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VARIATIONAL APPROACH FOR WEAK QUASIPERIODIC
SOLUTIONS OF QUASIPERIODICALLY EXCITED
LAGRANGIAN SYSTEMS ON RIEMANNIAN MANIFOLDS

IGOR PARASYUK, ANNA RUSTAMOVA

ABSTRACT. We apply a variational method to prove the existence of weak Besi-
covitch quasiperiodic solutions for natural Lagrangian system on Riemannian
manifold with time-quasiperiodic force function. In contrast to previous pa-
pers, our approach does not require non-positiveness condition for sectional
Riemannian curvature. As an application of obtained results, we find condi-
tions for the existence of weak quasiperiodic solutions in spherical pendulum
system under quasiperiodic forcing.

1. INTRODUCTION

Let M be a smooth complete connected m-dimensional Riemannian manifold
equipped with an inner product (-,-) on fibers T, M of tangent bundle TM as
well as with Levi-Civita connection V. A natural system on M is a Lagrangian
system with Lagrangian density of the form L‘TTM: (&, 4) — TI(t, ) where the
terms %(m,@ and II(¢,z) stand for kinetic and potential energy respectively. In
this paper, we consider the special case of potential energy represented as Il :=
—W (wt, ) where W (wt, x) is w-quasiperiodic force function generated by a function
W(,-) € CO¥T* x M,R) (W(-,-) is continuous together with W/ (-,-)); here
T*F = R¥/277ZF is k-dimensional torus and w = (wy,...,wy) € R is a frequencies
vector with rationally independent components. The problem is to detect in such
a system w-quasiperiodic oscillations.

In local coordinates (x1,...,%m), ¢ = 1,...,m, the system is governed by the
equations

d /¢ . OW (wt, ,
(ﬁ(;gixx)xj)—g;”, i=1,...,m,

where g;; is a metric tensor. When M is a Euclidean space E™, and hence,
95 (z) = 0;; (the Kronecker symbol), the above mentioned problem has been studied
even in more general case of almost periodic second order systems. Non-local exis-
tence results for such systems are usually obtained using topological principles and
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methods of nonlinear analysis under certain monotonicity, convexity and coercivity
conditions (see, e.g., [12} 30} @, 13| 14} 11]).

In periodic case, variational methods of finding and constructing periodic solu-
tions have been developed in details (see, e.g., [28, [15], 27, 24, 22]). Blot in his
series of papers [0} [0} [7| [8] applied variational method to establish the existence of
weak almost periodic solutions for systems in E™. Later, this method was used in
[3L 1201 [32] 21, 25, [Tl 9] to prove the existence of weak and classical almost periodic
solutions for various systems of variational type. In [33] B4], weak and classical
quasiperiodic solutions were found for natural mechanical systems in convex com-
pact subsets of Riemannian manifolds with non-positive sectional curvature. The
goal of the present paper is to extend these results to natural systems on arbitrary
Riemannian manifolds.

This paper is organized as follows. In Sections 2-4 we improve results an-
nounced in [26] on variational approach for searching weak quasiperiodic solutions
of quasiperiodically excited Lagrangian systems on Riemannian manifold. In partic-
ular, in Sect. 2 we define the weak quasiperiodic solution as Besicovitch quasiperi-
odic function generated by extremal point of functional J (see (2.2))). Here we
also discuss about the difficulties that occur in application of variational approach
when we reject the requirements of non-positiveness of Riemannian curvature. In
Section 3 we show how one can ensure convexity properties of functional J by
means of geodesics of conformally equivalent metric associated with inner product
eV @) (., '>|TIM where V() : M — R is appropriately chosen function. The con-
ditions we impose on this auxiliary function are less restrictive that of [26]. At
the same time, with respect to the force function W (-,-), the function V(-) plays
a role which is, to some extent, analogous to that of guiding function in [I8] 21].
In Section 4 we give the proof of the main existence theorem based on variational
approach. In Section 5 we describe a searching procedure for weak quasiperiodic so-
lution; the latter one is associated with a minimum point of the mean W () of force
function W (wt, z), while the oscillating part W (wt,z) := W (wt,z) — W (x) plays
a role of perturbation. Finally, in Section 6 we show how the developed approach
works when studying quasiperiodic forcing of natural systems on hypersurfaces of
Euclidean space. In particular, we consider quasiperiodic forcing of physical pen-
dulum and derive simple sufficient condition for the existence of weak quasiperiodic
solutions to corresponding Lagrangian system.

2. VARIATIONAL APPROACH

One can interpret a natural system on M as a natural system in Euclidean
space E™ (of appropriate dimension n) with holonomic constraint. Namely, by
famous Nash theorem, for some natural number n, there exists a smooth isometric
embedding ¢ : M — E". Denote by W(-,-) € C®2(T* x E",R) an extension of the
function W (-,-). Let the set ¢(M) play the role of holonomic constraint for natural
system in E" with kinetic energy K = (g, 9)g~ and potential energy —W (tw, ).
Then the Lagrangian density of the above natural system on M is represented in
the form % (., t.d@)gn + W (tw, ¢(x)) (here 1, stands for the tangent map generated
by ¢).

In what follows we shall use identical notations for M and +(M), for vectors
£ € TM and 1.§ € E™, for inner product {-,-)g» of E™ and the induced inner
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product
<.7 > = L*<~, ‘>IE” = <L*',L*~>]En

as well as for the function W (-,-) on T* x M and its extension W (,-) on T* x E".

Denote by H(T*,E") := L?(T*,E") the space of E"-valued functions on k-torus
which are integrable with the square of Euclidean norm || - || := +/{-,-). Define
on H(T*,E™) the standard scalar product (-,-)g = (27) % [1,.(-,-)d¢ and the corre-
sponding semi-norm || - [|o := /(:, -)o. By HL(T*, E") denote the space of functions
f(-) € H(T*,E™) each of which has weak (Sobolev) derivative D, f(-) € H(T*,E")
in the direction of vector w. Recall that D, f(-) is characterized by the following
property

[ 0et) gl do == [ (5(0).Dugle)) dg Va) € O ED)

where Dug(e) i= 35—, %w;. Recall also that a function u(-) € H(T*, E") with

Fourier series Y, -« une™ ¥ has a weak derivative if and only if the series >, [n-
w|?[lun|* converges and the Fourier series of Dyu(-) is Yo i(n - w)une™? (see,
e.g., [10, 29]).

The space HL(T* E") is equipped with the semi-norm || - ||; generated by the
scalar product (D, Dy,-Yo + (-, )o. After identification of functions coinciding a.e.,
both spaces H(T*,E") and HL(T* E") becomes Hilbert spaces with norms || - ||o
and || - |1 respectively.

To any function u(-) € H(T*,E™) with Fourier series Y, ;. un€™ %, one can put
into correspondence a Besicovitch quasiperiodic function x(¢) := u(tw) defined by
its Fourier series 3, 7 une! ™) (see, e.g., [10, 29]). If u(-) € HL(T*,E") then
z(t) denotes a Besicovitch quasiperiodic function D, u(tw).

We define weak solution of Lagrangian system on M with density L = %(a z)+
W (tw,x) in a slightly different way then in [32]. First, for any bounded subset
A C M, put

Sa = C®(T*, A).
Observe that if u;(-) € Sa is a sequence bounded in HL(T*, E") and convergent
to a function u(-) by norm of the space H(T* E") (recall that we consider the set
A C M also as a subset of E?), then for any n € Z* the sequence of Fourier series
coefficients u; , converges to u, and for some K > 0 we have

> el = Fm Y o

| 2

In|<N In|<N
<liminf Y [n-w’|unl* < K VN €N,
Jj—o0
nezk
where |n| := max; |n;|. Hence, u(-) € HL(T*, E") and

[Deullo < liminf [ Dyujllo-
J—00

Moreover, u;(-) converges to u(-) weakly in HL (T*, E"). In fact, there exists K3 > 0
such that |lujl|; < K; and for any g(-) € HL(T* E") and € > 0 there exists a
trigonometric polynomial p(-) such that ||g — p|[1 < e. Then, since u;n — un, we
have

lim |{uj —u, gh| < Jim |{u; —u,ph|+ (K + full)e = (K + Jlull1)e.

