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LIMIT CYCLES OF THE GENERALIZED LIÉNARD
DIFFERENTIAL EQUATION VIA AVERAGING THEORY

SABRINA BADI, AMAR MAKHLOUF

Abstract. We apply the averaging theory of first and second order to a gen-
eralized Liénard differential equation. Our main result shows that for any
n, m ≥ 1 there are differential equations ẍ + f(x, ẋ)ẋ + g(x) = 0, with f
and g polynomials of degree n and m respectively, having at most [n/2] and
max{[(n − 1)/2] + [m/2], [n + (−1)n+1/2]} limit cycles, where [·] denotes the
integer part function.

1. Introduction

One of the main topics in the theory of ordinary differential equations is the
study of limit cycles: their existence, their number, and their stability. A limit
cycle of a differential equation is a periodic orbit in the set of all isolated periodic
orbits of the differential equation. The Second part of the 16th Hilbert’s problem
[11] is related to the least upper bound on the number of limit cycles of polynomial
vector fields having a fixed degree. Then there have been hundreds publications
about the limit cycles of planar polynomial differential systems. The generalized
polynomial Liénard differential equation was introduced in [14], and has the form

ẍ + f(x)ẋ + g(x) = 0. (1.1)

where the dot denotes differentiation with respect to time t, and f(x) and g(x) are
polynomials in the variable x of degrees n and m respectively.

The Liénard equation, which is often taken as the typical example of nonlinear
self-excited vibration problem, can be used to model resistor-inductor-capacitor
circuits with nonlinear circuit elements. It can also be used to model certain me-
chanical systems which contain the nonlinear damping coefficients and the restoring
force or stiffness. Limit cycles usually arise at a Hopf bifurcation in nonlinear sys-
tems with varying parameters. In mechanical systems, the varying parameter is
frequently a damping coefficient (see [1, 6]). A lot of papers discusse the possible
number of limit cycle of Liénard and generalized mixed Rayleigh-Liénard oscil-
lators. Ding and Leung [6] investigated the generalized mixed Rayleigh-Liénard
oscillator with highly nonlinear terms. They consider mainly the number of limit
cycle bifurcation diagrams of these systems. For the subclass of polynomial vector
fields (1.1) we have a simplified version of Hilbert’s problem, see [15, 23].
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Many results on limit cycles of polynomial differential systems have been ob-
tained by considering limit cycles which bifurcate from a single degenerate singular
point, that are so called small amplitude limit cycles, see [16] and [20]. We denote
by Ĥ(m,n) the maximum number of small amplitude limit cycles for systems of
the form (1.1). The values of Ĥ(m,n) give a lower bound for the maximum num-
ber H(m,n) (i.e. the Hilbert number) of limit cycles that the differential equation
(1.1) with m and n fixed can have. For more information about the Hilbert’s 16th
problem and related topics see [12, 13].

Now we shall describe briefly the main results about the limit cycles on Liénard
differential systems.

In 1928 Liénard [14] proved that if m = 1 and F (x) =
∫ x

0
f(s)ds is a continuous

odd function , which has a unique root at x = a and is monotone increasing for
x ≥ a, then equation (1.1) has a unique limit cycle.

In 1973 Rychkov [21] proved that if m = 1 and F (x) =
∫ x

0
f(s)ds is an odd

polynomial of degree five, then equation (1.1) has at most two limit cycles.
In 1977 Lins, de Melo and Pugh [15] proved that H(1, 1) = 0 and H(1, 2) = 1.
In 1998 Coppel [5] proved that H(2, 1) = 1.
Dumortier, Li and Rousseau in [9] and [7] proved that H(3, 1) = 1.
In 1997 Dumortier and Chengzhi [8] proved that H(2, 2) = 1.
Blows, Lloyd [2] and Lynch ([17] and [19]) used inductive arguments to prove

the following results.
• If g is odd then Ĥ(m,n) = [n

2 ].
• If f is even then Ĥ(m,n) = n, whatever g is.
• If f is odd then Ĥ(m, 2n + 1) = [ (m−2)

2 ] + n.
• If g(x) = x + ge(x), where ge is even then Ĥ(2m, 2) = m.

