addendum, we show that if a function u∗(·) is determined by a minimizing
sequence uj(·) ∈ SΩ of the functional J , then this sequence converges strongly to
u∗(·) not only in H(Tk, En), but also in H1

ω(Tk, En). Our motivation for doing this is
as follows. Recall that a function u(·) ∈ HA is defined as a strong limit in H(Tk, En)
of a sequence uj(·) ∈ SA bounded in H1

ω(Tk, En), but at the same time the definition
of vector field h(·) along u(·) (page 4) requires that a sequence of vector fields
hj(·) ∈ C∞(Tk, TM) along uj(·) converges to h(·) strongly in H1

ω(Tk, En). This
brings up a question whether such a definition of vector field along u(·) ∈ HA is
correct enough. Obviously, the answer is positive for a subset of HA which is strong
closure of SA by norm of the space H1

ω(Tk, En).
Suppose that W (·, ·) ∈ C0,3(Tk × M, R) and that there holds the following

hypothesis which slightly strengthen Hypothesis (H1):
(H1’) the conditions of Hypothesis (H1) are valid together with strict inequality

µ∗ := min
x∈Ω̄

[µV (x)− 2K∗(x)] > 0.

Now for any ui(·), uj(·) ∈ SΩ, define

η(s, t) :=
∂

∂t
χ(s, ui(ϕ + ωt), uj(ϕ + ωt)) ≡ Dωχ(s, ui(ϕ + ωt), uj(ϕ + ωt)),

ξ(s, t) :=
∂

∂s
χ(s, ui(ϕ + ωt), uj(ϕ + ωt)).

Then in view of Proposition 3.10, we have

d2

ds2
‖η‖2 = 2[〈∇2

ξη, η〉+ ‖∇ξη‖2]

= 2‖∇ξη‖2 + 2〈∇ξη, ξ〉〈∇V ◦ χ, η〉
+ ‖ξ‖2〈∇η∇V ◦ χ, η〉 − 2〈R(η, ξ)ξ, η〉

≥ 2‖∇ξη‖2 − 2‖∇ξη‖‖ξ‖|〈∇V ◦ χ, η〉|
+ ‖ξ‖2〈∇η∇V ◦ χ, η〉 − 2K∗ ◦ χ‖ξ‖2‖η‖2

= 2‖∇ξη‖2 − 2|〈∇V ◦ χ, e〉|‖∇ξη‖‖ξ‖‖η‖
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+ [〈∇e∇V ◦ χ, e〉 − 2K∗ ◦ χ]‖ξ‖2‖η‖2

where e := η/‖η‖. It is easily seen that once the Hypothesis (H1’) holds, then the
quadratic form

z2
1 − |〈∇V ◦ χ, e〉|z1z2 + [

1
2
〈∇e∇V ◦ χ, e〉 −K∗ ◦ χ]z2

2

of variables z1, z2 is positive definite for any unit vector field e. Hence there exists
a positive number ν > 0 such that

d2

ds2
‖η‖2 ≥ 2ν[‖∇ξη‖2 + ‖ξ‖2‖η‖2],

and taking into account Hypothesis (H2) we get

d2

ds2
[
1
2
‖Dωχ(s, ui, uj)‖2 + W (ϕ, χ(s, ui(ϕ), uj(ϕ)))]

≥ ν[‖∇χ′sDωχ‖2 + ‖χ′s‖2‖Dωχ‖2]
+ 〈∇χ′s∇W (ϕ, χ), χ′s〉+ 〈∇W (ϕ, χ),∇χ′sχ

′
s〉

= ν[‖∇χ′sDωχ‖2 + ‖χ′s‖2‖Dωχ‖2]

+ 〈∇χ′s∇W (ϕ, χ), χ′s〉+
‖χ′s‖2

2
〈∇W (ϕ, χ),∇V (χ)〉

≥ ν[‖∇χ′sDωχ‖2 + ‖χ′s‖2‖Dωχ‖2] + κ‖χ′s‖2.

(7.1)

From this it follows that the function fij(s) = J [χ(s, ui, uj)] is convex (downward):

fij(s) ≤ sfij(1) + (1− s)fij(0) =⇒ J [χ(s, ui, uj)] ≤ sJ [uj ] + (1− s)J [ui].