Jj—o0
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Hence, (u; —u,g)1 — 0. Besides, it is well known that if in addition ||D,u,llo —
[ Doullo, then u;(+) converges to u(-) strongly in HL(T*, E").

Next, for any bounded subset A C M define a functional space H 4 in a following
way: u(-) € Ha if and only if there exists a sequence u;(-) € S4 bounded in
HL(T*,E") and convergent to u(-) by norm of the space H(T*,E") (recall that we
consider the set A C M both as a subset of E™). As it was noted above Hy C
HL(T*,E"). We shall say that h(-) € HL(T* E") is a vector field along the map
u(-) € H 4 defined in the above sens by a sequence u;(-) if there exists a sequence
hj(-) € C°(T*, T M) such that h;(g) € Ty, ()M, the sequences max e [|h;()],
||h]||1 are bounded, and hm]_,oo ||h — hj”l =0.

Definition 2.1. A Besicovitch quasiperiodic function ¢ — z(t) := u(tw) generated
by a function u(-) € H4 is called a weak quasiperiodic solution of the natural
system on M if u(-) satisfies the equality

(Duu(p), Duh(@))o + Wy, u(9)), h(¢))o = 0 (2.1)
for any vector field h(-) along u(-).

This definition is natural since the equality holds true for any classical
quasiperiodic solution u(tw) and continuous vector field h(y) along wu(-) with con-
tinuous derivative Dy,h(-). It should be also noted the following fact. Let V¢
stands for the covariant differentiation of Levi-Civita connection in the direction
of vector £ € TM, and let V f stands for gradient vector field of a scalar function
fOy: M =R ie (Vf(x), &) = df(x)(€) for any £ € T, M. Then for any smooth
u(-) : T — M one can consider v(t) := %u(tw) = D,u(tw) as a tangent vector
field along the curve x = wu(tw) and h(tw) — as a vector fields along this curve.
Hence there holds the equality

(Dyu(tw), Dyh(tw)) = (Dyu(tw), Vg h(tw)) Yt e R
which yields

(Duu(e), Duh(p)) = (Dou(p), vau(cp)h(QO» Vo € T*

From this it follows that for a classical solution the equality (2.1)) in terms of inner
geometry can be rewritten in the form

(Dou(9), Vo u)yh(@))o + (VW (@, u(w)), h(p))o = 0

where VW (i, z) denotes the gradient of function W (¢p,-) : M — R when ¢ € T*
is fixed.

The application of variational approach for searching a weak quasiperiodic solu-
tion consists in finding a function wu,(-) € H 4 which takes values in appropriately
chosen bounded subset A C M and which is a strong limit in H(T*, E"™) of mini-
mizing sequence for the functional (the averaged Lagrangian)

1
Tl = [ 1D + We u(e)lde (22)
restricted to S4. It is naturally to expect that the first variation of J at w.(-)
vanishes, i.e.
J'Tus](h) = (Dt (), Duh(@))o + (Wa(p, us(9)), h(g))o = 0 (2.3)

for any vector field h(-) along u.(:). In such a case u.(tw) is a weak quasiperiodic
solution.
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To guarantee the convergence of a minimizing sequence u;(-) € Sy for J| sa DY
norm ||-||o it is naturally to impose some convexity conditions both on the set .4 and
on the functional J. Usually, such conditions are formulated by means of geodesics.
But in the case where (M, (-,-)) is not a Riemannian manifold of non-positive
sectional curvature, we are not able to determine whether the functional of averaged
kinetic energy, namely Ji[u] := 3 [ [|Dou(p)||?de, is convex using geodesics of
Levi-Civita connection V. To clarify this fact consider a pair of functions u;(-) € S,
i = 0,1. Under certain conditions imposed on A, for any fixed ¢ € T*, one can
define a smooth homotopy [0,1] X R 3 (s,t) — v(s,t) € A between two functions
t — u;(p+itw), i = 0,1, in such a way that y(4,t) = u;(p+itw) forallt € R, i = 0,1,
and for any fixed ¢ the mapping (-, %) : [0,1] — A is a minimal geodesic connecting
uo(p + tw) with u; (¢ + tw). Obviously that % |t=0'y(i, t) = Dyu;(v). The problem
is whether the function g(s) := H%|t:07(s,t)||2 is convex. Put n(s,t) := %v(s,t)
and £(s,t) := £7(s,t). Then
d
2 (Vemn) = 2[(Vén,m) + [IVen|”].

In view of geodesic equation V¢€ = 0 and equalities
V& =Ven, VyVel — VeVy = R(n, §)¢ (2.4)

where R is the Riemann curvature tensor of (M, (-,-)), we have Vgn = —R(n,&)¢.
This implies

d2
@HUW =2

d2
Tzl = 2l Venl” = (R, &, m)]

= 2[|[Venl® — K (o (& m)UnlPlIEN* = (1, €)*)]

where 0,(£,7) is a plane defined by vectors &, € T, M and K(o,(£,7n)) is a sec-
tional curvature in direction o,(¢,n) [I7]. In general case, it may happen that
Ven = 0 for some s. Thus, one can guarantee the convexity of g(s) if (M, (-,-)) is
a Riemannian manifold of non-positive sectional curvature. It is this case that was
considered in [33], 34].

To overcome the above difficulty we introduce a conformally equivalent inner
product of the form (-, -}y ‘T,M:: eV @ (. ) ‘TTM with appropriately chosen smooth
function V(-) : M — R. With this approach'We succeed in establishing a required
convexity properties of averaged Lagrangian under certain convexity conditions
imposed on functions V(-) and W (e, -).

3. CONVEXITY OF AVERAGED LAGRANGIAN

It is easily seen that if V(-) € C*°(M,R) is a bounded function on M then the
Riemannian manifold (M, (-,-)yv) equipped with corresponding Levi-Civita con-
nection is complete. In fact, by definition, the standard distance between any two
points x,y € (M, (-,-)) is defined as

plx,y) ==1inf{l(c) : c € Cp 4},
where C, , is the set of all piecewise differentiable paths ¢ : [0,1] — M connecting

x with y, and [(c) is the length of ¢ on (M, (-,-)). If we denote by Iy (¢) the length
of path ¢ on (M, (-,-)v), then

1611{4 VeV@i(e) <ly(c) < sup VeV®i(e).

reM
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Hence, the metric p(-,-) and the metric py (-, -) of (M, {-,-)y) are equivalent. Now
it remains only to apply the Hopf-Rinow theorem (see, e.g., [IT, sect. 5.3]).

To distinguish geodesics of metrics p and py we shall call them p-geodesic and
pv-geodesic respectively.

For x € M, let exp,(:) : T,M— M denotes the exponential mapping for
Riemannian manifold (M, (-,-)) with Levi-Civita connection V and let expY (-) :
T, M — M be the analogous mapping for Riemannian manifold (M, (-, -}y) with
corresponding Levi-Civita connection VV'. Note that since both manifolds are com-
plete the domains of both exponential mappings coincide with entire 7, M.

Recall that for the function V(-), the Hesse form Hy (x) at point = (see, e.g.,
[17]) is defined by the equality

(Hy ()&, m) == (VeVV(x),n) YEn € T,M.

Let us introduce yet another quadratic form

Gy (@)6,€) = (Hy(2)6,6) — S(VV(2),€)7 Ve € TuM,
and the notation

Mi@)i= _min (H(@)E /€

pv(z) == min (Gv(2)€,€)/ €],

€T, M\{0}
1
D:={zeM:\y(z)+ §||VV($)||2 > 0}.