Christopher and Lynch [4] developed a new algebraic method for determining
the Liapunov quantities of system (1.1) and proved the following:

• Ĥ(m, 2) = [ (2m+1)
3 ],

• Ĥ(2, n) = [ (2n+1)
3 ],

• Ĥ(m, 3) = 2[ (3m+2)
8 ] for all 1 < m ≤ 50,

• Ĥ(3, n) = 2[ (3n+2)
8 ] for all 1 < n ≤ 50,

• Ĥ(4, k) = Ĥ(k, 4) for k = 6, 7, 8, 9 and Ĥ(5, 6) = Ĥ(6, 5).

In 1998 Gasull and Torregrosa [10] obtained upper bounds for Ĥ(7, 6), Ĥ(6, 7),
Ĥ(7, 7) and Ĥ(4, 20).

In 2006 Yu and Han [25] proved that Ĥ(m,n) = Ĥ(n, m) for n = 4, m =
10, 11, 12, 13; n = 5, m = 6, 7, 8, 9; n = 6, m = 5, 6.

By using the averaging theory we shall study in this work the maximum number
of limit cycles H̃(m,n) which can bifurcate from the periodic orbits of a linear center
perturbed inside the class of generalized polynomial Liénard differential equations
of degree m and n as follows:

ẋ = y,

ẏ = −x−
∑
k≥1

εk(fk
n(x, y)y + gk

m(x)), (1.2)

where for every k the polynomial gk
m(x) has degree m, the polynomial fk

n(x, y)
has degree n on x and y and ε is a small parameter, i.e. the maximal number of
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medium amplitude limit cycles which can bifurcate from the periodic orbits of the
linear center ẋ = y, ẏ = −x, perturbed as in (1.2). In fact, we mainly shall compute
lower estimations of H̃(m,n). More precisely, we compute the maximum number of
limit cycles H̃k(m,n) which bifurcate from the periodic orbits of the linear center
ẋ = y, ẏ = −x, using the averaging theory of order k, for k = 1, 2. Of course
H̃k(m,n) ≤ H̃(m,n) ≤ H(m,n).

In 2009, Llibre, Meureu and Teixeira [18] obtained lower estimates of H(m,n)
for all m,n ≥ 1 for the system

ẋ = y,

ẏ = −x−
∑
k≥1

εk(fk
n(x)y + gk

m(x)), (1.3)

and from these estimates they obtained that H̃k(m,n) ≤ Ĥ(m,n) for k = 1, 2, 3 for
the values which Ĥ(m,n) is known. The main result of this paper is the following.

Theorem 1.1. If for every k = 1, 2, the polynomials fk
n(x, y) and gk

m(x) have degree
n and m respectively, with m,n ≥ 1, then for |ε| sufficiently small, the maximum
number of medium limit cycles of the polynomial Liénard differential systems (1.2)
bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x,

(a) using average theory of first order: H̃1(m,n) = [n/2];
(b) using average theory of second order:

H̃2(m,n) = max{[(n− 1)/2] + [m/2], [n + (−1)n+1/2]}.

We remark that in general, H̃k(m,n) 6= H̃k(n, m) for k = 1, 2.

2. Averaging theory of first and second order

The averaging theory of first and second order for studying periodic orbits was
developed in[3, 18]. It is summarized as follows. Consider the differential system

x′(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε), (2.1)

where F1, F2 : R×D → Rn, R : R×D × (−εf , εf ) → Rn are continuous functions,
T -periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypotheses hold:

(i) F1(t, .) ∈ C1(D) for all t ∈ R, F1, F2, R, DxF1 are locally Lipschitz with
respect to x, and R is differentiable with respect to ε. We define

F10(z) =
1
T

∫ T

0

F1(s, z)ds,

F20(z) =
1
T

∫ T

0

[DzF1(s, z).y1(s, z) + F2(s, z)]ds,

where y1(s, z) =
∫ s

0
F1(t, z)dt.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf )\{0}, there
exists aε ∈ V such that F10(aε)+εF20(aε) = 0 and dB(F10+εF20, V, aε) 6= 0.