Now let ui(·) ∈ SΩ, i = 1, 2, . . . be a minimizing sequence for J [u], and the
sequence J [ui] monotonically decreases to J∗. Then, taking into account the con-
vexity of fij(s), the sequence J [χ(s, ui, ui+l)] is minimising for any l ∈ N. Together
with the property (4.7) on page 15, this assures that for any ε > 0 and s1, s2 ∈ [0, 1]
there exists i(ε, s1, s2) ∈ N such that

J∗ ≤ J [χ(sk, ui, uj)] ≤ J∗ +
(s1 − s2)2

8
ε,

|J ′[χ(sk, ui, uj)](χ′s(sk, ui, uj))| <
|s2 − s1|ε

4
for all j ≥ i ≥ i(ε, s1, s2), k = 1, 2. But

J [χ(s2, ui, uj)] = J [χ(s1, ui, uj)] + (s2 − s1)J ′[χ(s1, ui, uj)](χ′s(s1, ui, uj))

+
(s2 − s1)2

2
d2

ds2

∣∣
s=θij

J [χ(s, ui, uj)]

with some θij belonging to the interval with endpoints s1 and s2. Then

0 ≤ d2

ds2

∣∣
s=θij

J [χ(s, ui, uj)] ≤ ε.

Since ui(·) ∈ SΩ and ‖Dωui‖20 ≤ M (see (4.7), page 15), then there exists a constant
K3 > 0 such that

| d3

ds3
J [χ(s, ui, uj)]| ≤ K3 ∀i, j ∈ N, ∀s ∈ [0, 1].
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Hence for some σij belonging to the interval with endpoints s1 and θij , we have

d2

ds2

∣∣
s=θij

J [χ(s, ui, uj)]

=
d2

ds2

∣∣
s=s1

J [χ(s, ui, uj)] + (θij − s1)
d3

ds3

∣∣
s=σij

J [χ(s, ui, uj)].

If we now assume that ε < K3/2 and put

s2(s1, ε) :=

{
s1 + ε/K3 if s1 ∈ [0, 1/2],
s1 − ε/K3 if s1 ∈ (1/2, 1],

i∗(ε, s1) := i(ε, s1, s2(s1, ε)),

then
d2

ds2

∣∣
s=s1

J [χ(s, ui, uj)] ≤ 2ε ∀j ≥ i ≥ i∗(ε, s1).

In view of (7.1) and ‖χ′s(s, ui, uj)‖ ≥ c‖ui − uj‖ (see (3.7), page 12), by letting
s1 = 0 and s1 = 1, we get

‖ui − uj‖20 + ‖‖ui − uj‖‖Dωul‖‖20 ≤ C1ε, (7.2)

‖∇χ′sDωχ(s, ui, uj)‖20
∣∣
s=0

= ‖∇Dωuiχ
′
s(0, ui, uj)‖20 ≤ C2ε, (7.3)

for all j ≥ i ≥ max{i∗(ε, 0), i∗(ε, 1)}, l = i, j, with some positive constants C1, C2

independent of i, j, ε.
Now let us estimate ‖∇Dωuiχ

′
s(0, ui, uj)‖ from below. First, observe that under

Hypothesis (H1′) the mapping ζ(·, ·) (see Propositions 3.8, 3.9) is correctly defined
and smooth not only in Ω × Ω but also in a neighborhood of this domain. If
we fix a point x0 ∈ Ω, then by means of mapping expV

x0
(·) one can introduce

local coordinates in a neighborhood of Ω. Namely, for any y belonging to such
a neighborhood of Ω we put into one-to-one correspondence the vector ξ(y) :=
ζ(x0, y) ∈ Tx0M such that expV

x0
(ξ(y)) = y.

Next, observe that from the equalities

expV
x (ζ(x, y)) = y, ζ(x, x) = 0, (expV

x )∗(0) = Id

it follows that

(expV
x )∗(ζ(x, y))ζ ′y(x, y) = Id =⇒ ζ ′y(x, y)

∣∣
x=y

= Id,

ζ ′x(x, y)
∣∣
x=y

+ζ ′y(x, y)
∣∣
x=y

= 0 =⇒ ζ ′x(x, y)
∣∣
x=y

= −Id.