Now we state the following hypotheses concerning convexity properties of func-
tions V() and W (-, ):
(H1) there exist a noncritical value v € V(D) and a bounded connected compo-
nent  of open sublevel set V=1 ((—o0,v)) with the following properties:
(a) Q:=QUIN C D and for any z,y € Q the set D contains at least one
py-geodesic segment with endpoints z, y;
(b) the second fundamental form of 9 is positive at each point x € 99
(i.e. for any = € 99 the restriction of Hy (x) to T,09 is positive

definite);
(c) the function V(-) satisfies the inequality
wy(x) > 2K*(x) Ve e (3.1)
where
K*(z) = max (R(n, £)&, n)

oo (&m [M2NIEN12 = (0, €)?

is the maximum sectional curvature at point x;
(H2) the function W (-,-) satisfies the following inequalities

v (0, 2) + %(VW((p,x), V(@) >0 Ypz) T xQ (2= QU0
(VW (p,2),VV(z)) >0 Y(p,z) € TF x Q

where Ay (p, z) is minimal eigenvalue of Hesse form Hyy (¢, x) for the func-
tion W(p,-) : M — R.
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Remark 3.1. Let us give some arguments in order to justify the above hypotheses.
Recall that a set of a Riemannian manifold is called convex if together with any two
points x1, xo this set contains a (unique) minimal geodesic segment connecting 1
with xo(see, e.g., [4 sect. 11.8] or [I7, sect. 5.2]). It is well known that for any point
x an open ball of sufficiently small radius centered at point xg is convex. A function
f: Dy — R with convex domain Dy C M is convex if and only if its superposition
with any naturally parametrized geodesic containing in Dy is convex. Now suppose
that the function V(-) reaches its local minimum at a non-degenerate stationary
point . € M. This implies VV(z,) = 0 and Ay (z.) > 0. For sufficiently small
b > 0, there exists d > 0 such that the ball

By (z.;d) :=={z € M : py(z,z,) < d}

is a convex subset of (M, (-,-)y) and there holds inequalities
1
Ay () + 5||VV(:Jc)||2 >0, py(z)>b V& By(z,;d).

Moreover, for arbitrary b > 0 one can choose a > 0 and d > 0 in such a way
that the same inequality holds true if we replace V(-) with aV(-).The inequal-
ity is required to provide convexity of averaged kinetic energy functional
% Jor IDwu(e)||?de. The first inequality of Hypothesis (H2) is required to pro-
vide the convexity of force function, and the second one implies local growth of
W (g, ) in direction of external normal to 0fQ.

It may happen that the direct verification of condition (a) of Hypothesis (H1)
involving py-geodesic is rather difficult. In such a case the following statement
which make use of p-geodesics might be useful.

Proposition 3.2. Set G := {x € M : Ay (z) > 0}. Let there exists a non-critical
value v € V(G) such that the set V=1 ((—o0,v]) is a bounded and connected subset of
G. Suppose also that for any pair of points xg,r1 € V~"1(v) the closure of G contains
at least one minimal p-geodesic segment connecting xo,x1. Then the conditions (a)
and (b) of Hypothesis (H1) hold for Q := V~1((—o0,v)). Moreover, any minimal
py -geodesic segment connecting points x,y € 0 belongs to ().
Proof. Tt is easily seen that G C D. Let r = p(xg,z1) and ~(-) : [0,7] — G
be a minimal naturally parametrized p-geodesic segment with endpoints xg,z; €
V~1(v). Then V(,)(s) =0 and

d? Vo . .

eV = V(T (@), )7 + (Hy (@), )]s

> e\ 0 4(s) > 0.

Hence, the function exp oV o () is convex. This imply that
Vo100 < (1 — )V @) L gV =) =¥ v e [0,1],

and thus v(s) € Q for all s € [0,7]. If now ¢(-) : [0,1] — M is arbitrary piecewise
differentiable path with endpoints zg,z1 such that c(t) € M\ Q for all ¢ € (0,1),
then V oc(t) > v for all ¢ € (0,1) and

v(7) = / VeV |[i(s)llds < e*/21(3) < eI(c)
< /O VeVee® | a(t)||dt = Iy (c).
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Now consider a minimal py-geodesic segment vy connecting points z,y € 2. Let
us show that vy € Q. If we suppose that vy ¢ €, then vy must contain at least
one segment 7y, with endpoints g, #; € V~!(v) and with the property that

v\ {Zo} U {#:1}) c M\ Q.

Replace 4y by a minimal p-geodesic segment 4 connecting the points Zg,Z;. As
has been already shown above, Iy (¥) < Iy (v ), and this yields

pv(z,y) = lv(yw) =lv(w \ v) + v (Fv)
>ly(w\w) +lv(®) =lv([w \w]ud).

Thus, on Riemannian manifold (M, (-, }y) the length of piecewise differentiable
path [yy \ 4v] U4 connecting points x, y is less than py (z,y). We arrive at contra-
diction with definition of metric py(-,-). Hence, vy € Q.

Finally, the inequality )\V| 50> 0 ensures the fulfillment of condition (b). (]

The next technical statement on the convexity property of the functional J plays
a key role in existence proof of weak quasiperiodic solution.

Theorem 3.3. Let the Hypotheses (H1)-(H2) hold. Then there exist positive con-
stants C, Cy and c such that for any uo(-),u1(-) € C®(T* Q) one can choose a
vector field h(-) € C>°(T*, T M) along uo(-) (this implies that h(p) € Ty ()M for
all o € T%) in such a way that the following inequalities hold

cpuo(p),ur(9)) < [A(p)| < C ¥y € T,

IDoh(@)]| < Cull| Douo(9)l| + [ Dour ()] Ve € T,

KCQ

Thur] = o) = I fucl() > %5 [ ()

where r = min{\w (p, ) + 1(VW(p,2),VV(2)) : (p,z) € TF x Q}.

The proof of this theorem needs several auxiliary statements and will be given
at the end of present Section.

Proposition 3.4. The Fuler-Lagrange equation for py-geodesic on Riemannian
manifold (M, (-,-)) has the form

P oy 4+ JEIP
Vit =—(VV(x),&)& + 5

Proof. A py-geodesic segment with endpoints xg, 1 € M is an extremal of func-
tional ®[z(-)] = fol eV °r(")||2(t)||2dt defined on the space C2 , of twice continuously

oI
differentiable curves x = x(t), t € [0, 1], such that 2(0) = =g, (1) = ;. We are
going to derive the Euler-Lagrange equation using the connection V. Consider a
variation of z(-) defined by a smooth mapping y(-,-) : [0,1] X (—&,&) — M such

that y(-, A) € €2, for any fixed A € (—¢,¢) and y(¢,0) = z(t). Put

o1

VvV (z), (3.2)

. 0 , 0

y(t7 )‘) T &y(ta )‘)a Yy (tv )‘) i ay(tv )‘)

Obviously, y(t,0) = @(t), y(i,\) = ; and y/(i,A\) =0, 4 =0, 1. Since Vg = Vyy/,
we have

d Y e L. . . .
ﬁhzo/ e’ y\|y||2dt:/ VUV oy, y)9lI* + 2e¥ Y (Vyi, )] a=odt
0 0
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1
= [V o9l + 26 (T acadt
0
Taking into account that

J v, ) o ) ) o . o )
aev Yy gy = eV (VV oy, i)W, ) + eV (Vyy, ) + eV (Y, Vi)

and e °¥(y’, 9) |t:0 ,= 0, we obtain
1 1
| e e = = [TV 0y i) ) + 0 Vs
0 0
From this it follows that the first variation on functional ® is

% 2N = @Ol (-, 0))

= [ ROV = 2TV ) = 255Dy 0t

and the Euler-Lagrange equation is exactly (3.2)). O

Proposition 3.5. Let Hypothesis (H1) hold. If a py-geodesic segment connecting
points x,y € Q belongs to D, then this segment belongs to 2.