Then, for |ε| > 0 sufficiently small there exists a T -periodic solution ϕ(., ε) of the
system (2.1) such that ϕ(0, ε) = aε.

The expression dB(F10 + εF20, V, aε) 6= 0 means that the Brouwer degree of the
function F10+εF20 : V → Rn at the fixed point aε is not zero. A sufficient condition
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for the inequality to be true is that the Jacobian of the function F10 + εF20 at aε is
not zero.

If F10 is not identically zero, then the zeros of F10 + εF20 are mainly the zeros of
F10 for ε sufficiently small. In this case the previous result provides the averaging
theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10+εF20

are mainly the zeros of F20 for ε sufficiently small. In this case the previous result
provides the averaging theory of second order.

For more information about the averaging theory see [22, 24].

3. Proof of statement (a) of Theorem 1.1

For applying the first-order averaging method, we write system (1.2) with k = 1,
in polar coordinates (r, θ) where x = r cos(θ), y = r sin(θ), r > 0. In this way
system (1.2) is written in the standard form for applying the averaging theory.
If we write f1

n(x, y) = f(x, y) =
∑n

i+j=0 aijx
iyj and g1

m(x) = g(x) =
∑m

i=0 bix
i,

system (1.2) becomes

ṙ = −ε[
n∑

i+j=0

aijr
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

bir
i cosi(θ) sin(θ)],

θ̇ = −1− ε

r
[

n∑
i+j=0

aijr
i+j+1 cosi+1(θ) sinj+1(θ) +

m∑
i=0

bir
i cosi+1(θ)].

(3.1)

Taking θ as the new independent variable, system (3.1) becomes

dr

dθ
= ε

( n∑
i+j=0

aijr
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

bir
i cosi(θ) sin(θ)

)
+ O(ε2)

and

F10(r) =
1
2π

∫ 2π

0

( n∑
i+j=0

aijr
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

bir
i cosi(θ) sin(θ)

)
dθ.

To calculate the exact expression of F10 we use the following formulas:∫ 2π

0

cosi(θ) sinj+2(θ)dθ =

{
0 if i is odd, or j is odd
αij if i is even and j is even,∫ 2π

0

cosi(θ) sin(θ)dθ = 0, for i = 0, 1, . . .

Hence

F10(r) =
1
2π

n∑
i+j=0

aijαijr
i+j+1 when i is even and j is even. (3.2)

Then the polynomial F10(r) has at most [n
2 ] positive roots, and we can choose the

coefficients aij with i even and j even in such a way that F10(r) has exactly [n
2 ]

simple positive roots. Hence statement (a) of Theorem 1.1 is proved.

Example 3.1. We consider the system
ẋ = y,

ẏ = −x− ε(3− x + 2y + x2 − y2 − 2xy2)y + (x− y).
(3.3)



EJDE-2012/68 LIMIT CYCLES OF A LIÉNARD DIFFERENTIAL EQUATION 5

The corresponding system (3.1) associated with (3.3) is

ṙ = −εr sin(θ)(2 sin(θ) + cos(θ)− r(cos(θ) sin(θ) + 2 sin(θ)2)

+ r2(sin(θ) cos(θ)2 − sin(θ)3)− 2r3 cos(θ) sin(θ)3),

θ̇ = −1− ε[2r sin(θ) cos(θ)− r2 cos(θ)2 sin(θ)

+ 2r2 sin(θ)2 cos(θ) + r3 sin(θ) cos(θ)3

− r3 sin(θ)3 cos(θ)− 2r4 cos(θ)2 sin(θ)3 + r cos(θ)2].

To look for limit cycles, we must solve the equation

F10 =
1
2π

(
2rπ − 1

4
r3π

)
= 0, (3.4)

This equation possesses the positive root r = 2. According with statement (a) of
Theorem 1.1, that system (3.3) has exactly one limit cycle bifurcating from the
periodic orbits of the linear differential system (3.3) with ε = 0, using the averaging
theory of first order.