Since τ ′s(0, x, x) = 1 and

χ′s(0, x, y) = τ ′(0, x, y)
d
dt

∣∣
t=0

expV
x (tζ(x, y)) = τ ′(0, x, y)ζ(x, y),

then

χ′′sx(0, x, y)
∣∣
y=x

= ζ ′x(x, y)
∣∣
x=y

= −Id,

χ′′sy(0, x, y)
∣∣
y=x

= ζ ′y(x, y)
∣∣
x=y

= Id.

Now it is easily seen that there exists a constant C3 > 0 such that

max{‖Id + χ′′sx(s, x, y)‖, ‖Id− χ′′sy(s, x, y)‖} ≤ C3‖x− y‖ (7.4)

for any (x, y) ∈ Ω̄× Ω̄.
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In local coordinates introduced above, points of Ω and tangent vectors at such
points are represented as m-dimensional vectors of coordinate space Em, and there
exists a bilinear mapping

Γx(·, ·) : Em × Em → Em

smoothly depending on x such that

∇Dωui
χ′s(0, ui, uj) = Dωχ′s(0, ui, uj) + Γui(Dωui, χ

′
s(0, ui, uj))

(this bilinear mapping is expressed via the Christoffel symbols). It is not hard to
show that there exists a constant C4 > 0 such that

‖Γui
(Dωui, χ

′
s(0, ui, uj))‖ ≤ C4‖Dωui‖‖ui − uj‖ ∀i, j ∈ N.

Now the equality

Dωχ′s(0, ui, uj) = Dωuj −Dωui + [Id + χ′′sx(s, ui, uj)]Dωui

+ [χ′′sx(s, ui, uj)− Id]Dωuj

together with (7.4) yields

‖Dωχ′s(0, ui, uj)‖ ≥ ‖Dωuj −Dωui‖ − C3‖ui − uj‖[‖Dωui‖+ ‖Dωuj‖]

and finally,

‖∇Dωuiχ
′
s(0, ui, uj)‖ ≥ ‖Dωuj −Dωui‖

− ‖ui − uj‖[(C3 + C4)‖Dωui‖+ ‖Dωuj‖].

From this it follows that there exists a constant C5 > 0 such that

‖∇Dωui
χ′s(0, ui, uj)‖2 ≥ ‖Dωuj −Dωui‖2

− C5[‖Dωuj −Dωui‖‖ui − uj‖(‖Dωui‖+ ‖Dωui‖)
+ ‖ui − uj‖2(‖Dωui‖2 + ‖Dωui‖2)],

and after applying the Schwartz inequality we obtain

‖∇Dωuiχ
′
s(0, ui, uj)‖20

≥ ‖Dωuj −Dωui‖20

− C5

[
‖Dωuj −Dωui‖0(‖‖ui − uj‖‖Dωui‖‖0 + ‖‖ui − uj‖‖Dωuj‖‖0)

+ ‖‖ui − uj‖‖Dωui‖‖20 + ‖‖ui − uj‖‖Dωuj‖‖20
]
.

Taking into account the inequalities (7.2), (7.3) we see that there exist ε0 > 0 and
C6 > 0 such that

‖Dωuj −Dωui‖0 ≤ C6

√
ε

for all ε ∈ (0, ε0) and all j ≥ i ≥ max{i∗(ε, 0), i∗(ε, 1)}. Hence under Hypothesis
(H1’), the minimizing sequence ui(·) is fundamental not only in H(Tk, En) but also
in H1

ω(Tk, En).

We also want to correct some misprints.
In the last formula on page 3, the constant K should be replaced with K1.
In formula (2.3), page 4, the left hand side of equality must be 1

(2π)k J ′[u∗]h.
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On line 8, page 12, Hypothesis (H3) should be replaced with Hypothesis (H2).
In Theorem 4.1, the same arguments we used to show that

lim
j→∞

∫
Tk

[W (ϕ, uj(ϕ))−W (ϕ, u∗(ϕ))]dϕ = 0

should be used to prove that

lim
j→∞

∫
Tk

‖W ′
x(ϕ, uj(ϕ))−W ′

x(ϕ, u∗(ϕ))‖dϕ = 0.

End of addendum.
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