Proof. Let x(-) € C2 ,, satisfies (3.2)) and let z(t) € D for all ¢ € [0,1]. Then
a2 .,

T |omay = [ (VEVV,E) (VY —(VV. &) + |E]*VV/2) + (VV, )]

r=xz(t)
= [ (VaVV,) + |22V V2],
> [eV]lE)* (v + IVVII2/2)]| 2 0.

z=x(t) =

Hence, ¢¥°*() is convex and this implies V o z(t) < v for all t € [0, 1]; i.e., z(t) € Q
for all ¢t € [0, 1]. O

Corollary 3.6. For any solution x(-) : [0,1] — D of equation (3.2), the function
eVor() has positive second derivative.

Proposition 3.7. Under Hypothesis (H1) the set Q contains a unique non-de-
generate minimum point of function V (-), and there are no other stationary points
of this function in Q. The domain € is simply connected.

Proof. Under Hypothesis (H1) VV(x) # 0 on 9. Hence, V(-), as well as " (),
has at least one minimum point z, € Q. The inequality Ay (z,) > 0 yields that
this point is non-degenerate. Any other stationary point y, € 2, if it exists, is also
a non-degenerate minimum point. But this is impossible, since, as it follows from
Corollary (3.6), the function V() is strictly convex along py-geodesic segment
connecting x, with y, and containing in 2 C D. Hence, x, is unique, and the
domain €2 can be shrunk to . by means of the flow of vector field —VV/||VV|%. O

Proposition 3.8. Under Hypotheses (H1), any two points x,y € Q are the end-
points of unique py -geodesic segment containing in 2.

Proof. Tt is known (see. [I7, sect. 3.6]) that the sectional curvature in direction
0.(£1,&) on Riemannian manifold (M,e" (-,-)) is represented in the form

Ky (0:(&1,€2))
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2
= VK (0.6, &) — 5 SUHY (@), ) — 3 (VY (2),6°) — {IVV @)

i=1

where 1, &> is an orthonormal basis of the plane 0,(&1,£2), and the inequality

yields that this curvature is non-positive for any = € Q. Under Hypothesis (H1),

taking into account Proposition there exists a py-geodesic segment vy C €

connecting x,y € . By the Morse-Schoenberg theorem [I7, sect. 6.2] any py-

geodesic segment which belongs to €, in particular vy, does not contain conjugate

points. Hence, the image of the set

Z, i ={6 € TuyM :expY (s£) € QVs €[0,1]}

under the mapping exp” (-) coincides with €2, and this mapping is a local diffeo-
morphism at any point of the closure Z,. Let us show, that the set Z, is bounded.
It follows from the proof of Proposition that for arbitrary £ € Z, \ {0}

2

a PV 0 expy 18/ 1€]lv)] > mine™ Ay () + [VV (@)]*/2) =: 0 > 0
faS

while t£/||€||y € Z., and thus for such ¢ we have

ot?
exp[V o expY (t€/||€]lv)] > —— — tmax ||[VV (z)||v + mine”®).
2 zeQ zeQ

This yields that there exist T' > 0 and sufficiently small € > 0 with the property that
for any £ € Z, one can point out ¢.(€) € (0,7] such that V oexpY (t-(£)¢/[€]lv) =
v+e. Hence, ||£]ly < T.

Now it is not hard to see that for any y € Q the set Z, N [expY]~!(y) is finite.
In fact, otherwise there would exist a sequence &, € Z, converging to &, € Z, such
that & # &, i # k, and expY (&) = exp) (&) = y. But this is impossible since
expy (+) is local diffeomorphism at &,.

From the above reasoning it is clear that any point y € {2 has a neighborhood U
such that [expY]~1(U) is a finite disjoint union of open sets of Z, each of which is
mapped diffeomorphically onto U by expY (+), i.e. U is evenly covered by the map
expy (). Hence, expY (-) : Z, — € is a finite-fold covering mapping. This mapping
is bijection since 2 is simply connected (Proposition and Z, is path-connected
(see., e.g., [31] sect. 3.23]). Thus, for any point y € 2, there exists a unique ¢ € Z,
such that exp? (¢) = y, and then {2 contains a unique py-geodesic segment, namely
Useo,1j{exp (s¢)}, with endpoints , . O

As a corollary of above proposition and the implicit function theorem we obtain
the following statement.

Proposition 3.9. Under Hypotheses (H1) there exist a smooth mapping ((-,-) :
QxQ—TM and a constant T > 0 such that ((z,y) € T M and

expy (C(z,y) =y,  pviz,y) <" @2|¢(z,y)| < T, 53)
expY (1C(x,y)) € Vi € [0,1]. |

If we define the mapping

Wiy ) (0,1 xQxQ— Q. yy(t,zy) = eXpX(tC(x,y)),

then for any x,y € D the mapping vy (-, x,y) : [0, 1] — D satisfies the equation (3.2))
together with boundary conditions vy (0, z,y) = z, yv (1, z,y) = y. The following
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scalar differential equation

dr

1
T~ oV ow(rey) / exp(—V oy (t,z,y))dt.
0

has a unique strictly monotonically increasing solution
T(h2,y) 1 0,1] = [0,1], 7(0,2,y) =0, 7(L=zy) =1 (3.4)
By means of reparametrization t = 7(s,z,y) we define a smooth mapping

X('v ) ) : [07 ]-] X QX0 — Q» X(s,x,y) = ’YV(T(37e'E,y)7x,y)
which plays an important role in subsequent reasoning. In [33] x(-, -, ) is called the
connecting mapping.

Proposition 3.10. For any z,y € Q the mapping x(-,x,y) : [0,1] — Q is a solution
of boundary value problem
s

Vo = 210
v 2

VV(z), x(0,zy) =z x(La,y)=y (3.5)
da

ds”

Proof. The boundary conditions follow from definition of vy and (3.4). Let us show
that (3.5)) is obtained from (3.2 after the change of independent variable t = 7(s).
In fact, let x(s) = 2 o 7(s). Then (3.2) takes the form

where ' =

1 1, 1 nor o X2
V(X)) = —WWV ox, X )x' + 2(7')2VVOX’
N ' a I
~TX + VX = —[ Ve + PV o
From this it follows since 7/ /7" = (V o x)". O

Proposition 3.11. Under Hypothesis (H1) the following inequality is valid
d? )
o IDX(s,wol), ua(@DIF 2 0 s € 0,1], Vi € T, Yu() € Sa, i = 0,1

Proof. For any fixed ¢ € T put

0
n(s,t) == 3

X (5, uo(p + tw), ui (¢ + tw)) = Dux(s, uo(p + tw), ur (e + tw)),

0

E(5,1) 1= (s, wolip + 1), ua (i + 1),
Then in view of (2.4)) and (3.5)), we have
Ven =V, Ve€ — R(n,€)¢

= (v ovvey+ 1L

5 VaVVox— R(n,&)¢

and hence
d2
@HWHZ
=2[(Vin,m) + | Ven|®]

=2|Venll* + 2(Ven, EN(VV o x,m) + €13V VV 0 x,m) — 2(R(n,€)&,m)
> 2| Venl? = 2| VenllIEN{VV o x,m)| + IEIIP(V, VV 0 X, n) — 2K* o x[|€]1?[|n]|.
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Once Hypothesis (H1) holds, we obtain

d? 1 .
Tz 1717 = 20 IlP[* = [(VV o x,e)fr + 5{VeVV o x,€) = K" o x] > 0
_ Vel
where 7:= g - O

Now we are in position to prove Theorem Let u;(-) € Sq, ¢ =0,1. By means
of connecting mapping we obtain the following representation

n s? d?