4. Proof of statement (b) of Theorem 1.1

For proving statement (b) of Theorem 1.1 we shall use the second-order averaging
theory. If we write f1

n(x, y) =
∑n

i+j=0 aijx
iyj , f2

n(x, y) =
∑n

i+j=0 cijx
iyj , g1

m(x) =∑m
i=0 bix

i and g2
m(x) =

∑m
i=0 dix

i then system (1.2) with k = 2 in polar coordinates
(r, θ), r > 0 becomes

ṙ = −ε
( n∑

i+j=0

aijr
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

bir
i cosi(θ) sin(θ)

)
− ε2

( n∑
i+j=0

cijr
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

dir
i cosi(θ) sin(θ)

)
,

θ̇ = −1− ε

r

( n∑
i+j=0

aijr
i+j+1 cosi+1(θ) sinj+1(θ) +

m∑
i=0

bir
i cosi+1(θ)

)
− ε2

r

( n∑
i+j=0

cijr
i+j+1 cosi+1(θ) sinj+1(θ) +

m∑
i=0

dir
i cosi+1(θ)

)
.

(4.1)

Taking θ as the new independent variable in the system (4.1), it becomes
dr

dθ
= εF1(θ, r) + ε2F2(θ, r) + O(ε3),

where

F1(θ, r) =
n∑

i+j=0

aijr
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

bir
i cosi(θ) sin(θ),

F2(θ, r)

=
[ n∑

i+j=0

cijr
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

dir
i cosi(θ) sin(θ)

]
− r cos(θ) sin(θ)

[ n∑
i+j=0

aijr
i+j cosi(θ) sinj+1(θ) +

m∑
i=0

bir
i−1 cosi(θ) sin(θ)

]2

.
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Now we determine the corresponding function F20. For this we put F10 ≡ 0 which
is equivalent to aij = 0 for all i and j even, and we compute

d

dr
F1(θ, r) =

n∑
i+j=0

(i + j + 1)aijr
i+j cosi(θ) sinj+2(θ) +

m∑
i=1

ibir
i−1 cosi(θ) sin(θ),

and ∫ θ

0

F1(φ, r)dφ = y1
1 + y2

1

where

y1
1 =

∫ θ

0

n∑
i+j=0

aijr
i+j+1 cosi(φ) sinj+2(φ)

= a10r
2
(
α110 sin(θ) + α210 sin(3θ)

)
+ · · ·+ albr

l+b+1
(
α1lb sin(θ) + α2lb sin(3θ)

+ · · ·+ α (l+b+2)+1
2 lb

sin((l + b + 2)θ)
)

+ a01r
2
(
α101 + α201 cos(θ)

+ α301 cos(3θ)
)

+ · · ·+ acdr
c+d+1

(
α1cd + α2cd cos(θ) + α3cd cos(3θ) + . . .

+ α (c+d+2)+3
2 cd

cos((c + d + 2)θ)
)

+ a11r
3
(
α111 + α211 cos(2θ)

+ α311 cos(4θ)
)

+ · · ·+ aldr
l+d+1

(
α1ld + α2ld cos(2θ) + α3ld cos(4θ) + . . .

+ α (l+d+2)+2
2 ld

cos((l + d + 2)θ)
)
,

such that l is the greatest odd number and b is the greatest even number so that
l + b is less than or equal to n. c is the greatest even number and d is the greatest
odd number so that c+d is less than or equal to n. αijk are real constants exhibited
during the computation of

∫ θ

0
cosi(φ) sinj+2(φ)dφ for all i and j. and

y2
1 =

∫ θ

0

m∑
i=0

bir
i cosi(φ) sin(φ) = b0(1− cos(θ)) + · · ·+ bmrm 1

m + 1
(1− cosm+1(θ).