2 ds?ls=¢
with some 6 € (0,1). To estimate from below the term with second derivative we
make use of Proposition which together with Hypothesis (H3) implies

dz 1
@[gquX(S, uo (), ur (@) II” + W (e, x (s, ug, u1))]
d
> $<VW(%X)7X’S>
7112
— (Vo VW0, + P w0, vV 00) 2 i

2
By the definition of y we have

JIx (s, u0,u1)] = Juo] + sJ'[uo] (x5(0, uo, u1)) Jx(s,u0,u1)] (3.6)

X/s(sa u07u1>

= 7'(8)4v (7(8), w0, u1)

1
zexp(VOVV(T(S),uo,ul))/o exp(=V oy (t, up, u1))dtdy (7(s), ug, u1).

Since vy (t, z,y) is py—geodesic, then exp(V o vy)||4v||? does not depend on t and
V2 4y (0,2, 9)l| = V¢ (2, )]
Hence
X% (s, wo, un) |2

1
= [/ exp(=V 0y (t, uo, ur))dt]? exp(V 0y (7(s), up, ur))e” “[¢ (o, u) |,
0

and (3.3) implies that there exist positive constants C, ¢ dependent only on V(-)
and (2 such that

Cp(uoaul) < HX;(57UO7U1)H <C (37)
Define h(y) := x%(0,up(¥), u2(v)). Then (3.6) with s = 1 yields
Kc?
Thur] = Tlue] = sl (0G0, wos ) = %5 [ (o, )
T

Finally, since the set {2 is bounded and the mapping x is smooth, there exists
positive constant C; such that

IDuh(@)]| < Cill Douo(p) | + [Duur(#)ll] Vo € T".

The proof is complete.
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4. MAIN EXISTENCE THEOREM
Now we proceed to the main result of this paper.

Theorem 4.1. Let hypotheses (H1) and (H2) hold. Then the natuml system on
Riemannian manifold (M, (-,-)) with Lagrangian density L = (i, i) + W (tw, z)
has a weak quasiperiodic solution.

Proof. The proof consists of three steps.

Step 1. Construction of a projection mapping and its smooth approximation.
Put Q46 = (UzeqB(z; 6)) where B(z; §) stands for an open ball of radius é centered
at © € M on Riemannian manifold (M, (-,-)). Since by Hypothesis (H1) v is a
noncritical value, then 9Q = V~1(v) is a regular hypersurface with unit normal
field v := %. As is well known (see, e.g., [4, sect. 8.1]), for sufficiently small
§ > 0, one can correctly define the projection mapping Pq : Q + 6 — € such that
Pqx € ) is the nearest point to x € Q+6. If z = X(q), ¢ € @ C R™~! is a smooth
local parametric representation of 92 in a neighborhood of a point xy € 02, then
for sufficiently small §; > 0 the mapping

Q x (—do0,60) 3 (¢, 2) — expx(q) (2v 0 X(q))

introduces local coordinates with the following properties: local equation of 92 is
z = 0; each naturally parametrized p-geodesic

(s) = expx g (sv 0 X(q))

is orthogonal to each hypersurface z = const; the Riemannian metric takes the
form Zzzj;ll bi; (g, 2)dg;dg;+dz?, where B(q, z) = {bi;(q,2)}"_ e ! is positive definite
symmetric matrix; the function V(+) is represented in the form V' (¢, z) = v+a(q)z+
b(q, 2)z?; the mapping Py has the form

~ f(a,0) if z € (0,8),
Pﬂ(qu) T {(q72) if z € (_5070]'

The projection mapping is continuous on 4+ § and continuously differentiable on
(Q + 9)\0Q2. Moreover, it turns out that for sufficiently small ¢ > 0 the derivative
Pq. is contractive on (£2 4 0)\04; i.e.

| Poslll < |I€]l VE € TuM, x e (24 06)\00. (4.1)

It is sufficiently to prove this inequality for any = € (Q + §)\9Q. Let ¢ = q(s),
z = z(s) be natural equations of p-geodesic which starts at a point zg = (go, 0) € I
in direction of vector n =(qo,0) € T,,09. The hypothesis (H1) implies that

d2
@ s=0

Since a(go) > 0 (v is external normal to J€2) and z-component of geodesic equations

is
8 m—
2 Z (q,2)d7d3,

then the matrix B’ (qo,0) is positive deﬁmte. From this it follows that B(q,z1) >
B(q, z2) for all ¢ from a neighborhood of gy and all z1,20 € (—6,0), 21 > 2o if

(Vi ViV (x0),m) = Vig(s),2(5)) >0 & a(go)2(0) > 0.

L\D\»—*
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0 € (0,00) is sufficiently small. Let £ = (¢,2) be a tangent vector at point (g, 2)
where z € (0,6). Then

m—1 m—1
ll€lI” = Z bij(q,2)dig; + 2° > Z bij (¢, 2)4iq;
inj=1 inj=1

m—1
> > bis(a,0)did; = (4, 0)[1* = [[Pang]l”

i,j=1
Let us introduce a smooth approximation of projection mapping in the following
way. For € € (0,0), define

MA{WW%WHWZH%W
o, 2 eR\ (—¢,0),

7 [P we(tdt
e [0 w(t)at

Obviously the function Z.(-) is smooth, its derivative, Z.(z), equals 1 for z €
(—d0, —¢], monotonically decreases from 1 to 0 on [—¢,0], and equals 0 for z > 0.
From this it follows that Z.(z) equals z for z € (—dy, —¢] monotonically increases
from —e to Z.(0) € (—&,0) on [—¢, 0], and equals Z.(0) for z € [0, dp). Now locally
define

ZE<Z) : ds—e, z€ (—(50,50).

L Z.(0)) if 2 € (0,d),
Poolq,2) = (g,2:(0)) if 2 € (0, 80)
(q,Z:(2)) if z € (=dy, 0]
and for each point = € Q such that B(z;d) C Q put P o(z) = x. Since Z.(0) < 0,
then
PE,Q(Q + 6) cQ

and since |Z.(z)| < 1, then for any z € (—4,0), and for any tangent vector & = (¢, 2)
at point (g, z) we have

m—1 m—1
€17 =" bij(a, 2)did; + 2> = > bijla, Z=(2))did; + (ZL(2)2)?

i,j=1 i,j=1

= 1, ZL(2)2))1? = | P-gasé]-
From this it follows that

[1Pooull < |IEl Vo € Q+6, VE € TuM. (4.2)
Also, Hypothesis (H2) implies
W(p,P.oz) <W(p,z) VoeT™ VYreQ+§ (4.3)

for sufficiently small § and ¢ € (0, d).
Step 2. Minimization of functional J on Sqis5. Obviously that the functional J
restricted to Sq4s is bounded from below. Let us show that

J* = inf J[SQ+5] = inf J[SQ] (44)

In fact, if v;(-) € Sq+s is such a sequence that J[v,;] monotonically decreases to Jx,
then (4.2)) and (4.3)) implies
J* S J[Ps/j,ij] S J[’Uj].
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Hence, the sequence u;(-) := P./; ov;(-) is minimizing both for J|SQ and for J|SQ+5.

Step 3. Convergence of minimizing sequence to a weak solution. Let u;(-) € Sq
be a minimizing sequence for J | So Without loss of generality, we may consider
that

2
| Douslly < M = sup [ W(p,x)dp — 7/ inf W(p,2)dp. (4.5)
T

2% seq Jrx (2m)* Jpr €0

Let hj(-) € C®(T*,TM) be a sequence of smooth mappings such that h;(p) €
Ty ()M for any ¢ € T* and besides there exist positive constants K, K such
that

Ihjlly < K1, [lhj(0)| < K Vo eTF, Vji=1,2,... (4.6)
Let us show that
Jj—o0

On one hand, J[u;] decreases to J, := inf J[Sq]. On the other hand, for sufficiently
small sg < 1 and for any j € N there exists a number ; € [—so, o] such that

Tlexpy, (shy)] = Thus] + 5.'fus ) + 55| e, (shy)]

for aa s € [—sp, so] and all j € N; and, there exists a constant Ky > 0 such that
d2
\@J[expuj(Shj)H <Ky Vsé€[-s0,8], VjeN.