We know from (3.2) that F10 is identically zero if and only if aij = 0 for all i even
and j even. Moreover∫ 2π

0

cosi(θ) sinj+2(θ) sin((2k + 1)θ)dθ =


0 if i is odd and j ∈ N,

A2k+1
ij if i is even and j is odd,

k=0,1,. . .∫ 2π

0

cosi(θ) sinj+2(θ)dθ 6= 0, if and only if i is even and j even,

∫ 2π

0

cosi(θ) sinj+2(θ) cos((2k + 1)θ)dθ =


0 if j is odd and i ∈ N,

B2k+1
ij if i is odd and j is even,

k = 0, 1, . . .∫ 2π

0

cosi(θ) sinj+2(θ) cos((2k)θ)dθ = 0, for i odd or j odd, k = 0, 1, . . .∫ 2π

0

cosi(θ) sinj+2(θ) cosm+1(θ)dθ =

{
0 if j is odd and i,m ∈ N,

Mm
ij if i is odd, j is even and m is even,
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0

cosi(θ) sin(θ) sin((2k + 1)θ)dθ =

{
0 if i is odd, k = 0, 1, . . .

N2k+1
i if i is even, k = 0, 1, . . .∫ 2π

0

cosi(θ) sin(θ)dθ = 0, ∀i ∈ N,∫ 2π

0

cosi(θ) sin(θ) cos((2k + 1)θ)dθ = 0, ∀i, k ∈ N,∫ 2π

0

cosi(θ) sin(θ) cos((2k)θ)dθ = 0, ∀i, k ∈ N,∫ 2π

0

cosi(θ) sin(θ) cosm+1(θ)dθ = 0, ∀i,m ∈ N,

So∫ 2π

0

d

dr
F1(θ, r)y1(θ, r)dθ

=
∫ 2π

0

[
n∑

i+j=0

(i + j + 1)aijr
i+j cosi(θ) sinj+2(θ)

+
m∑

i=1

ibir
i−1 cosi(θ) sin(θ)](y1

1 + y2
1)dθ

=
n∑

i+j=0

(i + j + 1)aijr
i+j

∫ 2π

0

cosi(θ) sinj+2(θ)(y1
1 + y2

1)dθ

+
m∑

i=1

ibir
i−1

∫ 2π

0

cosi(θ) sin(θ)(y1
1 + y2

1)dθ

=
n∑

i+j=1i even, jodd

(i + j + 1)aijr
i+j [a10r

2(α110A
1
ij + α210A

3
ij) + . . .

+ albr
l+b+1(α1lbA

1
ij + α2lbA

3
ij + · · ·+ α (l+b+2)+1

2 lb
Al+b+2

ij )]

+
n∑

i+j=1,i odd,j even

(i + j + 1)aijr
i+j [a01r

2(α201B
1
ij + α301B

3
ij) + . . .

+ acdr
c+d+1(α2cdB

1
ij + α3cdB

3
ij + · · ·+ α (c+d+2)+3

2 cd
Bc+d+2

ij )]

+
n∑

i+j=1,i odd,j even,m even

(i + j + 1)aijr
i+j [−b0M

0
ij − · · · − bmrm 1

m + 1
Mm

ij ]

+
m∑

i=2ieven

ibir
i−1[a10r

2(α110N
1
i + α210N

3
i ) + . . .

+ albr
l+b+1(α1lbN

1
i + α2lbN

3
i + · · ·+ α (l+b+2)+1

2 lb
N l+b+2

i )].

Moreover,∫ 2π

0

F2(θ, r)dθ
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=
∫ 2π

0

[
n∑

i+j=0

cijr
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

dir
i cosi(θ) sin(θ)]dθ

−
∫ 2π

0

r cos(θ) sin(θ)
[ n∑

i+j=0

aijr
i+j cosi(θ) sinj+1(θ) +

m∑
i=0

bir
i−1 cosi(θ)

]2

dθ,

but ∫ 2π

0

cosi(θ) sinj+2(θ)dθ =

{
0 if i is odd or j is odd,

Fij 6= 0 if i is even and j even.