If now we suppose that limsup,_, . |J'[u;](h;)| > 0 then one can choose j and
sj € [—s0, So] in such a way that

exp,, (sjh;) € Sats,  Jlexp,, (sjhy)] < Js.

Thus, in view of (4.4), we arrive at a contradiction with definition of J,.
Now by Theorem [3.3| for any pair u;4;(-), u;(-) there exists a vector field h;;(-)
along u;(-) such that

KJCQ

Thusss) = ) = Tl hg) = "5 [ 025,000, >

(2m)F kc?

5 lluivs = u;][5-

Since implies J'[u;](hi;) — 0as j — oo, then the sequence u;(-) is fundamental
in H(T*,[E") and in view of converges to a function w,(-) strongly in H(T*, E")
and weakly in HL (T*,E™). Without loss of generality we may consider that wu.(-)
is defined by a minimizing sequence which converges a.e.

Now it remains only to prove that u,(-) is a weak solution; i.e., that there holds
([2-3). Let h(:) be a vector field along u,(-). By definition, there exists a sequence of
smooth mappings h;(p) € T, (»)M which satisfies and (£.7). Then, in view

of (4.5), we obtain
hm |<DW’LL,.<7 th>0 — <DWUJ‘7 th]‘>0|
Jj—0o0

< lim |[(Dy(us —uj), Dyh)o| + VM lim || D, (h — hj)|lo = 0.
j—o0

J—00

As was noted above, we may consider that u;(-) is a minimizing sequence that
converges to u.(-) a.e. on TF. Then W(yp,u;(p)) converges to W (p,u.(p)) for
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almost all ¢ € T*. By definition of S, each function u;(-) takes values in bounded
domain 2. For this reason
W(p,uj(p)l < max _[W(p,u).
(o,u)€TFxQ
By the dominated convergence Lebesgue theorem, the function ¢ — W (p, u.(¢))
is integrable on T* and

lim [ [W(p,u;(p)) — W(p,u.(p))ldp = 0.

Jj—o0 Tk

Hence, J'[u,](h) = lim;_o J'[u;](h;) = 0. -

5. SEARCHING FOR WEAK QUASIPERIODIC SOLUTIONS BY MEANS OF AVERAGED
FORCE FUNCTION

There naturally arise a question of how to choose a conformally equivalent metric.
One of the ways is to seek the function V() in the form V(-) =Y o W(-) where

W)= o [ Wiemd

is the averaged force function and Y () € C>*°(W (M), R) is an unknown function.
Here we suppose that W(-) is smooth, otherwise we replace this function by a
smooth approximation.

A searching procedure for quasiperiodic solutions can be as follows.

Step 1. Searching for non-degenerate points of local minimum for W (-). Let .
be one of such points. Without loss of generality, we assume that W (z,) = 0. A
minimal eigenvalue of quadratic form (Hyy (z4)&, &) on T, M is Ay () > 0. Let

E={r e M: \y(z) >0, VIW # 0Vz # x.},

and for the sake of definiteness consider the case where K*(x) > 0 for all = € £.
Denote by ©,, a connected component of sublevel set W~1((—oo,w)) such that
Ty € O, and put
wy == sup{w >0:0,, C &}. (5.1)
Step 2. Constructing a smooth function Y () in order to satisty (3.1) with V(-) =
Y oW(-).

Lemma 5.1. Put p(w) := max,cq %, q(w) :=max, g %g)) Let z(-) :

[0,w9) — Ry, where wy € (0,w1], be a smooth function satisfying the inequalities
2 _
Z,aw—z
2 pw)
and let Y(w) = [ z(s)ds. Then pyoy(z) > 2K*(x) for all x € O, and all
w e (0, 11)2).
Proof. If V(:) =Y o W(-) then VV(z) = Y’ o W(2)VW (z) and

(Hy(2)€,€) =Y o W (2)(Hy (2)€,€) +Y" o W(2)(VW (2),£)?,

(Gv(@)€,8) =Y oW (2)(Hy (x)€,§) + [V -

2> Vw € (0,w2), z>qw) Yw € [0,ws), (5.2)

%(y’)Q] o W (2)(VW (2), €)%,
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for £ € T,M. Any £ € T, M, [[£]| = 1, can be represented in the form § =

cos an + sin ag where ¢ := ||§g8|\ and n € T, M is such that ||n|| =1, (n,¢) = 0.

Then it is not hard to show that

fyow () = Ay ()Y o W (z) +[Y" — %(Y')Q] o W (a)|[VW (2)|” sin®
> A\ (2)Y o W () cos® a
+ (Y - %(Y')z] o W()|[VW (@)[I* + Ay ()Y o W (x)) sin® o
> 2K (2)
for all x € O, w € (0, ws). O

Remark 5.2. Observe that p(w) — +0 when w — 40, the functions p(-) and
22 g(w)—u
+

5 p(w) . = 0 have

q(-) are non-decreasing, and the roots z4(w) of equation
asymptotic representations

2y (w) = ﬁ[l + VI 2p(w)q(w)] = Z% — g(w) + O(p(w)),
o (w) = (1 — T 2p(w)q(w)] = g(w) + O(p(w)),

p(w)
as w — +0. Set wy := sup{w € (0,w1) : 2p(w)g(w) < 1}. One can show that
z4(+) is non-increasing, z_(-) is non-decreasing, z4(w) > z_(w) > ¢(w) for all
w € (0,ws), and integral curves of the the equation
’ 2 Q(w) -z
z 5 T o) (5.3)
have negative slope in the domain bounded by the graphs of z_(+), z4(+), and the
ordinate axis. If ws = w1, then we can put wy = wy and z(w) = m. Let now

w3 < wy. For any wg € (0,ws], let z(;;wp) : (0,ws) — R be a non-continuable
solution of (5.3) satisfying the initial condition z(wq;wo) = z—(wg) > q(wp). It is
naturally to choose wq in such a way that

ws := sup{w € (wo,wq) : z(s;wp) > q(s) Vs € (wp,w)}
be maximally large. One can put wy := min{w;,ws} and take for the solution
of deferential inequality (5.2)) the following function: z(- is a non-decreasing
smooth function satisfying the conditions

)‘[O,U)g]

z_(w) < z(w) < zp(w) Yw € [0,wp),
ai
ow?

z(wywe) Vi=0,1,2,...,

W=wo
and z(w)’(wmwﬁ:: z(w;wp).

Finally, let w* € (0, w2) be a number arbitrarily close to ws. Define V(+)

C—)'w* ’
Y o W(-) and smoothly extend this function on the entire M in such a way that
V(z) > Y (w*) for all z € M\ O-.

Step 3. Choosing w, to ensure py-convexity of 6,,,. Observe that

Avow () 2 pryow () = 2K7(z) > 0

if # € ©,+. By propositions [3.2] and [B.8] in order that ©,, be py-convex it is
sufficient that w, € (0,w*) be such a number that for any z¢,z; € 00,,, the set



18 I. PARASYUK, A. RUSTAMOVA EJDE-2012/66

O, contains at least one minimal p-geodesic segment with endpoints xq, ;. Such
a choice of w, is always possible (see Remark .

So we managed to construct a function V(-) for which Hypothesis (H1) holds
true with v := Y (w,) and D =Q = 0,,,.

Finally, to prove the existence of weak quasiperiodic solution by means of The-
orem it remains to verify Hypothesis (H2). Let W (g, z) := W(p,z) — W (x).
In order that Hypothesis (H2) holds it is sufficient that the force function satisfies
the following two conditions:

z(w)

(w)griknxa@w[/\w(%x) + T(HVW(JJ)H2 +(VIW, VW (p,2)))] > 0 (5.4)
Yw € [0, ws),
VW (@)|| > [VW (p,2)[| V(p,z) € T" x 90, (5.5)

where z(+) is the function defined in Lemma [5.1]and Ay (¢, -) is the minimal eigen-
value of Hesse form of function W(p,-) : M — R for each ¢ € T*. Thus we arrive
at the following result.