Hence∫ 2π

0

F2(θ, r)dθ

=
n∑

i+j=0,i even,jeven

CijFijr
i+j+1

− 2
n∑

i+j=1,i even,j odd

n∑
l+k=1,l odd,k even

aijalkri+j+l+k+1

∫ 2π

0

cosi+l+1(θ) sinj+k+3(θ)

− 2
n∑

i+j=0,i even,j even

n∑
l+k=2,l odd,k odd

aijalkri+j+l+k+1

∫ 2π

0

cosi+k+1(θ) sinj+l+3(θ)

− 2
m∑

k=1,k odd

n∑
i+j=0,i even,j even

bkaijr
k+i+j

∫ 2π

0

cosk+i+1(θ) sinj+2(θ)

− 2
m∑

k=0,k even

n∑
i+j=0,i even,j odd

bkaijr
k+i+j

∫ 2π

0

cosk+i+1(θ) sinj+2(θ).

Then F20(r) is the polynomial
n∑

i+j=1,i even,j odd

(i + j + 1)aijr
i+j [a10r

2(α110A
1
ij + α210A

3
ij) + . . .

+ albr
l+b+1(α1lbA

1
ij + α2lbA

3
ij + · · ·+ α (l+b+2)+1

2 lb
Al+b+2

ij )]

+
n∑

i+j=1,i odd,j even

(i + j + 1)aijr
i+j

[
a01r

2(α201B
1
ij + α301B

3
ij) + . . .

+ acdr
c+d+1(α2cdB

1
ij + α3cdB

3
ij + · · ·+ α (c+d+2)+3

2 cd
Bc+d+2

ij )
]

+
n∑

i+j=1,i odd,j even,m even

(i + j + 1)aijr
i+j

[
− b0M

0
ij − · · · − bmrm 1

m + 1
Mm

ij

]
+

m∑
i=2,i even

ibir
i−1

[
a10r

2(α110N
1
i + α210N

3
i ) + . . .

+ albr
l+b+1(α1lbN

1
i + α2lbN

3
i + · · ·+ α (l+b+2)+1

2 lb
N l+b+2

i )
]

+
n∑

i+j=0,i even,j even

CijFijr
i+j+1
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− 2
n∑

i+j=1,i even,j odd

n∑
l+k=1,lodd,k even

aijalkri+j+l+k+1

∫ 2π

0

cosi+l+1(θ) sinj+k+3(θ)

− 2
n∑

i+j=0,i even,j even

n∑
l+k=2,lodd,kodd

aijalkri+j+l+k+1

∫ 2π

0

cosi+k+1(θ) sinj+l+3(θ)

− 2
m∑

k=1,k odd

n∑
i+j=0,i even,j even

bkaijr
k+i+j

∫ 2π

0

cosk+i+1(θ) sinj+2(θ)

− 2
m∑

k=0,k even

n∑
i+j=0,i even,j odd

bkaijr
k+i+j

∫ 2π

0

cosk+i+1(θ) sinj+2(θ).

We conclude that

F20(r) =
n∑

i+j=1,i even,j odd

(i + j + 1)aijr
i+j

[
a10r

2(α110A
1
ij + α210A

3
ij) + . . .

+ albr
l+b+1(α1lbA

1
ij + α2lbA

3
ij + · · ·+ α (l+b+2)+1

2 lb
Al+b+2

ij )
]

+
n∑

i+j=1,i odd,j even

(i + j + 1)aijr
i+j

[
a01r

2(α201B
1
ij + α301B

3
ij) + . . .

+ acdr
c+d+1(α2cdB

1
ij + α3cdB

3
ij + · · ·+ α (c+d+2)+3

2 cd
Bc+d+2

ij )
]

+
n∑

i+j=1,i odd,j even,m even

(i + j + 1)aijr
i+j [−b0M

0
ij − · · · − bmrm 1

m + 1
Mm

ij ]

+
m∑

i=2,i even

ibir
i−1

[
a10r

2(α110N
1
i + α210N

3
i ) + . . .

+ albr
l+b+1(α1lbN

1
i + α2lbN

3
i + · · ·+ α (l+b+2)+1

2 lb
N l+b+2

i )
]

+
n∑

i+j=0,i even,j even

CijFijr
i+j+1

− 2
n∑

i+j=1,i even,j odd

n∑
l+k=1,l odd,keven

aijalkri+j+l+k+1F(i+l+1)(j+k+1)

− 2
n∑

i+j=0,i even,j even

n∑
l+k=2,l odd,k odd

aijalkri+j+l+k+1F(i+k+1)(j+l+1)

− 2
m∑

k=1,k odd

n∑
i+j=0,i even,j even

bkaijr
k+i+jF(k+i+1)j

− 2
m∑

k=0,k even

n∑
i+j=0,i even,j odd

bkaijr
k+i+jF(k+i+1)j .

Note that to find the positive roots of F20 we must find the zeros of a polynomial
in r2 of degree equal to the

max
{ i + j + l + b

2
,
i + j + c + d

2
,
i + j + m− 1

2
,
l + b + m− 1

2
,
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i + j

2
,
i + j + l + k

2
,
i + j + m− 1

2

}
we conclude that F20 has at most max{[n−1

2 ] + [m
2 ], [n + (−1)n+1

2 ]} positive roots.
Hence the statement (b) of Theorem 1.1 follows.

Example 4.1. We consider the system
ẋ = y,

ẏ = −x− ε[(x + 2y + xy − y3 − 2xy2)y + x]− ε2[(3y + xy − x2 + x3)y + x].
(4.2)

To look for the limit cycles, we must solve the equation

F20 =
1
2

(
(
−17
96

)r7 + (
133
96

)r5 − (
1
3
)r3

)
= 0, (4.3)

This equation has two positive roots r1 = 2.752278171 and r2 = 0.4984920115.
According with statement (b) of Theorem 1.1, that system (4.2) has exactly two
limit cycles bifurcating from the periodic orbits of the linear differential system
(4.2) with ε = 0, using the averaging theory of second order.
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[3] A. Buicǎ, J. Llibre; Averaging methods for finding periodic orbits via Brouwer degree. Bull.
Sci. Math. 128 (2004), 7-22.

[4] C. J. Christopher, S. Lynch; Limit cycles in highly non-linear differential equations. J. Sound
Vib. 224 (1999), 505-517.

[5] W. A. Coppel; Some quadratic systems with at most one limit cycle. Dynamics Reported
Vol. 2 Wiley, 1998, pp. 61-68.

[6] Q. Ding, A. Leung; The number of limit cycle bifurcation diagrams for the generalized mixed
Rayleigh-Liénard oscillator. Journal of sound and Vibration. (2009), 322 (1-2) , 393-400.

[7] F. Dumortier, C. Li; On the uniqueness of limit cycles surrounding one or more singularities
for Liénard equations. Nonlinearity 9 (1996), 1489-1500.

[8] F. Dumortier, C. Li; Quadratic Liénard equations with quadratic damping. J. Diff. Eqs. 139
(1997), 41-59.

[9] F. Dumortier, C. Rousseau; Cubic Liénard equations with linear damping. Nonlinearity 3
(1990), 1015-1039.

[10] A. Gasull, J. Torregrosa; Small-amplitude limit cycles in Liénard systems via multiplicity.
J. Diff. Eqs. 159 (1998), 1015-1039.

[11] D. Hilbert; Mathematische Problems, Lecture in: Second Internat. Congr. Math. Paris,
1900, Nachr. Ges. Wiss. Gttingen Math. Phys. ki 5 (1900), 253-297; English transl. Bull.
Amer. Math. Soc. 8 (1902), 437-479.

[12] Y. Ilyashenko; Centennial history of Hilbert’s 16th problem. Bull. Amer. Math. Soc. 39
(2002), 301-354.

[13] Jibin. Li; Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Internat.
J. Bifur. Chaos Appl. Sci. Eng rg. 13 (2003), 47-106.

[14] A. Liénard; Etude des oscillations entretenues. Revue générale de l’électricité. 23 (1928),
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