Theorem 5.3. Let z(-) and V(-) be the functions constructed above and let the
force function W (-,-) satisfy the inequalities , . Then the natural system
on Riemannian manifold (M, (-,-)) with Lagrangian density L = (i, &)+ W (tw, z)
has a weak quasiperiodic solution.

6. QUASIPERIODIC FORCING OF NATURAL SYSTEM ON HYPERSURFACE

In coordinate Euclidean space E™, consider a natural conservative system which
undergo quasiperiodic forcing. The Lagrangian density of such a system has the
form

_ lal?

L= +Uy) + (f(tw)y)

where U(-) € C>*(E™,R), f(-) € C(T*,E"), [ f(p)de=0. Suppose that the sys-
tem is constrained to a regular connected compact hypersurface represented as a
level set M := F~1(0) of a smooth function F(-) : E® — R such that grad F(y) # 0
for any y € M. Let us show how one can verify the inequalities of Hypotheses
(H1)—(H2) in the case where W (-) = U(~)|M and W(p,-) = (f(¢), >|M

In the rest of this article, we shall use the notation grad U(y) and Hess U(y),
respectively, for gradient and Hessian matrix of function U(y) in E", while VU (z)
and Hy (z) will denote the same for the restriction of U(-) to M (let us agree to
denote current point of the hypersurface M by x).

Determine the normal vector field and the second fundamental form of hyper-
surface M:

S grad F(x)

“ lgrad F(2)]”

11, (&m) = (dvz(§),m) = W

Taking into account that the metric tensor and the Levi-Civita connection for M
are induced by scalar product of E", we have

VU (z) = gradU(z) — (grad U(x), vy) vy,
(Hu (2)¢,€) = (VeVU(2), &) = (HessU(2)€, &) — (grad U(x), va) (€, 6),

§&neTM.



EJDE-2012/66 VARIATIONAL APPROACH FOR WEAK QUASIPERIODIC SOLUTIONS 19

Av(z) = min{(Hy (2)¢,§) « § €E", (15,8 =0, [§]| =1}
Put
kp(x) = max{|[1;(&,§)| : £ € TuM, [|€]| =1}
At each point z € M, we split the vector f(¢) into its tangential and normal
components with respect to T, M, namely

flo)=fT(p,2) + fHp,2), fTp,2) = f(0) = (f(9),va)va,
fj_(@a'r) = <f(<p)7’/$>l/x’
Since in our case W (g, y) = (f(¢),y) and
VW(p,x) = fT(p,2),  (Hy(p0)6,€) = —(f(0)va)L(£,€) €€ TuM,
we obtain
VW (.2l = I @l [Hy o)l < me@l(f@) )l (61)
Finally, let us determine K*(x). It is known (see, e.g., [T, sect. 3.7]) that

I1(&1,6) T1:(61,62)] .
I1,(61,&) 11:(&2,62)|°
gi S ]Env <£i71/z> = 07 <§Z?€j> = 51]7 7’7.7 = 172}
From this it follows that if x;(z), i =1,...,n— 1, are n — 1 principal curvatures of

hypersurface M at point x, then

K*(z) = (max ki(z)k;(x).

K*(z) = max{

Thus, we have determined all the functions involved in searching procedure for weak
quasiperiodic solutions. After having found the function z(-) from Lemma and
the number wy, it remains only to verify the inequalities and . In order
for these inequalities hold it is sufficient that

220 (2) + 2(w) (VU (@) [* + (VU (2), f T (p,2))) = 265 (2)[(f (), V)]
Y(p,z) € TF x 90, Yw € [0,w,], (6.2)
IVU @) > V@I = (Fp),ve)? Yz €T x 90,,.

As an application of the technique developed, we consider the motion of spherical
pendulum under quasiperiodic forcing. The spherical pendulum is a natural system
on 2-D sphere with functions F(-) and U(-) of the form

F(o)=ai+ai+a5—-1, Uly)=g (1-ys), g=const>0.

Restrict our study to the case where the forcing function is f(tw) = a(tw)b where

b= (b1,bo,b3) €E® b3 >0, max]|a(p)| =1, / a(p)dy = 0. (6.3)
ETF Tk

Theorem 6.1. Let the following inequality hold:
g > 2.42max{/b? + b3,b3} + bs. (6.4)

Then the spherical pendulum system with forcing function t — f(tw) = a(tw)b
satisfying the conditions (6.3) has a weak quasiperiodic solution containing in the
upper hemisphere.
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Proof. In the case under consideration we have
gradU: (0707 _g)a Vg = ($1,$2,$3),
VU (z) = grad U(x) — (grad U(z), vy )ve = g - (2123, 2923, 25 — 1),

IVU(@)|| = g\/1—23, 11.(§€) =(5€), (Hu()§ &) = gr3(&, ),
Au(z) =gxs, kp(z)=K*(z)=1,
(VU(2), f T (@, 2)) = (grad U(z), f()) = (f (), va)(grad U (), vs)

= ga(p)[xs(b, z) — bs],
11T (e, 2)[1? = a®(@)[l1B]* — (b, 2)°)-

For the stationary point z, = (0,0,1) of U(z) we have A\y(z.) = g > 0. The set £
in our case is the upper hemisphere, and w; = g (see (5.1])). Further,

1—23 29w —w?
p(w) _91710%?;331( 2 )= %
2 1 2
glw)=- max —=——.

g1-w/g<zs<1 T3 g —w

Hence, the inequalities of Lemma [5.1] take the form

2 — (g —
,>z+2 (9 —w)z . 2

z

=2 29w — w? Tg—w
The natural solution of these inequalities is z(w) = riw. Since p-geodesics on the
sphere are great circles, then the spherical cap
3
Ow =U"((~00,w)) = {z e R?: fo =1, z3>1—w/g}

i=1
is p-convex for any w € (0,g). For this reason one can put w, = w* where w* €
(0, g) is a number arbitrarily close to g.

Further, the parametric representation of boundary 00,, is

r1 =1/l —2icosa, z9=4/1—aisina, x3=1-—w/g.

On this curve, we have

(b, )] < /(67 + B3)(1 — 23) + s,
and it is easily seen that the inequalities (6.2) hold once

9> 205(/ (03 + 13)(1 — 03) + baws) + by Vas € [1— w./g, 1],

gVl = (1 —w./g)? > /b + b3 + b3.

To complete the proof it remains only to observe that

max l‘g(\/(b% +03)(1 — 23) + bgws) < 1.21 max{4/b3 + b3, b3},
z3€[0,1]

and to choose w, sufficiently close to g. O
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7. ADDENDUM POSTED ON DECEMBER 28, 2012

In this addendum, we show that if a function u,(-) is determined by a minimizing
sequence u;(-) € Sq of the functional J, then this sequence converges strongly to
() not only in H(T*,E?), but also in H. (T*, E™). Our motivation for doing this is
as follows. Recall that a function u(-) € H_4 is defined as a strong limit in H(T*, E")
of a sequence u;(-) € S4 bounded in HL (T*, E"), but at the same time the definition
of vector field h(-) along u(-) (page 4) requires that a sequence of vector fields
hi() € C°°(T*, TM) along u;(-) converges to h(-) strongly in HL(T* E"). This
brings up a question whether such a definition of vector field along u(-) € H4 is
correct enough. Obviously, the answer is positive for a subset of H 4 which is strong
closure of S4 by norm of the space H. (T* E").

Suppose that W (-,-) € C%3(T* x M,R) and that there holds the following
hypothesis which slightly strengthen Hypothesis (H1):

(H1’) the conditions of Hypothesis (H1) are valid together with strict inequality
e := minfpy () — 2K*(x)] > 0.
€S

Now for any u;(-),u;(-) € Sq, define

B
n(s,t) == ax(s, ui (@ + wt), uj(@ +wt)) = Dyx(s, ui(p + wt), u;(p + wt)),

Es,1) = 5ox(s,walip + wt) (o + )

Then in view of Proposition 3.10, we have

2
Ll = 2020, n) + Vel
= 2[|Venll* +2(Ven, €)(VV o x,n)
+IEIP(VaVV 0 x,m) — 2(R(n, )&, m)
> 2Venl? — 2IVenll TV o x, )
FIEI(V, 9V 0 x.m) — 2K o x€]12n]?
= 2|[Venll* 2/(VV o x, ) [Venll el ]
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+[{(VeVV 0 x,e) — 2K* o x]|[€]1*[In]®

where e :=n/||n||. It is easily seen that once the Hypothesis (H1’) holds, then the
quadratic form

1
22— |(VV oy, e)|z12 + [§<VeVV ox,e) — K* o]z

of variables z1, z5 is positive definite for any unit vector field e. Hence there exists
a positive number v > 0 such that

d2
Tz 7 = 200 Venl® + lI€l% 1l
and taking into account Hypothesis (H2) we get

4z 1 )
3a2 13 1Pwx(s wis u) 7 + W, x(s, uil0), 1 ()]

> ]|V Dux|? + [IXa P Dux||?]
+ (V. VIV (0, X), X5) + (VW (@, X), Vi X5)

= [V, Duoxll® + I 17 Do x[1?)
(T2 W (0.0 + S o .00, 7V ()
> V[V Dax I + IXGIP D x?] + £GP
From this it follows that the function f;;(s) = J[x(s, u;, u;)] is convex (downward):
fij(s) < sfij(1) + (1 =) fi;(0) = Jx(s,wi,uy)] < sTu;] + (1= 5) T [ug].

Now let u;(-) € Sq, ¢ = 1,2,... be a minimizing sequence for J[u|, and the
sequence J[u;] monotonically decreases to J.. Then, taking into account the con-
vexity of f;;(s), the sequence J[x(s, u;, u;4+)] is minimising for any [ € N. Together
with the property (4.7) on page 15, this assures that for any ¢ > 0 and s1, 2 € [0, 1]
there exists i(e, s1,52) € N such that

(51— 52)*

s O
[s2 — s1le
4

Jio < Jx(sk, wis ug)] < Ji +

[T Ix (81, i ws) (s (Sk5 wi, 1)) <
for all j > i >i(e,s1,82), k=1,2. But

JIx(s2, uiyug)] = J[x(s1,wi,u5)] + (52— s1) " [x (515w, uz)] (X5 (51, wi, )
2l ) )

with some §;; belonging to the interval with endpoints s; and s3. Then

2
O<d

< Jloca, TIX(5 )] < e

Since u;(+) € Sq and || Dyu;||3 < M (see (4.7), page 15), then there exists a constant
K3 > 0 such that
43

|@J[x(s,ui,uj)]| <Kz Vi,jeN, Vsel0,1].
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Hence for some o0;; belonging to the interval with endpoints s; and 6;;, we have

d?
@ |3:9ij J[X(Sv Uj, ug)]

d2 d3
= @L:sl(][x(s,ui,uj)] + (0;5 — 51)@|$=0i3_<][x(s7ui7uj)].

If we now assume that e < K3/2 and put
Ky if 1/2
salon,e) 1= {1 H e Hore D12
s1—¢/Ksg if 51 € (1/2,1],
ix(g,81) :=i(e, 51, 52(51,¢€)),

then
d2
@}3231
In view of (7.1) and ||x} (s, ui, u;)|| > c|lui — u;|| (see (3.7), page 12), by letting
s1 =0 and s; = 1, we get
llui = i [§ + lllws — us [ Dol < Che, (7.2)

IV, DX (5, i, wp) 5] o = IV Doy X5 (0, ws, ) |5 < Cae, (7.3)

JIx(s,ui,uj)] <2 Vji>i>1i.(e, 81).

for all j > 4 > max{i.(g,0),i.(,1)}, I = 4,7, with some positive constants C,Cs
independent of 7, j, €.

Now let us estimate ||V p_u, x5(0,ui, u;)|| from below. First, observe that under
Hypothesis (H1’) the mapping ((+,-) (see Propositions 3.8, 3.9) is correctly defined
and smooth not only in ©Q x Q but also in a neighborhood of this domain. If
we fix a point z¢g € 2, then by means of mapping exp¥0(~) one can introduce
local coordinates in a neighborhood of 2. Namely, for any y belonging to such
a neighborhood of £ we put into one-to-one correspondence the vector £(y) :=
¢(z0,y) € Ty M such that expy, (£(y)) = y.

Next, observe that from the equalities

expy (C(2,y)) =y, ((z,2) =0, (expy).(0)=1Id
it follows that
(expy )« (C(z,9))C (2 y) = 1d = ((2,9)],_,=1d,
Gy, T y)],_,=0 = Glz,y),_,=-1d.

Since 7/(0,z,z) =1 and

d

Xo(0,2,9) = 7'(0,2,9) 2|, expy (#(@,9)) = 7(0, 2, y)¢(2, ),

then
X (0,2, 9)|,_, = C(a,y)],_,= ~1d,
Xy (0,2,9)] _, = (2 y)],_, = 1d.
Now it is easily seen that there exists a constant C3 > 0 such that
max{||Id + X, (s, 2, y) ||, [1d — x5, (s, 2, 9) |1} < Csllz — (7.4)
for any (z,y) € Q x Q.
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In local coordinates introduced above, points of €2 and tangent vectors at such
points are represented as m-dimensional vectors of coordinate space E™, and there
exists a bilinear mapping

Le(y) : E™ xE™ - E™
smoothly depending on x such that
VDwuiX;(Oa Ug, ’LL]') = DwX;(Oa Uq, uj) + Ful (Dwui7 Xls(()? Uj, u]))

(this bilinear mapping is expressed via the Christoffel symbols). It is not hard to
show that there exists a constant Cy > 0 such that

T, (Do, X5 (0, ui, uy)) || < Call Dosuillllus — ]l Vi, j € N.
Now the equality
Dng(Ovuivuj) = Dwuj - Dwui + [Id + X/slw(svuivuj)]Dwui
+ [X;lw(svuivuj) - Id]Dwuj
together with ([7.4)) yields
1D x5 (0, ui; uy) || = [ Doty — Douill = Csllus — || Dous|| + [ Doyl
and finally,
IV D X5 (0, wis )| = [ Doty — Do
= llui = w3 [|[(Cs + Ca) | Doy || + || Deoris []-
From this it follows that there exists a constant C5 > 0 such that
IV Das X (0, iy ) [P = [ Doy — Do ||?
= Cs[1 Doy — Douwillllwi — wi|| (| Do | + [| Doz ])
+[lui =yl (1 Dwws|* + | Dwus |*)],
and after applying the Schwartz inequality we obtain
IV D X (0, i ) I3
> || Duj = Douil
—Cs [”Dwuj — Douillo(([lws — wj |l Dewwsllllo + [[l[ws — ;[ Deuslllo)
+ i = wi || Do 115 + IMllws — uj”HDwuj””g} :

Taking into account the inequalities (7.2)), (7.3)) we see that there exist g > 0 and
Cs > 0 such that

| Dyu; — Dyuillo < Cev/e

for all € € (0,e0) and all j > ¢ > max{i.(g,0),4.(g,1)}. Hence under Hypothesis
(H1’), the minimizing sequence u;(-) is fundamental not only in H(T* E™) but also
in HL(T*, E").

We also want to correct some misprints.
In the last formula on page 3, the constant K should be replaced with Kj.
In formula (2.3), page 4, the left hand side of equality must be ﬁJ "us]h.
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On line 8, page 12, Hypothesis (H3) should be replaced with Hypothesis (H2).
In Theorem 4.1, the same arguments we used to show that

lim [ [W(p,u;(p)) — W(p,u.(p))ldp =0

J—
Tk

should be used to prove that

Jim [ Wi e.u(0) — Wil (0)ldo =0,
Tk

End of addendum.
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